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ABSTRACT
Since the Morris worm was unleashed in 1988, distributed
denial-of-service (DDoS) attacks via worms and viruses have
continued to periodically disrupt the Internet. Client puz-
zles have been proposed as one mechanism for protecting
protocols against denial of service attacks. In this paper,
we argue that such puzzles must be placed within the slim
waistline of the TCP/IP protocol stack in order to truly
provide protection. We then describe several scenarios in
which TCP/IP puzzles could be used to thwart port scans
and coordinated DDoS attacks. Finally, while puzzles hold
the promise of being able to change the Internet landscape,
we describe a large number of open research issues that must
be resolved before such a vision can be achieved.

1. INTRODUCTION
Upon the spread of the Morris worm in 1988, Dave Clark

relates a story of a call he received from an angry program
manager asking for an explanation for why this was possible
and what the program manager should tell his superiors [1].
The response was that the Internet did exactly what it was
designed to do, spread the worm as quickly and as efficiently
as possible. In fact, the fast spread of the worm demon-
strated the strength of the Internet’s design. The program
manager replied that such an excuse would work this time,
but that there had better be a better answer the next time.

Twenty years have now passed and unfortunately, there
is no better answer. As evidenced with the Nimda, Code
Red, and SQL Slammer [2, 3, 4, 5, 6] worms, the Internet
still efficiently spreads worms and viruses. As recently re-
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ported [7], the SQL Slammer worm, managed to claim the
dubious title of being the first “Warhol” worm, a worm able
to lay waste to a significant portion of the Internet in under
15 minutes.

There are many underlying reasons that allow distributed
denial of service (DDoS) attacks to occur. From faulty soft-
ware to a network layer that allows the sender to fill in its
own address, a confluence of architectural design features
and implementation problems have given hackers the tools
necessary to destroy what so many in the networking com-
munity have worked so hard to build. In direct contrast
to the Internet is the phone network, which does not often
suffer from malicious distributed denial of service attacks
perpetrated by a handful of rogue hackers: something that
is relatively common with the Internet. While there are
many reasons for this, two architectural reasons in partic-
ular that help include a stronger binding of end-points to
their addresses (phone numbers) and the circuit-based ser-
vice paradigm that requires a large number of connections
be made in order to perform a resource-based attack. An
effective DDoS attack would require the hacker to physically
knock a large number of phones off their hooks.

In order to provide Internet services with the same re-
siliency to resource depletion attacks as the phone network,
client puzzles [8, 9, 10, 11, 12, 13, 14] have been proposed as
a mechanism for pushing work back onto clients requesting
service. With client puzzles, a server or network being pro-
tected generates a cryptographic puzzle that a client must
answer correctly before it is given service. Such a mecha-
nism gives servers and the network the ability to selectively
push back load to the source of an attack when overloaded.
When done correctly, this achieves for the Internet, what
already exists for the phone network: a requirement that
malicious attackers must co-opt an extremely large number
of clients in order to perform resource-based attacks.

We argue that the ability to push load selectively back to
clients must be implemented and deployed within the slim
waistline of the TCP/IP protocol stack in order to effectively
deal with DDoS attacks.

In the spirit of efforts to re-visit the Internet’s architec-
ture [15], we are exploring a change to the fundamental ser-
vice paradigm of the Internet in order to allow those provid-
ing service to arbitrarily push load back on those requesting
service. Although, it is an open research issue, such a change
could significantly impact the ability to successfully launch
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Figure 2: An ICMP puzzle option

denial of service attacks. In particular, by using the willing-
ness and ability for clients to selectively do work on behalf
of the server as a crude indication of “intent”, such a mech-
anism can slow down the spread of worms and viruses as
well as force hackers to compromise many more machines in
order to successfully launch denial-of-service attacks.

2. TCP/IP PUZZLES
Client puzzles provide a capability within the network and

end systems to mitigate denial of service attacks. We argue
that such functionality must be placed in the basic network
(IP and ICMP) and transport (TCP, SCTP, UDP) layers.
The design of these layers has, in part, been motivated by
the end-to-end principle in which underlying protocols do
not implement functionality that can and must be imple-
mented by higher-level, end-to-end protocols. This design
principle pushes out complexity to the end-hosts while pre-
serving a clean, simple network design.

While the end-to-end argument has motivated the design
of a slim network and transport layer, the argument also
motivates the need to put puzzles within the waistline. The
key is that denial-of-service activity can happen at any layer
and only needs to break one link in the end-to-end chain in
order to be successful. Because of this, the ability to push
back against participants of a DDoS attack must be placed
at a layer that is shared across all applications. For example,
DoS-resistant authentication protocols [12, 10] are helpless
against an IP flooding attack. In general, application-level
puzzles only afford protection when the attacker employs
only that particular protocol in the attack.

Since the only chance there is to push back an arbitrary
DoS attack is to put protection at layers that are common
to all Internet activity, we believe that the strength of client
puzzles will only become significant when placed in common
network and transport layers. For example, in the network
layer, by adding two new types of messages within ICMP [16]
or IP [17], a router or firewall could pass puzzles to its up-
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stream nodes that force the node to compute something in
order to maintain its current level of IP forwarding service.
In the transport layer, by adding two new TCP options [18],
end-hosts could force clients to do the same. Figures 1, 2,
and 3 show examples of protocol additions to IP, ICMP, and
TCP that could be used to support puzzles. The examples
use the currently available IP option, ICMP type, and TCP
option numbers. Similar changes would be possible for the
other protocols listed above.

3. SCENARIOS

3.1 The push-back firewall
One of the functions enabled by TCP/IP puzzles is the

ability to thwart the probing being done by hackers and
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worms in order to discover and compromise vulnerable sys-
tems. For hackers, slowing down the information gathering
significantly increases the time they require to find vulnera-
ble machines using tools such as nmap [19], nessus [20], and
scanrand [21]. For worms and viruses, slowing down this
process can completely determine their impact. There have
been anecdotal cases where simple tweaks in parameteri-
zation and simple tweaks in algorithms for finding victims
completely altered the behavior of a DDoS attack [2, 22].

One application for TCP/IP puzzles would be to build
into firewalls, the ability to respond to all requests with puz-
zles that the client must solve before being allowed connec-
tivity information. We term such a firewall a “push-back”
firewall. Rather than push a filter back into the network
such as related approaches [23, 24], the push-back firewall
instead pushes CPU load in the form of a puzzle directly
back onto clients before they are given any further informa-
tion. Consider the class B network shown in Figure 4. It
has been shown that a single instance of the scanrand tool
can probe an entire class B network (65536 IP addresses)
within seconds [21]. In one test, the tool found 8300 web
servers running inside a multinational corporation’s class B
network in 4 seconds [25]. scanrand’s power lies in the fact
that it uses a notion of inverse SYN cookies to remain state-
less and only requires one socket to do the probing. Con-
sider the same probing done against a push-back firewall
and network servers that return puzzles in response to all
TCP SYN packets regardless of whether or not a service is
available at that location. If each puzzle consumed only one
second of CPU time for the attacker’s machine to solve, the
same probe would take over 18 hours to run. While not a
panacea, the ability to selectively slow down hackers and
worms via puzzles can add a significant layer of protection
to the Internet’s infrastructure today.

3.2 Coordinated DDoS
Coordinated distributed denial of service attacks (DDoS)

can be used to simultaneously bring down multiple web sites
at a time [26, 27]. One of the problems with mechanisms em-

ployed at individual servers such as Apache’s mod dosevasive

module [28] is that they are confined to local information
and have hard-coded notions of what constitutes a denial-
of-service attack. Consider a collection of a large number of
compromised zombie machines that each send a steady rate
of requests to a set of target victims. With sufficient inter-
leaving, it may appear to each victim that each participant
in the attack is sending only a trickle of requests. However,
taken across all victims, a global view reveals malicious in-
tent. The use of TCP puzzles as shown in Figure 5 elegantly
mitigates coordinated attacks by forcing the source of the at-
tack to perform work on the order of its global usage. Where
local solutions are unable to identify and turn back such an
attack, the ability for the set of victimized servers to push
work back onto clients in times of heavy load can effectively
mitigate such an attack, thus forcing a hacker to compro-
mise a much larger number of servers in order to execute an
effective attack against multiple sites.

4. RESEARCH ISSUES
The scenarios outlined above represent how network and

transport puzzles would work in an ideal manner. There are
an immense number of research issues, however, that must
be addressed beyond simple protocol changes before the vi-
sions above can be realized. Several of the areas include:

4.1 Efficiency
To make puzzles resilient to denial of service attacks itself,

the protocols and implementations of them need to be effi-
cient. The ability to generate and give out puzzles and the
ability, to validate puzzle answers should be orders of mag-
nitude faster and cheaper than the ability to solve them.
Specifically, it must be extremely hard for flooding attacks
to saturate the system’s ability to issue puzzles and it must
be possible for the system to support a large number of puz-
zle answers using mechanisms such as protocol cookies [29].
Placing puzzles at the network layer exacerbates the prob-
lem as per-packet puzzles may be prohibitive on high-speed
links. One approach for addressing this would be to leverage
recent work in accounting and controlling high-bandwidth
flows and high-bandwidth aggregates. Such mechanisms
could be used to periodically trigger sufficiently difficult puz-
zles against the largest consumers of resources [30, 24, 31].

4.2 Tamper resistance
The puzzle mechanisms must not be susceptible to cir-

cumvention or misuse. In particular, the protocols and im-
plementations need to guard against replay attacks and “an-
swer” hijacking. It must also not be possible for malicious
third parties to deny clients access to services by insert-
ing themselves into or tampering with the puzzle protocols.
Subversive attacks are especially important to guard against
if puzzles are to be implemented at the IP layer. Consider a
router that receives a puzzle from a downstream node. Due
to the weakness of the Internet’s identification mechanisms
and the distributed nature of the routing infrastructure, the
router is unable to determine the authenticity of the puzzle
issuer’s identity and whether or not the issuer is actually
providing any service. An attacker either spoofing the IP
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Figure 6: The Puzzle Manager

address of a legitimate source or claiming to be a legitimate
source, must not be able disable the victim by falsely trig-
gering the puzzle mechanisms against it. To support this,
a tighter binding of identity to IP addresses would most
likely be required along with more widespread support for
accurately recording Internet paths. In general, we liken the
deployment of puzzles to giving every network node a loaded
gun to protect itself. While it is meant to do good things, it
can be easily be used in inappropriate ways if not designed
carefully.

4.3 Fairness
While puzzles can mitigate the effects of denial of ser-

vice, without a puzzle generation algorithm that identifies
and discriminates against known malicious activity, innocent
victims can be impacted adversely. Part of developing an
effective mechanism for thwarting denial of service attacks
is to adaptively deliver harder puzzles to clients exhibiting
suspicious behavior. For example, to mitigate magnifica-
tion attacks, puzzle difficulty can be made proportional to
the potential load being imparted on the system. An access
router could simply pass back a puzzle 256 times harder
than normal before allowing the forwarding of a packet that
may be part of a Smurf or Fraggle attack on a class C net-
work (i.e. an ICMP or UDP echo request to a broadcast
IP address) [32]. Harder puzzles could also be given to
those clients repetitively requesting the same content, those
clients continuously requesting files that do not exist, and
those clients attempting to exploit known vulnerabilities.
Finally, while forcing malicious clients to perform puzzles
before allowing access is important, the puzzle generation
algorithm must also take into account “thin clients”, such
as cell-phones or PDAs, and reduce the level of puzzle com-
plexity to match the capabilities of end-point. To support
such functionality, we believe an architecture that consists
of a shared “Puzzle Manager” must be used so that a diverse
number of applications across a diverse number of machines
can appropriately identify and respond to threats. Similar
to the Congestion Manager [33], the Puzzle Manager ac-
cepts input and recommendations from the network stack
and from different applications on a particular machine as

well as from other machines, to develop a more informed re-
sponse. To generate appropriate signals, it is envisioned that
each component would run some form of machine learning
algorithm [34] driven by application-specific metrics (such as
invalid requests) or by user feedback (such as spam feedback
or recommender systems). Figure 6 outlines the architecture
of the Puzzle Manager.

4.4 Control
Puzzles have clear similarity to explicit congestion noti-

fication (ECN) [35] and network congestion control in gen-
eral. Puzzles are effectively multi-resolution, ECN signals
that can not be ignored (assuming servers deny service to
those not answering puzzles when given them). As with con-
gestion control, control algorithms are essential for proper
operation. There are several issues that make the control
of puzzles much more difficult. The first is the fact that
puzzles themselves can be adjusted to many levels. For a
particular node, the network or end-host has the ability to
dynamically determine the level of difficulty of the puzzle
that is appropriate in order to control the node’s behavior.
The second is the fact that the same puzzle has non-uniform
impact across different nodes. This is in direct contrast to
TCP with ECN, which halves the rate of the sender upon
notification. Given these issues, control algorithms that
work well similar to the work that has already been done
with TCP [36, 37, 38, 39] and active queue management
(AQM) [40, 41, 42, 43, 44] must be developed with the over-
all goal of maximizing resource utilization while providing
equitable fairness amongst clients [45]. Another aspect in
puzzle control, would be to use the mechanisms to support
some forms of QoS. For example, based on the difficulty of
the puzzle, its solution could be used as “credit” towards
better service. Given this, a “Puzzle Fair Queuing” (PFQ?)
algorithm could be designed to weight service based on the
number of credits accumulated by individual flows and flow
aggregates.

4.5 Deployment
Without a proper financial incentive to deploy puzzles,

such ideas will go the way of QoS over the Internet [46]. Un-



like QoS, however, there are much clearer monetary benefits
for thwarting DDoS attacks and eliminating the downtime
associated with them. On the server side, with the large es-
timated costs of the SQL Slammer worm ($1.2 billion), the
Code Red worm ($2.6 billion), the LoveLetter virus ($8.8
billion), and the Klez virus ($9.0 billion) [47], individual
service providers and businesses have enormous potential fi-
nancial benefit. In addition, such a mechanism could even
be used as another means for slowing down spam, whose
cost in terms of lost productivity has not been quantified.
On the client-side, with widespread server support for push-
ing puzzles back to clients during overload situations, there
is clear incentive for clients to support puzzles in order to
maintain some level of service in times of heavy load induced
by DDoS attacks.

5. CONCLUSION
Network and transport level puzzles have the potential to

significantly change the ability to launch distributed denial
of service attacks. However, it is clearly an open research
question as to whether or not protocols and systems can
be designed and built to achieve the goal of minimizing the
impact of such attacks. Issues such as efficiently generat-
ing puzzles, hardening puzzles against subversion, control-
ling puzzles to maximize server utilization, adapting puz-
zles to achieve equitable fairness, and creating incentives
for deployment must all be addressed. As part of an on-
going project in TCP/IP puzzles [48], we are currently im-
plementing the necessary protocol changes and developing
initial solutions to the issues described above. We plan on
releasing this code to provide a platform for researchers to
further explore the issues involved in protecting the Internet
via TCP/IP puzzles.
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