
The Case for Public Work

Wu-chang Feng, Ed Kaiser

Supported by:



Motivation
• Unwanted traffic is uncontrollable

– Spam
– Viruses
– Worms
– Port scans
– Denial of service
– Phishing



Approaches
• Indirection

– Hide or dynamically relocate to prevent indefinite access

• Filtering
– Drop unwanted traffic upstream to save network resources

• Capabilities
– Provide fine-grained control over who is given service

• Proof-of-Work
– Make adversaries commit as many resources as they request



Public work approach
• Combine salient features of each approach into single 

mechanism based on “public work functions”
• What is a public work function?

– A cryptographic puzzle issued by service whose answer can 
be verified by anyone in the network

– Specifically, anyone can verify
• Correctness
• Freshness (work performed recently)
• Amount of work (difficulty)



Basic operation
• Service advertises public work function with its 

location or resource
• Clients solve function and attach a valid answer on 

subsequent service requests
• Verifiers within network check for a valid answer 

before forwarding request



Basic operation



Basic operation



Basic operation



Basic operation



Revisiting approaches
• Indirection

– Dynamically change reachable locations by changing public 
work function

• Filtering
– Destination-controlled filtering at the client’s network edge 

based on function difficulty
• Capabilities

– Fine-grained control over access using source-specific public 
work function

• Proof-of-work
– Public work function is a puzzle of a given difficulty



Public work functions
• Goals

– Fast issuing
– Fast verification
– Flexible binding
– Limited pre-computation and replay



A novel public work function

• Server advertises nonce and difficulty Nc,Dc
• Client must find A for flow F that satisfies above equation

– Desired output must land in ‘Bucket 0’

– Relies on pre-image resistance of SHA1
– Assumes SHA1 has uniformly distributed output

Targeted Hash Reversal

0 1 2 3 Dc……

SHA1(A,F,Nc) ≡ 0 mod Dc



Public work functions
• Goals revisited

– Fast issuing
• Random number generation Nc and table lookup for Dc

– Fast verification
• Single SHA1 hash (~ 1µs on commodity PC)

– Flexible binding
• F can be any property of request (IP addresses, ports, URIs)

– Limited pre-computation and replay
• Server updates Nc to invalidate previous answers



The End
• Unwanted traffic meets its match
• The Internet is saved
• All is good in the world again



Well, not really…



Well, not really…



The good

Problems made easier



Floods against issuer
• Public work function needs to be given once per client

– Nc easy to generate
– Dc easy to lookup

• Floods against issuer easily identified and dropped 



Floods against verifier and network
• Verification is efficient

– Look up public work function
– Perform a single SHA1 hash on A,F,Nc

• Verification done near adversary
– Unwanted traffic identified and dropped at source edge
– Adversary cannot flood links to the issuer and verifier

• Adversary forced to expend arbitrary resources to 
attack system



The bad

Problems that still need work



Granularity
• What should public work functions be attached to?

– F is unspecified
– Attach to keys or files in DHTs and P2P networks?
– Attach to DNS names?
– Attach to HTTP URIs? 
– Attach to TCP/UDP 5-tuples?
– Attach to IP source/destination addresses?



Delivery
• Mutual assured delivery of work functions

– Spoofing work functions and requests for work functions 
– Client must know that the public work function is authentic
– Server must know that the public work function has been 

delivered to the right client

• Approaches for addressing delivery problems
– Strong: public-key certificates

• SSL/X.509 certificates for TLS and DNSsec
– Weak: three-way handshakes

• TCP seq. #s
• DNS request IDs



Difficulty
• Uniform difficulties are bound to fail

– Adversaries can co-opt much more resources than 
individuals (i.e. Botnets with > 100k machines)

• Must give difficult functions to malicious users
– Must have an accounting mechanism to track usage history 

(counting Bloom filters)
– Must have a difficulty generation algorithm that can turn 

back targeted attacks



Spoofing
• Attributing activity to others

– Spoofing requests with valid work from victim to increase 
its difficulty

– Spoofing work function requests to disable a victim issuer
– Spoofing requests from a targeted victim client to a large 

number of issuers (reflector)

• Must be reduced to make public work systems “work” 



The ugly

Problems that are added



The ugly

Problems that are added

Time check?



Replay
• Preventing pre-computation and replay attacks

– Adversary continuously re-uses a previously solved public 
work function

– Adversary solves a bunch of work functions in advance and 
bombs service at selected time

• Must “freshen” public work function Nc,Dc
– Pre-computation limited to time since last update
– Replay limited to time until next update



Asymmetry
• Verifier must be along the path to and from service

– Must observe, validate, and store public work function
– Must verify subsequent answers attached to requests
– Requires path symmetry that does not exist generally

• Addressing asymmetry
– Secure sharing of public work for multi-homed client ASs
– Verifiers at first-hop routers or on the client itself

• A clean-slate proposal for using trusted hardware in networks



Statefulness
• Requires per-flow state to be kept at the verifier

– Depends on F
– Public work functions must be stored at the verifier 

for validating subsequent answers
– Scalable only when verifiers are at the edges of the 

network
• At client edge, per-flow state scales
• At server edge, issuer can use keyed hashes to generate 

and validate Nc from a single secret Ni that is shared with 
server-side verifiers

– e.g. Nc=HMACNI
(IPc, Dc)



Status
• Implementations

– DNS system
• Via modifications to bind and iptables
• Uses iterative DNS queries to deliver work function

– HTTP system
• Via new apache module and a client-side javascript solver

– TCP system
• Via modifications to iptables

• Simulator
http://thefengs.com/wuchang/work/courses/cs592_spring2006



Conclusion
• Public work functions

– Combine key aspects of indirection, filtering, capabilities, 
and proof-of-work

– Single per-client work function prevents floods against the 
issuer

– Public traffic validation prevents floods against the verifier
– Lots of problems to be solved still!



Questions?

http://thefengs.com/wuchang/work/puzzles



Extra slides



DNS system



Public work management
• Query bloom filter QC(T)

– Keeps track of DNS requests per client

• Resource bloom filter RC(T)
– Keeps track of current resource consumption per client
– Only update for requests with valid work

• Averaging bloom filter MC(T)
– Weighted smoothed average of resource bloom filter

• Generated difficulty DC(T)
– Derived as g(MC(T))



Workload vs. Difficulty


