
Forensix: A Robust, High-Performance
Reconstruction System

Ashvin Goel†, Wu-chang Feng, David Maier, Wu-chi Feng, Jonathan Walpole

†University of Toronto Portland State University
ashvin@eecg.toronto.edu {wuchang,maier,wuchi,walpole}@cs.pdx.edu

Abstract— When computer intrusions occur, one of the
most costly, time-consuming, and human-intensive tasks is
the analysis and recovery of the compromised system. At a
time when the cost of human resources dominates the cost
of CPU, network, and storage resources, we argue that com-
puting systems should, in fact, be built with automated anal-
ysis and recovery as a primary goal. Towards this end,
we describe the design, implementation, and evaluation of
Forensix: a robust, high-precision reconstruction and analy-
sis system for supporting the computer equivalent of “TiVo”.
The Forensix system records all activity of a target computer
and allows for efficient, automated reconstruction of the ac-
tivity when needed by investigators. Such a system could
eventually be used by law enforcement officials to provide
evidence in criminal cases as well as by companies to prove
or disprove alleged hacking activity.

Forensix uses three key mechanisms to improve the accu-
racy and reduce the human overhead of performing forensic
analysis. First it performs comprehensive monitoring of the
execution of a target system at the kernel event level, giving
a high-resolution, application-independent view of all activ-
ity. Second, it streams the kernel event information, in real-
time, to append-only storage on a separate, hardened, log-
ging machine, making the system resilient to a wide vari-
ety of attacks. Third, it uses database technology to support
high-level querying of the archived log, greatly reducing the
human cost of performing forensic analysis. Forensix is built
on top of Linux and is freely available [1].

I. I NTRODUCTION

Imagine you are the manager of a small on-line busi-
ness and one afternoon you receive a phone call. The
caller claims to have stolen all of your customers’ credit
card numbers from your system, and is demanding a large
sum of money not to release them. You consider how he
might have obtained the numbers. He may have broken
into your system and copied them. Your system managers
have applied all the current security patches, but he may
be exploiting a newly discovered vulnerability. He might
have obtained the password of a legitimate user. Perhaps a
social engineering attack, a trojan horse or an email virus
has enabled the hacker to read and broadcast sensitive files.

What do you do? Pay the money (for what could be a
bluff) or refuse and risk harm to your customers. If you
could reliably reconstruct past events and states of your
system, you would be able to notice any unusual access to
customer files and be more confident as to whether such
access had taken place.

The goal of Forensix is to build a system that supports
reliable reconstruction of all computer system activity for
forensic purposes. Forensics1 is concerned with the cap-
ture, analysis and reconstruction of system activities in or-
der to determine, post-facto, how or whether a machine
was compromised. While one of the goals of forensics
is to generate evidence that can be used in a court of
law, forensic analysis also enables system administrators
to troubleshoot problems, track down suspicious behavior,
and determine the extent of damage to compromised ma-
chines. It can even be used to prove or disprove claims
of penetration by blackmailers, although in this paper, we
will focus only on the discovery and analysis of intrusions.
Forensics systems are similar to intrusion detection sys-
tems in that they monitor system activities that identify in-
trusions. However, whereas intrusion detection systems
attempt to detect and repel intrusions, forensics systems
focus on gathering evidence to facilitate post-facto anal-
ysis. To be effective, a forensics system must gather an
accurate, high-resolution image of system activities, suffi-
cient for identifying a wide range of intrusions and answer-
ing questions such as “where did the attack come from”
and “what security hole was exploited?” The forensic evi-
dence should be gathered in a tamper-resistant way, so that
intruders cannot modify it or remove it to obscure their
tracks, and the collection mechanism should not render the
target system more vulnerable to non-intrusion based as-
saults such as denial of service attacks. Ideally, the system
should also have a small effect on the performance of the
target system, and should be affordable in terms of its re-
source requirements. Finally, it should facilitate efficient
and effective post-facto analysis, a process that is currently

1We note that the term “forensics” has taken on a broader connotation
in the community than its conventional sense pertaining to legal matters

ad-hoc, time-intensive, manual and error-prone.
In order to support such properties, we have designed

and implementedForensix: a high-resolution, analysis and
reconstruction tool. In its current instantiation, Forensix
securely logs kernel activity on a target system to a back-
end storage system, which can be efficiently queried to re-
construct target system activity. Using Forensix, we show
that the use of detailed kernel audits combined with an op-
timized backend database allows forensic investigators to
issue complex and detailed queries in real time, enabling
them to replay system activity accurately.

II. M OTIVATION

Currently, when a system is compromised, investigators
must manually sift for clues based on the current state of
the system and the log files record the state of the sys-
tem as it was under attack. This operation method is in-
herently “lossy”, in that vital information about where the
hacker connected from, how the hacker entered and what
the hacker did after he entered was not collected or may
have been deleted by the hacker. Consider a compro-
mise in which the hacker has modified sensitive files such
as .ssh/authorized_keys or .rhosts to gain a
backdoor into the system. Upon discovery, it would be
ideal if the system administrator could issue simple queries
to the forensic system such as:
Query 1: Generate a list of sessions and processes that
have written to the compromised file.
Query 2: Generate a system activity log for each session
that was generated fromQuery 1.
In another scenario, if system administrators want to dis-
cover whether intrusions are happening, they could issue a
pre-canned list of queries that identifies suspicious behav-
ior such as:
Query 3: Generate a list of all sessions that opened
/var/log/wtmp or /var/log/lastlog in read-
write mode (versus append mode).
Query 4: Generate an activity log of each session listed in
Query 3.
There are many approaches for logging and auditing sys-
tem usage, including application and system log files, pro-
cess accounting mechanisms, network traffic traces, and
file system checkers. While each has its strengths, none of
them provide enough information by themselves to accu-
rately recreate what happened in the system. For example,
application and system log files only track events based
on what the applications and system administrators think
are necessary to log. Process accounting mechanisms only
provide information as to how commands are executed and
can fail to track what programs are doing internally. If a
hacker downloads a binary onto the system and executes

it, process accounting alone will not be able to show what
the binary has done. For example, in the well-documented
Mitnick case, a program calledzap2 was downloaded and
compiled on the compromised system. The program was
then executed multiple times in order to delete login en-
tries from the system [17]. Network traffic traces alone are
also problematic in that sessions are typically encrypted.
In addition, even when they are not encrypted, they are
targets for insertion and evasion attacks, thus making what
has happened ambiguous [20]. It is also extremely diffi-
cult to correlate network forensic information directly to
higher-level application behavior that elucidates the actual
damage done to the target system. Finally, file system ac-
tivity logs can only detect modifications to files and thus
are unable to address attacks in which running processes
are compromised directly [5].

III. D ESIGN GOALS

To adequately perform forensic analysis, the following
goals must be met:
1. Completeness: The system should collect and log
enough information to completely capture user activity in
order to efficiently reconstruct all currently known attacks
and all future attacks. The system should also be able to
glue thewho(the user) and thewhat(all of the user’s activ-
ities) together. To support deniability claims and to limit
liability, such a system needs to ensure that all activity is
logged independent of system load to show certain actions
did not happen. In addition, the system should be able
to supportfail-closedoperation when logging is compro-
mised or disabled in order to prevent loss of any necessary
logging information.
2. Authenticity: No one should be able to spoof logging
messages or tamper with the logging facility. Unlike the
unauthenticated world of TCP/IP sessions, a strong au-
thenticated relationship must be built between the logging
facility and the storage system for the log data. The system
should support logging immutability that prevents history
from being rewritten. As seen in many cases, log files can
be altered, which allows a hacker to change logging his-
tory.
3. Reproducibility: The forensic system should allow
users to accurately determinewho and what for a wide
variety of system activities such as incoming and outgo-
ing network connections, and files read or written by pro-
cesses. It should allow correlating data based on time as
well as system abstractions such as processes or sessions.
The reconstruction process should be fast and should be
independent of the length of time the system has been run-
ning.
4. Efficiency: The amount of data collected and its en-

2

Processing
Batched Record

System
Target

Backend
Storage
System

Forensic Analysis

Authenticated System−Call
Logging Facility

Application Server

Operating System

Append−Only Files

Database backend

Logging Pinhole

Private network

Public network

Fig. 1. Forensix system architecture.

coding size should be minimized. Although one method
for achieving the previous goal of completeness is a sim-
ple brute-force log of everything, this approach can hinder
the ability to perform accurate, high-performance replay,
even when the power and capacity of current hardware and
software systems is fully leveraged.

IV. T HE FORENSIX APPROACH

Figure 1 shows the architecture of Forensix, a system
that attempts to meet the design goals listed above. With
Forensix, thetarget system’skernel is instrumented with a
logging facility. In its current implementation, the logging
facility streams system-call traces over a private network
interface to a highly-securebackend storage system2 This
design is driven by the observation that a successful attack
can only be caused by system-calls issued by processes
running on the attacked system (provided the system is
built correctly). Hence, ifall system-call activity is cap-
tured and can be attributed to users, processes or connec-
tions, then it should be possible to accurately reconstruct
all security incidents, immaterial of the type of attack.
As a result, this approach helps satisfy our goal of com-
pleteness. In addition to completeness, system call log-
ging provides compactness since Forensix does not record
other, application-specific, events that do not impact sys-
tem state. Other methods for improving compactness in-
clude data compression and suppressing system-call log-
ging under certain conditions, such as reads to load com-
mon shared libraries.

For tamper-proof and immutable operation, Forensix

2Note that while system call logging is prone to such problems such
as race conditions, we are currently adapting our system architecture
and approach to incorporate other, more accurate forms of logging such
as logging within well-placed locations within the kernel and virtual-
machine based logging [8].

logs system-call activity over a private network interface
to a separate, append-only backend storage system with
console-only login access. Immutability is achieved via
the file system or via CD-R or DVD-R burning while
tamper-proof operation is achieved by authenticating each
target system at startup and by exporting only a mini-
mum set of network services needed for securely logging
system-call data. Specifically, the backend authenticates
the logging facility before storing any trace data. It also
supports a heartbeat mechanism to detect physical tam-
pering of the logging facility. Storing the traces remotely
raises the bar for hackers in that they must disable two sys-
tems to escape undetected: the public machine being mon-
itored and a machine that is locked down and operating on
a much smaller trusted computing base (TCB). To further
ensure the integrity of the system and to improve the pos-
sibility of detecting attacks, we envision a hardened back-
end built using a secure kernel service such as LIDS [29]
that would allow only a single, authenticated logging ser-
vice via a “pinhole”. This service verifies the authenticity
of log records and writes them to “append-only” storage.
It is interesting to note that in the Mitnick case [17], the
intrusion that triggered an alert was on a system that peri-
odically sent its log files to a remote system for subsequent
processing.

To support efficient and flexible querying, the backend
periodically loads log data to a relational database. This
forms the basis for accurate and high-performance replay.
Queries are efficient because the database allows indexing
frequently queried fields such as the user ID and the com-
mand executing the system call and the starting time of the
system call. In essence, the database holds a data ware-
house for forensic analysis and query. While the amount
of data being collected can be large, we argue that the sys-
tem is feasible given the capacity of networking, CPU, and
storage capacity available today. As a result, sacrificing
some host and networking resources in order to add foren-
sic capability will be a fairly attractive proposition. The
following subsections describe the logging facility and the
backend storage system in more detail.

A. Kernel Logging Facility

To address the problems associated with the piecemeal
logging approaches discussed in Section II, Forensix logs
within the kernel. In its current implementation, all activ-
ity across the system-call interface is captured and logged.
By collecting all system-call activity and attributing this
activity to individual connections and sessions, the foren-
sic backend will be able to recreate security incidents in
an accurate, application and attack-independent manner.
As attacks and attack signatures change, capturing activity

3

at this point thus addresses the problem at a more funda-
mental, unified level. If the system is built correctly, the
hacker will need to figure out a way to compromise a sys-
tem without using a process, file, or connection in order
to go undetected. For accurately attributing system activ-
ity to users, processes or connections, the key issue for the
logging facility is thetypeand theamountof information
needed.

A.1 Attributing System Activity

The overall design of our logging system is founded
on the notion that all intrusions start with a network con-
nection or a console login, are processed by a daemon
(httpd , in.telnetd , in.ftpd , sshd , login , etc.)
and cascade into multiple system activities including other
processes, file accesses, and outgoing connections. Our
high-level goal is to assign these system activities to the
initiating session, which helps to simplify and enhance the
intrusion-analysis process.

Figure 2 shows a diagram of various system activities
and their relationships. The basic idea for capturing these
relationships is to assign the identifier or the PID of the
process that executes the activity as ownership information
to each link of the graph. For example, incoming sessions,
file accesses and outgoing connections are all associated
with a process, while process creation viaexec or fork
is associated with the parent process.

For single-thread processes, this relationship attributes
activities unambiguously. For example, one can derive
the precise set of files accessed as a result of an incoming
connection. Unfortunately, the relationship is more com-
plicated for multi-threaded daemon processes. Consider
a modern web server employing a process-mob architec-
ture of pre-forked processes for handling requests. As sev-
eral incoming sessions can be active at any one time, as-
signing ownership of a suspicious activity to a particular
active session is difficult because threads can communi-
cate via non-system call channels such as shared memory
accesses. Forensix uses system-call tracing for achieving
compactness, and while this approach may preclude com-
plete disambiguation, the timing of an activity can be used
as an effective discriminant. For example, the set of files
accessed during the lifetime of a connection can be dis-
covered. Similarly, the set of connections whose lifetimes
were within the lifetime of a given connection and that ac-
cessed the previous set of files (the set of suspicious con-
nections) can also be easily determined using the relation-
ship graph. Based on the observations above, at a mini-
mum, each system-call trace record has an associated PID
and a time-stamp that helps to construct the activity re-
lationship. Section V shows that this information allows

Connections

Connection
Network

Console
Login

Files

connect(), listen()
accept(), shutdown()
send(), recv()

open(), close()
read(), write()
link(), unlink()

Processes

exec()
fork()

Incoming
Session

...
...

...

Fig. 2. The relationships between system activities.

execve("/bin/kill", ["kill", "11116"], [/* 62 vars */]) = 0
uname({sys="Linux", node="ren.cse.ogi.edu", ...}) = 0
brk(0) = 0x804a9f4
open("/etc/ld.so.preload", O_RDONLY) = -1
open("/etc/ld.so.cache", O_RDONLY) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=71060, ...}) = 0
old_mmap(NULL, 71060, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40014000
close(3) = 0
open("/lib/i686/libc.so.6", O_RDONLY) = 3
read(3, "\177ELF\1\1\1\0\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0\260Y\1"..., 512)...
fstat64(3, {st_mode=S_IFREG|0755, st_size=1452984, ...}) = 0
old_mmap(0x42000000, 1290052, PROT_READ|PROT_EXEC, MAP_PRIVATE, 3, 0) = 0...
old_mmap(0x42134000, 20480, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED, ...
old_mmap(0x42139000, 8004, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MA...
close(3) = 0
old_mmap(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1,...
munmap(0x40014000, 71060) = 0
brk(0) = 0x804a9f4
brk(0x804b9f4) = 0x804b9f4
brk(0) = 0x804b9f4
brk(0x804c000) = 0x804c000
open("/usr/lib/locale/locale-archive", O_RDONLY|O_LARGEFILE) = 3
fstat64(3, {st_mode=S_IFREG|0644, st_size=30309872, ...}) = 0
mmap2(NULL, 2097152, PROT_READ, MAP_PRIVATE, 3, 0) = 0x40027000
mmap2(NULL, 884736, PROT_READ, MAP_PRIVATE, 3, 0x19a) = 0x40227000
mmap2(NULL, 4096, PROT_READ, MAP_PRIVATE, 3, 0x298) = 0x40014000
close(3) = 0
kill(11116, SIGTERM) = 0
_exit(0) = ?

Fig. 3. kill system-call trace.

constructing powerful forensic queries. In the future, we
plan on examining other low-overhead mechanisms for un-
ambiguously assigning ownership of activities to individ-
ual sessions.

A.2 Trace Size

Unlike previous approaches, which only use short se-
quences ofnamesof system calls for intrusion detec-
tion [6], [10], [12], [27], Forensix captures each system
call and, among other information, its timing, parameters,
return values, the process issuing the call, and the owner
of that process, throughout the lifetime of the server. This
type of information is difficult to collect due to its size and
semantic content. However, it is absolutely necessary, as
described in the previous section, to recreate system activ-
ity.

To get an idea of the type and amount of information
that can be collected, Figure 3 shows the system call trace
that results when thekill command is performed on a
process. While the trace is large, it is easy to identify the
small number of system calls that clearly modify system

4

state and should be logged. The trace also demonstrates
the power of system-call traces over process accounting
mechanisms. A wily hacker could download a binary im-
plementingkill and name it something innocuous, thus
avoiding detection. When logging system calls, it will be-
come extremely difficult to hide such an activity.

It is clear that a limiting factor of our approach is the
storage space for information being collected. As the
capacity for processing and storing auditing information
grows, the capacity of the server being traced and its net-
work connection will as well. Fortunately, given the mas-
sive amount of unused local networking and storage re-
sources and the ability to acquire such resources at rel-
atively modest costs, we believe that the amount of data
being collected is manageable. The fundamental reason
for this is that it is clear thatMoore’s lawgoverning ad-
vances in hardware systems is outpacing user and resource
usage growth on the Internet. For example, consider a pop-
ular web site such ashttp://slashdot.org. While the site
receives 50 million hits per month, its traffic growth has
been outpaced by storage advances [26].

B. Backend Storage System

The main job of the backend is to receive trace data
from the network and store it in a form that allows issu-
ing forensic queries. A simple form of storage is log files.
While such log files will contain all information needed for
performing intrusion analysis, they will not necessarily be
in a form amenable for efficient searching and manipula-
tion. For example, we anticipate the need to make forensic
queries such as
• Show all user sessions that executed/bin/sh from
daemon processes other thansshd , telnetd , or login
and group sessions by user.
• Show all activity for a particular user sessionS, specified
by a source IP address and port, a user ID, and a connection
timestamp.
To get some degree of efficiency, it is desirable to index
data and ideally provide complete DBMS query process-
ing capabilities to run the types of queries described above.
To do so, Forensix stores the trace data in a relational
database. While the keys chosen for building indexes de-
pend on the types of queries that are likely to be executed,
we have identified three candidate keys,process ID, time
andincoming connection identifier, based on our model of
attributing ownership to activities, as described earlier in
Section IV-A.1.

In addition to fast queries, the backend must provide
high throughput storage or else it can become a bottleneck
for the target system. The reason is that Forensix ensures
that logging information is not lost, i.e.fail-closedbehav-

ior, by matching target system performance to the ability
to log data and blocking the target system when the back-
end is unable to keep up. A naive approach for building the
backend is to continually insert records from the log files
into the database. However, this approach places restric-
tive limits on rates that log file data can be absorbed, par-
ticularly because of the indexing overhead typically seen
on multiple, small updates. To address this problem, we
use bulk loading facilities available in most DBMSs for in-
serting large batches of traces with deferred indexing. Our
experiments show that this approach removes much of the
cost of fine-grain index updates. We are currently exam-
ining ways to avoid copying data from the log file to the
database during loading by constructing log files so that
they can be directly mapped into the data space of specific
DBMS.

To keep the database current for near-time intrusion
analysis, we can use time or space-based thresholds to start
bulk loading. For example, currently we load the database
every 24 hours. While this technique has sufficed for our
purposes, a potential problem with this approach is related
to processing a very large data trace which takes more time
than the time threshold, e.g., 24 hours, for bulk loading.
If the target system can generate more trace data than the
backend can handle in the long term, the backend has the
ability to exert back-pressure on the target system, throt-
tling activity to ensure completeness and correctness.

V. I MPLEMENTATION

Forensix has been implemented on Linux and is freely
available [1]. The implementation consists of 1) an audit-
ing module and a sender daemon running on the target sys-
tem, 2) a receiver daemon and a database injector running
on the backend, and 3) database queries and scripts that al-
low replay of system activities for forensic purposes. Each
is described below.

A. Target System

The auditing module of the target system consists of a
Linux kernel module that traps system calls and logs data
in a kernel buffer. The module code, which is derived from
the SNARE project [21], hijacks the system call table and
adds stub code around several system calls to capture the
system call, its timing, its parameters, its return value and
the PID of the process making the call.

Based on our model of attributing system activity (see
Figure 2), the system calls traced fall broadly in the three
categories: networking, process management and file sys-
tem. Network calls include such calls asconnect ,
accept , listen andshutdown . Process management
calls includefork , exec , kill, exit andsetuid .

5

Important file system calls includeopen , read , write ,
close , symlink , link , mount , unmount , dup and
chown . The most important change to the SNARE code
involved adding tracing to several key system calls such
asread , write , dup , fork andkill , which is essen-
tial for accurately recreating all system activity that can
occur as a result of a network intrusion. We also con-
verted the trace data to binary format and made some other
locking, memory management and statistics collection im-
provements to the code.

For tracing, Forensix adds stub code around system calls
but does not change the calls themselves. This approach
allows building the auditing code as a separate module but
can introduce race conditions so that system activity can-
not be completely reconstructed [11]. For example, a race
condition exists between writing to a fileA via a symbolic
link and modifying the symbolic link to point to a differ-
ent file B. Our stub approach may not accurately capture
whether the fileA or the file B was written because the
precise timing of the two operations (writing the file and
modifying the symbolic link) is not known to the tracing
system. A solution to this problem is to capture the output
of pathname resolution while reading the symbolic link
during the write operation. While this solution is simple
and similar techniques can in principle be applied to re-
solve most timing-related race conditions, the code will be
more intrusive than our auditing code.

The sender daemon is a simple process that reads data
from the kernel buffer and sends it over a private network
to the backend. For fail-closed behavior, if this process
is unable to retrieve or send data, then the auditing mod-
ule stops system activity when the kernel buffer becomes
full. To reduce this possibility, the daemon should be run
at the highest priority, it should be hardened so that it can-
not be easily attacked or killed and the kernel buffer should
be sized to minimize the amount of lost data upon crash.
The daemon can be hardened using LIDS [29] so thatno
user process can kill it. Another possibility, which we
have not implemented yet due to time constraints, is to
remove the need for the daemon altogether and directly
stream data from the kernel to the backend. This approach
should provide automatic hardening provided kernel code
can be trusted more than user-level code. Finally, the ker-
nel buffer is statically sized based on the total available
memory in the system, such as 10% of memory. While
we believe that this technique will work well for most sys-
tems, other sophisticated approaches, such as buffer tuning
for TCP sockets [25], could be applied in the future if the
buffer often becomes a bottleneck.

B. Backend

The receiver daemon on the backend is a simple process
that reads data from the network and stores it to human-
readable, tab-separated, log files. Once every 24 hours, it
loads the log files to a database. In Forensix, the database
should be optimized 1) for bulk loading (with index gen-
eration) and 2) for queries. In particular, data is read-only
after it has been loaded and thus transactional guarantees
are not essential. In the initial stages of Forensix, we ex-
perimented with two open-source databases, MySQL and
SAP DB, by building two versions of the loading code
in the receiver daemon, one for each database. Our ini-
tial results indicated that bulk loading was significantly
slower on SAP DB compared to MySQL. First time query
performance was also significantly lower on SAP DB
compared to MySQL, but cached query performance was
slightly better. Based on these experiments, we focused
on MySQL, and our queries and results presented later use
this database.

The database stores several tables for the system call
traces. The main table is calledevents , which stores
common attributes, such as id, time, PID and return value,
of every system call event. Data from system calls that
is unique to specific calls is stored in separate tables to
reduce redundancy and minimize the chances of incon-
sistency.3 Examples of such tables includeio , dup and
connections . Theio table stores all reads and writes,
while thedup table stores file opens, closes and file de-
scriptor duplications. Theconnections table stores
network-related system calls.

C. Queries

In order to be useful, a powerful set of queries must be
supported for post-facto analysis. One problem we faced
while implementing queries was uniquely identifying pro-
cesses based on their PID, which is a 16-bit quantity in
Linux that frequently rolls over. To resolve this problem,
we augmented the PID with the process creation time.
Table I lists some examples of queries we have imple-
mented. Simple queries are implemented using SQL di-
rectly. For more complex queries, which require condi-
tionals or looping, we use shell programming or code in
C for performance. Figure 4 shows samples of SQL and
pseudo-code that implement some of these queries. Much
of the code should be self-explanatory, which suggests that
these queries can be written relatively easily. Note that, the
tables in our system are not fully normalized. Doing so
would reduce space usage, though at the expense of some

3Due to time constraints, we have not normalized the database tables
and hence they take more space than needed.

6

Query Name Arguments Output
Active_Processes start_time, end_time List all active processes within a given time interval.
Immediate_Children PID List all immediate children of a process.
Children PID List all children of a process.
Immediate_Parent PID List immediate parent of a process.
Parents PID List all parents of a process.
FDs_written PID, start_time, end_time List all file descriptors written by a process within a

given time interval and the time they were written.
All_FDs PID, filename, fd_list, time List all file descriptors that refer to a filename or to

other file descriptors in fd_list at a given time.
Did_Process_Write PID, filename, start_time,

end_time
Did process write to filename within a given time in-
terval?

Writers filename, start_time, end_time List all processes that wrote to filename within a given
time interval.

IO PID, fd_list List the timing and the data for I/O performed on file
descriptors in fd_list by a process.

Replay_Shell PID RunIO query on file descriptors 0, 1 and 2 for a shell
process.

TABLE I
EXAMPLES OF FORENSIX QUERIES.

queries taking longer.

While most queries shown in Figure 4 are simple, the
All_FDs query needs some explanation. The query lists
all file descriptors that refer to a filename or to other file de-
scriptors in fd_list at a given time. The recursion is needed
because open file descriptors in a parent are inherited by
a child process. The SQL query lists all successfulopen ,
close, dup or fcntl calls made by the process un-
til the given time. The final iteration adds or removes file
descriptors from fd_list depending on the type of opera-
tion. For simplicity, the code does not show the effect of
a fcntl call that changes the state of file descriptors so
that they are not inherited acrossexec system calls.

The rest of the queries in Table I can be easily con-
structed using the queries presented above. For ex-
ample, theDid_Process_Write query can iterate
over the file descriptors output byFDs_Written and
check whether the file descriptor belongs to the set of
All_FDs at the time the write occurred (All_FDs is
passed an emptyfd_list set). TheWriters query
invokesDid_Process_Write for each process output
by Active_Processes . The IO query is very simi-
lar to Did_Process_Write except that instead of just
checking whether a process performed a write, it gets the
data written to any file descriptor infd_list from the
io table. Finally, theReplay_Shell query runs theIO
query for standard input, output and error file descriptors

and is able to replay the entire activity of a shell (or any
other) process with exactly the timing as the original user
typed input or saw output from the process. The imple-
mentation of some of the queries presented above requires
repeatedly issuing complex SQL sub-queries, which can
be expensive. It is possible to optimize the implementa-
tion by changing the order of the queries and simplifying
the sub-queries. We have done so for theIO query, which
we evaluate in the next section.

VI. EVALUATION

A viable auditing and replay system should have low au-
diting overhead, reasonable space requirements and should
be able to replay system activity in near-time. Hence, to
evaluate Forensix, we performed two types of experiments
that measure the performance and space overhead induced
by auditing and the time taken to run queries. To mea-
sure system overhead, we ran two benchmarks on the tar-
get system: 1) Linux kernel build and 2) Webstone. The
kernel build benchmark is mainly CPU bound and does
not stress the system much. However, it determines the
viability of Forensix when running similar applications in
a regular desktop environment. The second benchmark,
Webstone, stresses a web server and is representative of a
loaded server environment.

Our experiments were run on 1.8 GHz Pentium-4 Intel
processors with 1 GB of memory. Both the target and the

7

backend machines had the same configuration. In addition,
for Webstone, the client process was run on a third simi-
lar machine. All the machines are connected with a one
Gigabit network using a CISCO WS-C4006 switch. The
connection between the target machine and the backend
machine was on a separate VLAN so it was not affected
by other traffic, such as the client to target machine traffic
during the Webstone benchmark. All machines run Red-
hat Linux 2.4.20 with theext3 file system and the target
machine runs the Forensix auditing module. The backend
machine uses the MySQL version 3.23 database.

A. Target system

Table II shows the results of the kernel build benchmark.
The base result for building a kernel under Linux with-
out Forensix auditing is shown under the “Auditing off”
column. The second “Auditing on, Network off” column
shows the results when auditing is turned on in the kernel
and the sending daemon retrieves data from the kernel but
does not stream it to the backend. In the final column, data
is also streamed to the backend and stored in log files. The
numbers in the table are generated by running thetime
command on the kernel build process.

The table shows that the benchmark completion time
in our unoptimized implementation increases by 6% when
auditing and by 8% when auditing and transmitting data.
We believe that this overhead is a small price to pay for the
ability to accurately and systematically reconstruct system
state to capture the increasing number of system compro-
mises we see today. Note that, as expected, almost all the
additional time is spent in system activity.

The Webstone benchmark stresses a standard Apache
web server running on the target system by issuing back-
to-back client requests. Figure III presents the key re-
sults for this benchmark, the throughput achieved by the
web server. All the Webstone tests were run for approxi-
mately 36 minutes. The “Auditing off” column is the base
throughput under Linux without Forensix auditing. The
next column shows the throughput when auditing data and
retrieving it from the kernel. The decrease in throughput in
this case is 7%, which is similar to the overhead observed
earlier for the kernel build benchmark.

The final column shows the result when data is also
streamed to the backend and stored in log files. In this
case, the throughput decreases by as much as 36%. Cur-
rently, we are in the process of profiling the kernel to inves-
tigate the reasons for this decreased throughput. However,
we believe that there are two obvious optimizations that
will help improve our results. First, our implementation
is unoptimized and uses a very simple memory allocation
mechanism for storing trace data. We expect that improv-

ing the auditing module’s memory allocator will signifi-
cantly reduce performance overhead. Second, for simplic-
ity, the auditing module copies code from the kernel to the
user space which is then copied back to the kernel to be
sent to the backend. To minimize copies, data can be sent
to the backend directly from the kernel. This optimization
will also help reduce pressure from the memory subsys-
tem.

B. Backend system

To evaluate the throughput of the database, we measured
the row insertion rate of the database, i.e. the actual num-
ber of rows that can be inserted per second in the database.
For the Webstone log files, the MySQL database could be
bulk loaded at approximately 7400 rows/second. We also
measured the row generation rate or the number of rows
that are generated per second as data is captured in log files
in real-time. For the Webstone test, the row generation rate
is 17900 rows/second. This result indicates that for near-
time intrusion analysis, where database loading takes less
time on average than data generation, the web server can
be heavily loaded for no more than 40% time during the
day. We expect that this limitation will not be a problem
in practice because of typical diurnal server activity [3].

Next, we measured the space requirements of the com-
pressed log files for the kernel build and the Webstone
benchmarks. For the kernel build benchmark, the log
files grow at 8.8GB/day, while for the Webstone bench-
mark they grow at 30GB/day. There are several reasons
that these numbers are significantly larger than compara-
ble data generated by ReVirt [8]. The first is that, unlike
Forensix, ReVirt does not log filesystem I/O, relying in-
stead on periodic checkpoints whose storage costs are not
reported. Moreover, if checkpoints are infrequent, then
replaying system activity for forensic analysis can take a
long time, as much as the time period since the last check-
point. The second reason is that we use a Gigabit network
in our Webstone experiments and thus produce much more
data than the 100 Mb/s network used in evaluating Re-
Virt. Normalizing for network speed, the Webstone log-
file growth rate for Forensix is comparable to ReVirt.

C. Queries

In order to be useful, queries must be efficiently sup-
ported in near real-time. For evaluation, the Webstone
benchmark was re-run and at the same time a user edited
the /etc/passwd file on the target machine. We ex-
ecuted theReplay_Shell query (which uses theIO
query, see Table I) with the PID of the shell process in
which the password file was modified. This complex query
took 100 seconds to run under MySQL, which we believe

8

Auditing off Auditing on Auditing on
Network off Network on

Total Time 233.2 s 247.1 s (6%) 252.0 s (8%)
System Time 14.0 s 26.3 s 30.7 s

The total time represents the time to complete compilation of the Linux kernel. The numbers in parenthesis
represent the increase in completion time under Forensix versus standard Linux.

TABLE II
KERNEL BUILD TIMES.

Auditing off Auditing on Auditing on
Network off Network on

Throughput (Mb/s) 296.8 276.2 (93%) 186.87 (63%)
TABLE III

WEBSTONE THROUGHPUT.

is a reasonable time to replay this system activity.

VII. F ORENSIX IN PRACTICE

In this section, we describe results from experiences in
using Forensix on a production web site as well as using
Forensix to analyze a variety of exploits.

A. www.mshmro.com

We installed Forensix on a web server of a popular,
Counter-Strike game community [28],www.mshmro.com ,
for a week. Besides serving approximately 1000 static
pages a day, the web server delivers dynamic content us-
ing PHP and MySQL and runs a continuous player statis-
tics aggregation service (HLstats) for a heavily loaded
Counter-Strike server (cs.mshmro.com). System activ-
ity for the web server was stored and loaded into a sepa-
rate database daily. On the backend, the database grew at
a rate of 0.45+0.13 GB/day, a rate that is reasonable for a
medium-loaded server. Note that the large deviation oc-
curs since we have no control over user accesses.

After collecting a one-week log of the web server, we
ran two queries over the entire database and timed their
performance. The first query determined whether there
were anyssh logins to the system during the week. The
second query replayed the complete system activity for
one of the logins usingReplay_Shell . Together, the
queries took 708 seconds when no database indices were
created. With a PID index on theevent table, the queries
took 488 seconds. While we expect to implement many
more queries and optimize our database for them, we be-
lieve that our initial implementation is usable.

B. Capturing exploits

In order to demonstrate the utility of Forensix in an-
alyzing exploits, we ran several local privilege escala-
tion attacks on our target system. Local privilege esca-
lation attacks allow a user with normal privileges to gain
and retain superuser privileges illegally. The first attack,
ptrace/kmod [14], [23], exploits a race condition in
kernel/kmod.c that creates a kernel thread in an inse-
cure manner on behalf of a user process. The flaw allows
an unprivileged user process to useptrace() to take
control over the privilegedmodprobe binary. The second
attack,mremap [18], exploits incorrect bound checking of
page counters in themremap() system call. The vulnera-
bility allows an attacking process to execute arbitrary code
with kernel level access.

In order to construct a query that identifies such attacks
regardless of the vulnerability they exploit, we use the fact
that such classes of attacks all follow a common pattern.
Specifically, through the use of an elevated effective user
ID (eu_id) of 0 that they are temporarily granted via a se-
tuid binary, they illegally change their real user ID (u_id)
permanently to spawn a root shell. Note that in its current
form, this query captures all successful occurrences of le-
gitimatesu invocations. This is necessary since a hacker
can easily rename all of his/her local exploits tosu before
invocation if the system filtered escalations based on the
name of the setuid binary. Given this pattern and with the
understanding that a local root exploit takes a user process
with normal privileges and converts it into a shell with su-
peruser privileges, we wrote the query shown in Figure 5
that successfully returns only the PIDs of attacking pro-
cesses that have successfully executed theptrace/kmod

9

Time period analyzed 6 hours
of system calls 5875698
Size of database 0.6 GB

Time taken < 1s

TABLE IV
QUERY PERFORMANCE FOR IDENTIFYING LOCAL

PRIVILEGE ESCALATION ATTACKS

andmremap exploits.
Because of its generality, the above query is executed

daily to identify and extract all local root exploits that have
occurred on the system. Table IV shows the performance
of the query on a sample 6 hour trace in which both ex-
ploits were successfully executed. As the table shows, the
single query which uncovers both exploits takes under a
second to execute.

VIII. R ELATED WORK

System call traces have been used in the past to identify
normal system behavior and then to automatically detect
suspicious behavior or intrusions [12], [24], [27]. How-
ever, these approaches examine system-call patterns over
a short window of 5-100 calls and are insufficient for com-
pletely capturing system activity for forensic purposes. In
contrast, Forensix captures system calls, their timing, their
parameters, their return values, the process making the call
and their owners throughout the lifetime of the target sys-
tem for accurate replay.

Forensix enables the off-line execution of techniques
similar to those found in the STAT and USTAT systems
which employ state transition diagrams to identify suspi-
cious activities [13], [9], [19]. Forensix differs from these
systems in that the auditing is done within the kernel at the
system call level and the audit trail is securely transfered
to an append-only backend storage system. The informa-
tion being gathered is thus a super-set of that collected by
the audit records in USTAT and is stored remotely in a
secure manner. It should be possible to take the system
call records and recreate the audit records of USTAT at the
database backend and to run USTAT along with other in-
trusion analysis tools such as Tripwire [15]. In addition,
because the information itself is archived, the information
can be re-analyzed as additional knowledge is gained on
specific intrusions.

Perhaps the closest system to Forensix is a combina-
tion of BackTracker [16] and ReVirt [8]. BackTracker
uses a timing-based approach to generate a dependency be-
tween processes, files, and filenames and uses the depen-

dency graph to detect intrusions. This approach is space-
efficient, but does not provide precise details about all the
system activities. For example, it would show the steps
that led to the modification of a sensitive password file,
but does not show the precise changes made to the file.
For the latter information, BackTracker must be used in
combination with ReVirt, which places the system within
a virtual machine and logs the VM-to-host instruction sys-
tem. The clear advantage of ReVirt is that it removes non-
determinism by serializing all system activity at the log-
ging point and hence allows complete system replay. In
addition, the virtual machine approach does not require
kernel integrity. However, unlike Forensix, ReVirt cannot
support arbitrary queries without forcing the user to replay
the entire instruction stream. On a heavily loaded system,
such replay requires time that is proportional to the length
of time the system has been running since the last check-
point. Since forensic analysis is often an iterative process,
such an approach defeats the initial goal of our work in re-
ducing the time and human overhead required to perform
forensic analysis.

Garfinkel [11] discusses the problems associated with
system call interposition based security tools. Many of the
problems described, such as argument races, occur due to
user-level interception and do not exist in Forensix where
auditing occurs within the kernel. However, an impor-
tant problem is understanding the complex Unix API and
its side effects so that queries can be implemented cor-
rectly. Another problem is race conditions due to time-
of-check/time-of-use bugs [2]. The main one we identi-
fied was traversal of symbolic links and relative pathnames
during file system operations. Both can be solved by cap-
turing the output of pathname resolution while reading the
symbolic link during the file system operation. Quinlan
and Dorward discuss a novel approach for storing append-
only archival data [22] in Venti. Like in various peer-to-
peer storage systems [7], [4], data blocks for archival stor-
age in Venti are identified by a collision-resistant hash,
which eases the secure implementation of append-only
storage. Such an approach could be used for the Foren-
six backend.

IX. CONCLUSIONS

This paper has presented Forensix, a robust, high-
precision reconstruction and analysis tool for computer
forensics. The salient features of Forensix are its kernel-
level auditing of system activities, tamper-resistant log-
ging on a separate back-end machine, and use of database
technology to support efficient, high-level querying of
forensic data. A Linux-based implementation of Forensix
was described, and a performance evaluation of it showed

10

its overhead in terms of system throughput and storage ca-
pacity. While both costs are significant, they are within
the bounds of acceptability for many applications. Fur-
thermore, technology trends, such as the rapid increase in
disk capacity, will reduce these costs further in the future.
The complete Forensix system is currently available at the
project web site [1]

As part of future work, we are exploring several im-
provements to the system including
• The use of additional kernel logging and virtual machine
serialization to disambiguate system activities.
• The application of data compression to reduce the size
of forensic logs.
• The use of mapping tables to more efficiently implement
common query operations.
• The ability to selectively throttle activity on a per-
process basis in order to prevent denial-of-service attacks.

X. ACKNOWLEDGMENTS

The authors would like to thank Mike Shea for his ini-
tial implementation of the Forensix system. In addition,
the authors would also like to thank Sourabh Ahuja, Jin
Choi, Ho-Jeong An, Miria Grunick, Jennifer Johnson, and
Kenneth Po for their contributions to the Forensix project.

REFERENCES

[1] 4N6 Developers. The Forensix Project.http://forensix.
sourceforge.net/ .

[2] M. Bishop and M. Dilger. Checking For Race Conditions in File
Accesses.Computer Systems, 9(2):131–152, 1996.

[3] J. S. Chase, D. C. Anderson, P. N. Thakar, A. Vahdat, and R. P.
Doyle. Managing Energy and Server Resources in Hosting Cen-
tres. In Proceedings of the Symposium on Operating Systems
Principles, pages 103–116, October 2001.

[4] I. Clarke, T. W. Hong, S. G. Miller, O. Sandberg, and B. Wiley.
Protecting Free Expression Online with Freenet.IEEE Internet
Computing, 6(1):40–49, 2002.

[5] C. Cowan. Immunix: Adaptive System Survivability.
http://www.immunix.org , http://www.cse.ogi.
edu/sysl/projects/immunix , 1998.

[6] M. Crosbie and B. Kuperman. A Building Block Approach to
Intrusion Detection. InRecent Advances in Intrusion Detection
(RAID 2001), Davis, California, October 2001. Springer.

[7] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica.
Wide-Area Cooperative Storage With CFS. InProceedings of the
Symposium on Operating Systems Principles, October 2001.

[8] G. Dunlap, S. King, S. Cinar, M. Basrai, and P. Chen. ReVirt: En-
abling Intrusion Analysis through Virtual-Machine Logging and
Replay. InProceedings of OSDI, December 2002.

[9] S. Eckmann, G. Vigna, and R. Kemmerer. STATL: An Attack
Language for State-based Intrusion Detection. Technical report,
2000.

[10] E. Eskin, W. Lee, and S. Stolfo. Modeling System Calls for Intru-
sion Detection with Dynamic Window Sizes. InProceedings of
DARPA Information Survivability Converence and Exposition II,
June 2001.

[11] T. Garfinkel. Traps and Pitfalls: Practical Problems in System
Call Interposition Based Security Tools. InProceedings of the
Network and Distributed System Security Symposium, February
2003.

[12] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion Detection
Using Sequences of System Calls.Journal of Computer Security,
6(3):151–180, 1998.

[13] K. Ilgun. USTAT: A Real-Time Intrusion Detection System for
UNIX. Technical report, 1992.

[14] iSEC Security Research. Linux Kernel ptrace/kmod Local Root
Exploit. http://downloads.securityfocus.com/
vulnerabilities/exploits/ptrace-kmod%.c ,
2003.

[15] G. H. Kim and E. H. Spafford. The Design and Implementation of
Tripwire: A File System Integrity Checker. InACM Conference
on Computer and Communications Security, pages 18–29, 1994.

[16] S. T. King and P. M. Chen. Backtracking intrusions. InProceed-
ings of the Symposium on Operating Systems Principles, October
2003.

[17] K. Mitnick. Takedown Transcripts: 1995 Feb 5 11:48:08.
http://www.takedown.com/cgi-bin/transcript.
pl?4002 , February 1995.

[18] P. Starzetz. Linux kernel do_mremap VMA limit local priv-
elege excalation vulnerability. http://www.isec.pl/
vulnerabilities/isec-0014-mremap-unmap.txt ,
2004.

[19] P. Porras. STAT: A State Transition Analysis Tool for Intrusion
Detection. Technical report, 1992.

[20] T. Ptacek and T. Newsham. Insertion, Evasion, and Denial of
Service: Eluding Network Intrusion Detection. Technical report,
1998.

[21] L. Purdie and G. Cora. SNARE - System iNtru-
sion Analysis & Reporting Environment. http:
//www.intersectalliance.com/projects/Snare/ .
Viewed in Jan 2003.

[22] S. Quinlan and S. Dorward. Venti: A New Approach to Archival
Storage. InProceedings of Conference on File and Storage Tech-
nologies (FAST), January 2002.

[23] Securiteam Advisory. Ptrace Vulnerability Allows Gaining of El-
evated Privileges under Linux.http://www.securiteam.
com/unixfocus/5FP0A2K9GQ.html , 2003.

[24] R. Sekar and P. Uppuluri. Synthesizing fast intrusion preven-
tion/detection systems from high-level specifications. InProceed-
ings of the USENIX Security Symposium, pages 63–78, August
1999.

[25] J. Semke, J. Mahdavi, and M. Mathis. Automatic TCP buffer
tuning. InProceedings of the ACM SIGCOMM, pages 315–323,
1998.

[26] Slashdot. Slashdot FAQ.http://slashdot.org/faq/ ,
2000.

[27] A. Somayaji and S. Forrest. Automated Response Using System-
Call Delays. InProceedings of the USENIX Security Symposium,
pages 185–198, August 2000.

[28] W. Feng and F. Chang and W. Feng and J. Walpole. Provision-
ing On-line Games: A Traffic Analysis of a Busy Counter-Strike
Server. InProceedings of the Internet Measurement Workshop,
November 2002.

[29] H. Xie and P. Biondi. Linux Intrusion Detection System (LIDS)
Project.http://www.lids.org/ . Viewed in Jan 2003.

11

Active_Processes(start_time, end_time) {
SELECT DISTINCT pid FROM event
WHERE date >= %1 AND date <= %2;

}

Immediate_Children(PID) {
SELECT rc FROM event /* return code */
WHERE (syscall = 2 OR syscall = 120 OR syscall = 190) AND pid = %1;

/* fork() = 2 , clone() = 120, vfork() = 190 */
}

Immediate_Parent(PID) {
SELECT pid FROM event
WHERE (syscall = 2 OR syscall = 120 OR syscall = 190) AND rc = %1;

}

FDs_Written(PID, start_time, end_time) {
SELECT fd, date FROM io, event
WHERE io.parent = event.id

AND event.pid = %1 AND event.syscall = 4
AND event.date > %2 AND event.date < %3;

/* write() = 4 */
}

All_FDs(PID, filename, fd_list, time) {
if (Immediate_Parent(PID)) {
/* recursion */
fd_list = All_FDs(Immediate_Parent(PID), filename, fd_list, time);

}
/* SQL: get a list of opens, closes dup and fcntl calls */
row_list = (
SELECT fd, newfd, path FROM dup, event
WHERE dup.parent = event.id

AND event.pid = %1
AND event.rc >= 0
AND (dup.cmd IS NULL OR dup.cmd = 0) /* fcntl */
AND event.date <= %4

ORDER BY event.date);

/* process each SQL row */
foreach row in row_list {
if (row.fd == -1) { /* open */
if (row.path == filename) {
fd_list.append(row.newfd);

}
} else {
if (row.newfd != -1) { /* dup */
if (row.fd in fd_list) {
fd_list.append(row.newfd);

}
} else { /* close */
fd_list.delete(row.fd);

}
}

}
return fd_list;

}

Fig. 4. SQL and pseudo-code for sample queries

Unprivileged_seteuid_0(){
SELECT u_id, g_id, pid, ppid, name source_path, pwd FROM event
WHERE syscall = 11 AND eu_id = 0 AND u_id <> 0 AND rc = 0

/* execve() = 11*/
}

Seteuid_0_to_setuid_0(pid, ppid, name) {
SELECT name FROM event
WHERE (syscall = 23 OR syscall = 70 OR syscall = 164)

AND u_id = 0 AND eu_id = 0 AND pid = %1
AND ppid = %2 AND name = %3 AND rc = 0

/* setuid() = 23 ; setreuid = 70 ; setresgid = 164 */
UNION
SELECT name FROM event
WHERE (syscall = 46 OR syscall = 71 OR syscall = 170)

AND g_id = 0 AND eg_id = 0 AND pid = %1
AND ppid = %2 AND name = %3 AND rc = 0

/* setgid() = 23 ; setregid = 70 ; setresgid = 170 */

}

Fig. 5. Local privilege escalation query

12

