The Case for Public Work

Wu-chang Feng, Ed Kaiser
Portland State

HHHHHHHHHH

Supported by:

(intel) O

Motivation

» Unwanted traffic 1s uncontrollable
— Spam
—Viruses
— Worms
— Port scans

— Denial of service
— Phishing

Approaches

Indirection

— Hide or dynamically relocate to prevent indefinite access
Filtering

— Drop unwanted traffic upstream to save network resources
Capabilities

— Provide fine-grained control over who is given service

Proof-of-Work
— Make adversaries commit as many resources as they request

Public work approach

« Combine salient features of each approach into single
mechanism based on “ public work functions’

« What is apublic work function?

— A cryptographic puzzle issued by service whose answer can
be verified by anyone in the network

— Specificaly, anyone can verify
 Correctness

* Freshness (work performed recently)
« Amount of work (difficulty)

Basic operation

 Service advertises public work function with its
location or resource

* Clients solve function and attach avalid answer on
subseguent service reguests

* Verifiers within network check for avalid answer
before forwarding request

Basic operation

)

n

h

r =
2 [P
i —__-_ o ‘.- -

. Public work verifier

Basic operation

--
-ﬂ
L

----P Service advertisement with public work function

. Public work verifier

Basic operation

...

--
-ﬂ
L

L3

----P Service advertisement with public work function
—» Service request with valid public work

. Public work verifier

Basic operation

----P Service advertisement with public work function
—» Service request with valid public work
= => Service request with invalid or no public work

. Public work verifier

Revisiting approaches

|ndirection

— Dynamically change reachable locations by changing public
work function

Filtering

— Destination-controlled filtering at the client’ s network edge
based on function difficulty

Capabilities
— Fine-grained control over access using source-specific public
work function

Proof-of-work
— Public work function is apuzzle of a given difficulty

Public work functions

« Goals
— Fast issuing
— Fast verification
— Flexible binding
— Limited pre-computation and replay

A novel public work function

Tar geted Hash Rever sal
SHAL(A F, N.) °© 0 nod D.

 Server advertises nonce and difficulty N,, D,

* Client must find A for flow F that satisfies above eguation
— Desired output must land in ‘Bucket O

0123 .. l\/ D

— Relies on pre-image resistance of SHAL
— Assumes SHAL has uniformly distributed output

Public work functions

» Goalsrevisited

— Fast issuing
» Random number generation N, and table lookup for D,

— Fast verification
« Single SHA1 hash (~ 1ns on commodity PC)

— Flexible binding
* F can be any property of request (1P addresses, ports, URIS)

— Limited pre-computation and replay
» Server updates N, to invalidate previous answers

The End

» Unwanted traffic meets its match
 Thelnternet is saved
« All iIsgood in the world again

Well, not really...

Well, not really...

The good

Problems made easier

FHoods against 1ssuer

 Public work function needs to be given once per client

— N, easy to generate
— D, easy to lookup

» Hoods against issuer easily identified and dropped

Foods against verifier and network

* Verification is efficient
— Look up public work function
— Perform asingle SHA1 hashon A, F, N,

* Vefication done near adversary
— Unwanted traffic identified and dropped at source edge
— Adversary cannot flood links to the issuer and verifier

« Adversary forced to expend arbitrary resourcesto
attack system

The bad

Problems that still need work

Granularity

« What should public work functions be attached to?
— F is unspecified
— Attach to keys or filesin DHTs and P2P networks?
— Attach to DNS names?
— Attachto HTTP URIS?

— Attach to TCP/UDP 5-tuples?
— Attach to | P source/destination addresses?

Delivery

« Mutual assured delivery of work functions
— Spoofing work functions and requests for work functions
— Client must know that the public work function is authentic
— Server must know that the public work function has been
delivered to the right client
» Approaches for addressing delivery problems
— Strong: public-key certificates
« SSL/X.509 certificates for TLS and DNSsec

— Weak: three-way handshakes
» TCPseq. #s
* DNSrequest IDs

Difficulty

« Uniform difficulties are bound to fail
— Adversaries can co-opt much more resources than
individuals (i.e. Botnets with > 100k machines)
* Must give difficult functions to malicious users

— Must have an accounting mechanism to track usage history
(counting Bloom filters)

— Must have adifficulty generation algorithm that can turn
back targeted attacks

Spoofing

 Attributing activity to others

— Spoofing requests with valid work from victim to increase
its difficulty

— Spoofing work function requests to disable a victim issuer
— Spoofing reguests from atargeted victim client to alarge
number of issuers (reflector)

* Must be reduced to make public work systems “work”

Theugly

Problems that are added

Theugly

Problems that are added

Time check?

Replay

* Preventing pre-computation and replay attacks

— Adversary continuously re-uses a previously solved public
work function

— Adversary solves a bunch of work functions in advance and
bombs service at selected time

* Must “freshen” public work function N., D,

— Pre-computation limited to time since last update
— Replay limited to time until next update

Asymmetry

* Verifier must be along the path to and from service
— Must observe, validate, and store public work function

— Must verify subseguent answers attached to requests
— Requires path symmetry that does not exist generally

« Addressing asymmetry

— Secure sharing of public work for multi-homed client ASs

— Veifiersat first-hop routers or on the client itself

* A clean-date proposal for using trusted hardware in networks

Intel® AMT
conceptual architecture

Hardw.
-/7 BIDS $gﬂwa5m
l n tel Mo i
(g storage

Software ||
application

Software Software
| application application

Operating system

Imlel AT &5 a combination of hardvara. softvare, ard Trmaans

i
N ntal AMT {out of band)

In and out of band

Stateful ness

* Reguires per-flow state to be kept at the verifier
— Dependson F

— Public work functions must be stored at the verifier
for validating subseguent answers

— Scalable only when verifiers are at the edges of the
network
At client edge, per-flow state scales

« At server edge, issuer can use keyed hashes to generate
and validate N. from asingle secret N that is shared with

saver-side verifiers
— eg. NFHMAC, (IP,, D)

Status

* |mplementations

— DNS system
* Viamodificationsto bi nd andi pt abl es
» Usesiterative DNS queries to deliver work function

— HTTP system
* Vianew apache module and aclient-sidej avascri pt solver

— TCP system
« Viamodificationsto i pt abl es

« Simulator
http://thefengs. conf wuchang/ wor k/ cour ses/ cs592 spri ng2006

Conclusion

» Public work functions

— Combine key aspects of indirection, filtering, capabilities,
and proof-of-work

— Single per-client work function prevents floods against the
|Ssuer

— Public traffic validation prevents floods against the verifier

— Lots of problemsto be solved still!

Questions?

http://thefengs. coni wuchang/ wor k/ puzzl es

Extradides

DNS system

l. Recursive DNS request

e >
for NS of nsf.gov 2. DNS reply with IP addr
-« of N5 of nsf.gov

3. Iterative DNS request to
NS of nsf.gov for

4. Edge device generates DNS
nst.gov < * reply with IP addr of nsf.gov
and public work function (Dc, Nc, T)

5. Edge device stores reply
and public work function

P " | PR]
6. Client calculates A such that
SHA-1(A, F, Nc, T)= 0 mod Dc 7. Edge device verifies 8. Edge device verifies
and attaches A, Dc, Nc, and T public work function public work function nsf.gov
to service request before forwarding before forwarding
service request service request
\ ' -
| 1
! L =
A = integer answer F = flow identifier of service request Nc = per—client random integer

Dc = per—client integer difficulty (4—tuple of IP addresses and ports) T = time range

Public work management

Query bloom filter Q(T)
— Keepstrack of DNS requests per client
Resource bloom filter R(T)

— Kegpstrack of current resource consumption per client
— Only update for requests with valid work

Averaging bloom filter M~(T)
— Weighted smoothed average of resource bloom filter

Generated difficulty D~(T)
— Derived as g(M(T))

Workload vs. Difficulty

Hashes Required to Solve

1000000

100000

10000

1000

100

10

& MicroMint
= Hashcash

Targetec Reversal

100 1000
Difficulty Setting

10000

100000

