
IP puzzles,
probabilistic networking,

and other projects at OGI@OHSU
Wu-chang Feng

Louis Bavoil
Damien Berger

Abdelmajid Bezzaz
Francis Chang

Jin Choi
Brian Code

Wu-chi Feng
Ashvin Goel

Ed Kaiser
Kang Li

Antoine Luu
Mike Shea

Deepa Srinivasan
Jonathan Walpole

Outline
IP puzzles

Motivation
Research challenges
Design, implementation, and evaluation of a prototype

Other projects at OGI@OHSU

IP Puzzles

Motivation
A quick look back on 15 years of not so “Good Times”

1988 1993 1998 2003

Morris worm

Christmas

Michaelangelo

Melissa

LoveLetter

Nimda

Sircam

Code Red

Klez

SoBig

Fizzer

Slammer

Blaster

Smurf

Fraggle

SYN flood

Nachi

Deloder

SMTP, TCP, ICMP, UDP, FastTrack, SMB, finger, SSL, SQL, etc.

Puzzles
An interesting approach for mitigating DoS activity...

Force client to solve a problem before giving service
Currently for e-mail, authentication protocols, transport layers
Fundamentally changes the Internet's service paradigm

Clients no longer have a free lunch
Clients have a system performance incentive to behave

A contrast in approaches
Leave doors open and unlocked, rely on police/ISPs

Centralized enforcement (not working)
Give everyone guns to shoot each other with

Distributed enforcement (may not work either)
Promising anecdotal evidence with spamming the spammers...
Harness the infinite energy of the global community to fight
problem

Posit

Puzzles must be placed in the IP layer to be effective

Why are IP puzzles a good idea?
“Weakest link” corollary to the end2end/waistline argument

DoS prevention and congestion control destroyed if any adjacent or
underlying layer does not implement it

TCP congestion control thwarted by UDP flooding
DoS-resistant authentication protocols thwarted by IP flooding

Until puzzles are in IP, it will remain one of the weakest links

Put in the common waistline layer functions whose
properties are otherwise destroyed unless implemented
universally across a higher and/or lower layer

IP puzzle scenario #1
Port and machine scanning

Instrumental to hackers and worms for discovering vulnerable
systems
The nuclear weapon: scanrand

Inverse SYN cookies and a single socket
Statelessly scan large networks in seconds

8300 web servers discovered within a class B in 4 seconds
Technique not used in any worm....yet

Forget Warhol and the 15 minute worm (SQL Slammer)
Need a new metric: “American Pie” worm => done in 15 seconds?
Finally, a grand networking challenge!

IP puzzle scenario #1
Mitigation via a “push-back” puzzle firewall

Why are IP puzzles a bad idea?
(What are the research challenges?)

Tamper-resistance
Performance
Control
Fairness

Tamper-resistance
A tool to both prevent and initiate DoS attacks

Disable a client by...
Spoofing bogus puzzle questions to it
Spoofing its traffic to unfairly trigger puzzles against it

Disable a router or server by...
Forcing it to issue loads of puzzles
Forcing it to verify loads of bogus puzzle answers
Replaying puzzle answers at high-speed

Probably many more....

Performance
Must support low-latency, high-throughput operation

Must not add latency for applications such as on-line games
Must support high-speed transfers
Must not add large amounts of packet overhead

Determines the granularity at which puzzles are applied
Per byte? Per packet? Per flow? Per aggregate?
Driven by performance and level of protection required

Control
Control algorithms required to maintain high utilization
and low loss

Mandatory, multi-resolution ECN signals that can be given at
any time granularity
Can apply ideas from TCP/AQM control

Adapt puzzle difficulty within network based on load
Adapt end-host response to maximize throughput while minimizing
system resource consumption (natural game theoretic operation)

Fairness

202.183.197.116 - - [02/Jun/2003:02:08:29 -0700] "GET /default.ida?XXXXXXXXXXXXX
XX
XX
XXX%u9090%u6858%ucbd3%u7801%u909
0%u6858%ucbd3%u7801%u9090%u6858%ucbd3%u7801%u9090%u9090%u8190%u00c3%u0003%u8b00%
u531b%u53ff%u0078%u0000%u00=a HTTP/1.0" 404 306 "-" "-"

Minimize work for “good citizens”, maximize work for bad ones
Problem: mechanism is in a layer with minimal information

Can support bandwidth-based puzzle delivery
Can support some differentiation to deter Smurf/Fraggle

Need a “puzzle manager”
Drive IP-layer puzzle policy based on application input

Reputation-based networking
Reputation determines puzzle difficulty

f(OS, Applications, Admins, EndUser)
Implications

Software vendors
Making “trustworthy computing” mandatory (not marketing)
Long-term, computational tax for poorly designed software

System administrators and IT practices
Making responsible system management mandatory
Disturbing pervading notion: “cheaper to leave infected than patch”
Long-term, computational tax on poorly administered systems

End-users
Making users choose more secure software and adopt better practices
Punish users behaving “badly”
Long-term, computational tax on ignorance and maliciousness

“Nothing is certain but death and taxes.” - Benjamin Franklin

Why is this good for Intel?
Keeping the Internet healthy via CPU cycles
Drives a whole new market for faster CPUs

Make the incompetent, the lazy, and the malicious “pay” for
use of the Internet
Computational tax paid directly to Intel

Demand for a whole new class of network devices
Puzzle proxies and firewalls based on IXP network processors

Is this for real?
Yes

Protocol design
Puzzle design
Prototype implementation
Evaluation

Basic protocol
Based on

SYN cookies [Bernstein1997]
Puzzle-protected authentication systems [Aura2001,
Leiwo2000]

Features
Stateless
Resistant to puzzle spoofing

Understanding the basic protocol
Client nonce

Client attaches nonce that server must echo in puzzle message
Prevents bad guy from spoofing a puzzle to the client

Server nonce and puzzle generation
Server generates puzzle/answer on the fly
Uses secret nonce to “sign” a hash of the answer
Sends puzzle along with above hash
Throws away the puzzle and answer

Client response
Attaches answer along with signed hash
Server verifies valid answer via correctly signed hash

Our modifications
What about….

Brute-force attacks on Ns

Randomly generated circular nonce array continuously updated
Efficient verification

Add logical timestamp to index into circular nonce array (O(1)
lookup)

Infinite replay
Add puzzle expiration time

Streaming applications
Issue puzzles ahead of time to client and add puzzle maturity time

Slow clients
Send difficulty estimates to give clients the option to abstain

Final protocol design

Puzzle algorithms
Have the body of the car (i.e. the protocol)
Need a good engine (i.e. the puzzles)
Can one develop a puzzle algorithm that can support….

Puzzle generation at line speed
Puzzle verification at line speed
Fine-grained control of puzzle difficulty

Puzzle algorithms
Time-lock puzzles
Hash reversal
Multiple hash reversal
Our approach

Hash-based range puzzles

Puzzle algorithms: Time-lock Puzzles
Based on notion of repeated squaring
[Rivest,Shamir,Wagner]

Fine-grained control over difficulty
Multiples of squaring time (~1µs)

Slow to generate (~2ms)
2t(mod ((p-1)(q-1)))
ae(mod pq)

Puzzle algorithms: Hash reversal
Based on reversing a hash

Brute-force search of input space to find match
Coarse-grained control over difficulty

Difficulty growth as powers of 2
Fast to generate (~1µs)

Hardware support for hashing common
IXP 2850

Puzzle algorithms: Multiple hash
reversal

Reverse multiple hashes
Finer control of difficulty

Support O(210+211) difficulty?
One 11-bit hash = too easy
One 12-bit hash = too hard
One 10-bit hash and one 11-bit hash
= just right

Fast to generate, but…
Linear increase in generation
overhead over single hash
Linear increase in space/bandwidth
for puzzle

Our approach: Hash-based range
puzzles

Reverse a single hash given a hint
Randomly generated range that solution falls within
Brute-force search within range
Fine-grain difficulty adjustment

Difficulty adjusted via range adjustment
Multiples of hash time (~1µs)

Fast to generate (~1µs)

Granularity comparison
Derived analytically…

Granularity comparison
Actual difficulty levels on 1.8GHz Pentium 4

Generation comparison
Measured across 10,000 puzzles

Putting it together
First car: Puzzle-protected UDP

Works great
Lots of good results
Not car we wanted

Second car: Puzzle-protected IP
Work-in-progress…

Puzzle-protected IP protocol
Implemented within IP

New IP options
New ICMP options (to support > 40 bytes)

Allows for transparent deployment
No modifications to pseudo-header for transport checksums
Can run between proxies and firewalls

No modification to end-hosts required
Proxies

Can attach nonces on behalf of clients
Can answer puzzles and attach answers on behalf of clients

Firewalls
Can issue and verify puzzles on behalf of servers

option_id length version / flags

client nonce client timestamp

server timestamp unused
answer

cookie hash

cookie hash

Puzzle client IP options
Client info
Puzzle answer

Default IP option header Puzzle option info

Puzzle client info option

Puzzle answer option

Protocol

Client Nonce Client Timestamp

No. of Puzzles

Puzzle maturity time

Puzzle expiration time

Puzzle server ICMP message
ICMP type 38

Server Timestamp

Cookie Hash

Cookie Hash

Min

Max

Difficulty

Puzzle Hash

Puzzle Hash

Code (version)Type 38 Checksum

Identifier Sequence Number

IP header

ICMP / UDP / TCP ...

In action

Client Server

puzzle client info

IP header

ICMP puzzle

IP header

ICMP / UDP / TCP ...

puzzle client info
puzzle answer

DropNew PuzzleSolve
puzzle

Add answer

Puzzle is needed ?

Accept

Answer is valid ?

Yes

Yes

No

No

Accept

Packet

Packet

Puzzle-protected IP implementation
Linux via iptables/netfilter

No kernel modifications
Minimal modifications to iptables to add puzzle module
hooks
Compatibility with pre-existing iptables rulesets
Flexibility in deployment

Client, server, proxy, firewall implementations via simple rule
configuration
Programmable selection of puzzle victims

iptables/netfilter
netfilter matching at select packet processing locations

INPUT, OUTPUT, PREROUTING, FORWARD, POSTROUTING
Hooks for sending packets to particular iptables modules

iptables

netfilter

Match
Module

r
Forward

In
pu

t O
utput

Post-routingPre-routing
r

Target
Module

iptables / netfilter

iptables Puzzle
Client Module

iptables Puzzle
Server Module

Puzzle Manager

Puzzle Solver

iptables puzzle module

Difficulty
management

Flow
management

Nonce
management

Answer
management

Example #1: Simple client and server
Server issues puzzles on all incoming TCP SYN
segments without a valid puzzle answer

Server

Client

tcpdump trace

ak47% insmod ./puzzlenet_mgr.o
ak47% insmod ./ipt_puzClient.o
ak47% iptables –t mangle –A INPUT –p icmp –icmp-type 38 –j puzClient
ak47% iptables –t mangle –A POSTROUTING –j puzClient
ak47%
ak47% telnet mp5
Trying 10.0.0.7…
Connected to 10.0.0.7.
Escape character is ‘^]’.

mp5% insmod ./puzzlenet_mgr.o
mp5% insmod ./ipt_puzServer.o
mp5% iptables –t mangle –A INPUT –p tcp –-syn –j puzServer

17:09:28.983779 10.0.0.6.12799 > 10.0.0.7.23: S
17:09:28.983822 10.0.0.7 > 10.0.0.6: icmp: type-#38
17:09:31.980573 10.0.0.6.12799 > 10.0.0.7.23: S
17:09:31.980637 10.0.0.7.23 > 10.0.0.6.12799: S ack

ak47 (10.0.0.6) mp5 (10.0.0.7)

Example #2: Proxy and firewall
Firewall issues puzzles on all packets without valid
answer
Proxy attaches nonces and answers puzzles on behalf of
all clients

Firewall

Proxy
proxy% insmod ./puzzlenet_mgr.o
proxy% insmod ./ipt_puzClient.o
proxy% iptables –t mangle –A INPUT –p icmp –icmp-type 38 –j puzClient
proxy% iptables –t mangle –A FORWARD –p icmp –icmp-type 38 –j puzClient
proxy% iptables –t mangle –A POSTROUTING –j puzClient

firewall% insmod ./puzzlenet_mgr.o
firewall% insmod ./ipt_puzServer.o
firewall% iptables –t mangle –A INPUT –j puzServer
firewall% iptables –t mangle –A FORWARD –j puzServer

Example #2: Proxy and firewall
Client (ak47)

Connection to closed port on server (mp5)
Connection to non-existent machine

tcpdump trace

10.0.0.6

10.0.0.1 10.0.2.210.0.1.1 10.0.1.2

17:12:53.632512 10.0.0.6.14698 > 10.0.2.6.2601: S
17:12:53.632566 10.0.1.2 > 10.0.0.6: icmp: type-#38
17:12:56.630212 10.0.0.6.14698 > 10.0.2.6.2601: S
17:12:56.630287 10.0.2.6.2601 > 10.0.0.6.14698: R
17:13:05.456542 10.0.0.6.14699 > 10.0.2.123: S
17:13:05.455725 10.0.1.2 > 10.0.0.6: icmp: type-#38
17:13:08.454862 10.0.0.6.14699 > 10.0.2.123: S
17:13:14.453935 10.0.0.6.14699 > 10.0.2.123: S

proxy firewall

ak47 (10.0.0.6) mp5 (10.0.2.6)

ak47% telnet mp5 2601
Trying 10.0.2.6…
telnet: Unable to connect to remote host: Connection refused
ak47% telnet 10.0.2.123
Trying 10.0.2.123…

Status
Fully functional iptables/netfilter implementation

Tamper-resistance
Tamper-proof operation (must be along path to deny service)

Performance
100,000 puzzles/sec on commodity hardware

1Gbs+ for per-packet puzzles with MTU packets
Puzzle generation ~1µs
Puzzle verification ~1µs, constant amount of state

Small packet overhead
Puzzle question ~40 bytes
Puzzle answer ~20 bytes

Low latency
Can play puzzle-protected Counter-strike transparently

Control
Fine-grained puzzle difficulty adjustment
Simple controller

Fairness
Puzzle manager (work-in-progress)

Questions?
PuzzleNet and Reputation-based Networking

http://www.cse.ogi.edu/sysl/projects/puzzles

Wu-chang Feng, “The Case for TCP/IP Puzzles”,
in Proceedings of ACM SIGCOMM Workshop on Future
Directions in Network Architecture (FDNA-03)

Wu-chang Feng, Antoine Luu, Wu-chi Feng, “Scalable
Fine-Grained Control of Network Puzzles”, in
submission

Other projects at OGI@OHSU
Packet classification

Approximate caches
Exact cache architectures
Mapping algorithms onto the IXP
TCPivo: A high-performance packet replay engine

Multimedia systems
Panoptes: A flexible platform for video sensors

Questions?

Approximate Caches for Packet
Classification

Francis Chang
Wu-chang Feng

Kang Li

in Proceedings of ACM SIGCOMM (Poster session) August 2003.

Motivation
Increasing complexity in packet classification function

Number of flows
Number of rules
Number of fields to classify

Firewalls, NATs, Diffserv/QoS, etc.
Header size

IPv6
Require large, fast memory to support line speeds

Problem
Storing large headers in fast memory prohibitively expensive

Large memory slow
Fast memory expensive

Classic space-time trade-off

Probabilistic Networking
Throw a wrench into space-time trade-off
Reduce memory requirements by relaxing the accuracy
of packet classification function
Specific application to packet classification caches

Summary slide

What quantifiable benefits does sacrificing
accuracy have on the size and performance
of packet classification caches?

But the network is *always* right
Not really….

Bad packets
Stone/Partridge SIGCOMM 2000
Lots of packets are bad, some are undetectably bad

1 in 1100 to 32000 TCP packets fail checksum
1 in 16 million to 10 billion TCP packets are UNDECTABLY bad
UDP packets are not required to have cksum
Even if the cksum is bad, OS will give the packet to the application (Linux)

Routing problems
Transient loops
Outages

Our approach
Bloom filter

An approximate data structure to store flows matching a binary
predicate

L х N array of memory
L independent hash functions
Each function addresses N buckets

Use for packet classification caches
Store known flows into filter
Lookup packets in filter for fast forwarding

Bloom filter
hL-1h1

Flow insertion

1

1

1

Unknown flow
0

0

h0

0

1

2

N-1

NL virtual bins out of L*N actual bins

Bloom filter
Things to note

Collisions cause inaccurate classifications
Storage capacity invariant to header size and number of fields

Size of filter determined only by
Number of flows
Desired accuracy

Exact caches grow with increasing header size and fields
IPv4-based connection identifier = 13 bytes
IPv6-based connection identifier = 37 bytes

Characterizing Bloom filters
Misclassification rates a function of…

N = number of bins per level
L = number of levels
k = number of flows stored

Lk

icationmisclassif N
p 
















 −−=

111

Characterizing Bloom filters
How many flows can a Bloom filter support?

After an approximation and some more derivation….

For fixed misclassification rate (p), number of elements is
linear to size of memory

What setting of L minimizes p?
After some more derivation

L depends only on p
Smaller P = Larger L

)1ln(1 Lp
L
M

−−=κ

pL 2log−=

Comparison to exact approaches
For fixed misclassification rates and optimal L

Some modifications
Supporting multiple predicates (see paper)
Aging the filter to bound misclassification

Cold caching
Count the number of flows inserted
Reset entire cache when misclassification limit reached
Problem: large miss rates upon cache clearing

Double-buffered caching
Split into 2 caches: active and warm-up
Insert into both caches, check only in active cache
Stagger insertion and periodic clearing of cache (every k insertions)

Warm-up Activex

x = clear cache

Warm-up ActivexActive

Warm-upx

x

Cache 1

Cache 2

Cold caching
OGI OC-3c trace

0

10

20

30

40

50

60

70

80

750 800 850 900 950 1000

C
ac

he
 M

is
se

s

Time (seconds)

Cold cache Bloom filter cache misses
Perfect Cache

Cold cache Bloom filter aging intervals

0

10

20

30

40

50

60

70

80

750 800 850 900 950 1000

C
ac

he
 M

is
se

s

Time (seconds)

Double-buffered Bloom filter cache misses
Perfect Cache

Double-buffered Bloom filter aging intervals

Double-buffered caching

OGI cache hit-rates
Note: all exact caches assumed fully-associative

20

40

60

80

100

120

140

1000 10000 100000

H
it

ra
te

 (%
)

Amount of cache memory (in bytes)

OGI Trace, Perfect Cache
OGI Trace, Double-Buffered

OGI Trace, Cold Cache
OGI Trace, Pure LRU (IPv4)
OGI Trace, Pure LRU (IPv6)

~1.5KB ~7.5KB

Dealing with misclassification
Firewall

Fully classify all TCP SYN
Routers

Longer routes possible
TTL prevents loops
Periodically change hash functions to avoid persistent
misclassifying

End-systems
Manual retry with new flowID

Implementation
IXP1200

Not the optimal hardware showcase
Could use support for Bloom filters

Parallel hashing
Parallel memory access
Bit-addressable memory access

Details in paper

Questions?
Approximate packet classification

http://www.cse.ogi.edu/sysl/projects/ixp

Back

Francis Chang, Kang Li, Wu-chang Feng, “Approximate Caches for
Packet Classification”, in ACM SIGCOMM 2003 Poster Session,
Aug. 2003. Poster
Francis Chang, Kang Li, Wu-chang Feng, “Approximate Caches for
Packet Classification”, in submission. Paper

Architectures for Packet Classification
Caches

Kang Li
Damien Berger
Francis Chang

Wu-chang Feng

in Proceedings of IEEE International Conference on Networks
(ICON 2003) Sept. 2003.

Motivation
Caching essential for good performance
Impacted by traffic and address mix
Recent work on analyzing..

Internet address allocation
Traffic characteristics of emerging applications such as games
and multimedia

Our study
How does recent work impact design of caches?

Hash function employed in cache (IXP hash unit vs. XOR)
Replacement policies (LFU vs. LRU)

Summary slide

Caching
Used currently in IP destination-based routing

One-dimensional classifier
Avoid route lookups by caching previous decisions
Instrumental in building gigabit IP routers
Good caches make ATM, MPLS less important

Previous caching work
Cache of 12,000 entries gives 95% hit rate [Jain86,
Feldmeier88, Heimlich90, Jain90, Newman97,
Partridge98]
“A 50 Gb/s IP Router” [Partridge98]

Alpha 21164-based forwarding cards (separate from line cards)
First level on-chip cache stores instructions

Icache=8KB (2048 instructions), Dcache=8KB
Secondary on-chip cahe=96KB

Fits 12000 entry route cache in memory
64 bytes per entry due to cache line size

Tertiary cache=16MB
Full double-buffered route table

Packet classification caching
Multi-field identification of network traffic

Typically done on the 5-tuple
<SourceIP, DestinationIP, SourcePort, DestinationPort,
Protocol>
Inherently harder than Destination IP route lookup
Extremely resource intensive

Many network services require packet classification
Differentiated services (QoS), VPNs, NATs, firewalls

Packet classification caching
Overhead of full, multi-dimensional packet classification
makes caching even more important

Full classification algorithms much harder to do versus route
lookups
Per-flow versus per-destination caching results in much lower
hit rates
Rule and traffic dependent

Goal of study
Attack the packet classification caching problem in the
context of emerging traffic patterns
Resource requirements and data structures for high
performance packet classification caches

What cache size should be used?
How much associativity should the cache have?
What replacement policy should the cache employ?
What hash function should the cache use

General cache architecture

5-tuple 25-tuple 1

ENTRY
#2

ENTRY
#1

hash

associativity

Current approaches
Direct-mapped hashing with LRU replacement

Typical for IP route caches [Partridge98]
Parallel hashing and searching with set-associative
hardware [Xu00]

ASIC solution with parallel processing and a fixed, LRU
replacement scheme

Approach
Collect real traces

http://pma.nlanr.net
OGI/OHSU OC-3 trace

Simulation
PCCS

Real Hardware tests
IXP1200

How large should the cache be?
Depends on number of simultaneously active flows
present (assuming each new flow has a new 5-tuple)

What degree of associativity is
needed?

Associativity increases hit rates
Benefits diminish with increasing associativity and large
cache sizes

What replacement policy is needed?
LRU: Least-recently used
LFU: Least-frequently used

● LRU > LFU

What replacement policy is needed?

LRU < LFU

Observations
Game traffic

Large number of periodic packets
Extremely small packet sizes
Persistent flows
Without caching, a packet classification disaster

Web traffic
Bursty, heavy-tailed packet arrival
Transient flows

Consider a mixture of game and web traffic
LFU prevents pathologic thrashing

What hash function is needed?
IP address and address mixes highly structured

Strong hash functions prevent collisions
Weak hashing leads to increased thrashing and misses

Observation: Internet address usage highly structured
[Kohler02]

Structural features around /8, /16, /24
Sparseness
Sequential allocation from *.*.*.0

Allows for intelligent construction of weak hash function that
achieves high performance

What hash function is needed?
A simple, but effective, “dummy” hash function

srcIP dstIP srcPort dstPort protocol

1~24 bit hash result

What hash function is needed?
Hardware hash units not needed for caching

Experimental validation
Intel IXP1200

Programmable network processor platform
Can be used to explore sizing, associativity, and hashing issues
Provides a single 64-bit hardware hash unit

Fixed multiplicand polynomial
Programmable divisor polynomial

Question: Should the IXP's hash unit be used to
implement a packet classification cache?

IXP1200

IXP performance tests
Hash unit performance test implemented in microC

Latency ~ 25-30 cycles
Throughput ~ 1 result every 9 cycles

Dummy hash function
Latency ~ 5 cycles
Throughput ~ 1 result every 5 cycles per micro-engine

Assume a cache miss incurs a penalty of tX cycles (full
classification time)
Find the total number of cycles for each hash function on
the same workload

Results
h=hit rate th=hash latency tX=classification latency
Total cycles = h * th+ (1-h)*tX

Summary
Network hardware designs such as caches must adapt to
changing traffic structure

Cache sizes, associativity, replacement policies, hash functions
Address allocation policies allow µ-engine based XOR-hashes
to outperform stronger hashes (i.e. centralized IXP hash unit)
LFU provides only marginal improvement over LRU with
multimedia traffic

Questions?
Packet classification

http://www.cse.ogi.edu/sysl/projects/ixp

Back

Kang Li, Francis Chang, Damien Berger, Wu-chang Feng, “Architectures
for Packet Classification Caching”, in Proceedings of International
Conference on Networks, Sept. 2003.

TCPivo
A High-Performance Packet

Replay Engine

Wu-chang Feng
Ashvin Goel

Abdelmajid Bezzaz
Wu-chi Feng

Jonathan Walpole

in Proceedings of ACM SIGCOMM Workshop on Models, Methods, and Tools
for Reproducible Network Research (MoMeTools) August 2003.

Motivation
Many methods for evaluating network devices

Simulation
Device simulated, traffic simulated
ns-2, IXP network processor simulator

Model-based emulation
Actual device, traffic synthetically generated from models
IXIA traffic generator

Trace-driven emulation
Actual device, actual traffic trace
Particularly good for evaluating functions that rely on actual address
mixes and packet interarrival/size distributions

Goal of work
Packet replay tool for trace-driven evaluation

Accurate
High-performance
Low-cost

Commodity hardware
Open-source software

Summary slide

Solution
Solution: TCPivo

Accurate replay above OC-3 rates
Pentium 4 Xeon 1.8GHz
Custom Linux 2.4.20 kernel with ext3
Intel 82544 1000Mbs
~$2,000

Challenges
Trace management

Getting packets from disk
Timer mangement

Time-triggering packet transmission
Scheduling and pre-emption

Getting control of the OS
Efficient sending loop

Sending the packet

Trace management problem
Getting packets from disk

Requires intelligent pre-fetching
Most OSes support transparent pre-fetch via fread()

Default Linux fread()latency reading trace

Trace management in TCPivo
Double-buffered pre-fetching
mmap()/madvise()with sequential access hint

Timer management problem
Must accurately interrupt OS to send packets
Approaches

Polling loop
Spin calling gettimeofday()until time to send
High overhead, accurate

usleep()
Register timer interrupt
Low overhead, potentially inaccurate

Examine each approach using fixed workloads
1 million packet trace
Constant-interarrival times δ=70 µsec, δ=2500 µsec

Timer management problem
Polling loop

δ=70 µsec
78% User-space CPU utilization

δ=2500 µsec
99% User-space CPU utilization

Timer management problem
usleep()

δ=70 µsec
40% User-space CPU utilization

δ=2500 µsec
4% User-space CPU utilization

Timer management in TCPivo
“Firm timers”

Combination of periodic and one-shot timers in x86
PIT (programmable interval timer)
APIC (advanced programmable interrupt controller)
Use PIT to get close, use APIC to get the rest of the way

Timer reprogramming and interrupt overhead reduced via soft
timers approach
Transparently used via changes to usleep()

Timer management in TCPivo
Firm timers

δ=70 µsec
19% User-space CPU utilization

δ=2500 µsec
1% User-space CPU utilization

Scheduling and pre-emption problem
Getting control of the OS when necessary
Low-latency, pre-emptive kernel patches

Reduce length of critical sections
Examine performance under stress

I/O workload
File system stress test
Continuously open/read/write/close an 8MB file

Memory workload (see paper)

Scheduling and pre-emption problem
Firm timer kernel without low-latency and pre-emptive
patches
I/O Workload, δ=70µsec

Scheduling and pre-emption in TCPivo
Firm timer kernel with low-latency and pre-emptive
patches
I/O Workload, δ=70µsec

Efficient sending loop in TCPivo
Zeroed payload
Optional pre-calculation of packet checksums

Task Average time spent

Trace read 1.30 µsec

Data padding 1.45 µsec

Checksum calculation 1.27 µsec

sendto() 5.16 µsec

Main loop 9.38 µsec

Putting it all together
On the wire accuracy

δ=70µsec workload at the sender
Point-to-point Gigabit Ethernet link
Measured inter-arrival times of packets at receiver

Software availability
TCPivo

http://www.cse.ogi.edu/sysl/projects/tcpivo
Formerly known as NetVCR before an existing product of the
same name forced a change to a less catchier name.

Linux 2.4
Firm timers

http://www.cse.ogi.edu/sysl/projects/TSL
Andrew Morton's low-latency patch

http://www.zip.com.au/~akpm/linux/schedlat.html
Robert Love's pre-emptive patch

http://kpreempt.sourceforge.net
Linux 2.5

Low-latency, pre-emptive patches included
High-resolution timers via 1ms PIT (No firm timer support)

Open issues
Multi-gigabit replay

Zero-copy
TOE
SMP

Accurate, but not realistic for evaluating everything
Open-loop (not good for AQM)
Netbed/PlanetLab?

Requires on-the-fly address rewriting

Questions?
TCPivo

http://www.cse.ogi.edu/sysl/projects/tcpivo

Back

Wu-chang Feng, Ashvin Goel, Abdelmajid Bezzaz, Wu-chi Feng, Jonathan
Walpole, “TCPivo: A High-Performance Packet Replay Engine”, in
Proceedings of ACM SIGCOMM Workshop on Models, Methods, and Tools for
Reproducible Network Research (MoMeTools) August 2003.

Performance Analysis of Packet
Classification Algorithms on Network

Processors

Deepa Srinivasan Wu-chang Feng

Packet classification algorithm mapping
Motivation

Packet classification is an inherent function of network devices
Many algorithms for single-threaded software execution
Many hardware-specific algorithms
Not a lot for programmable multi-processors

Our study
Examine algorithmic mapping of a hardware algorithm
(BitVector) onto the IXP

Pipelined (4 dimensions on 3 µ-engines, 1 combo, 1 ingress, 1 egress)
Parallel (complete lookup on 4 µ-engines, 1 ingress, 1 egress)

Packet classification algorithm mapping
Initial results

Hard to generalize
Depends on workload, rulesets, implementation

Trie lookups bad for µ-engine health
Frequently forced into aborted state due to branching

Linear search: ~10-11%,
Pipelined Bit-Vector: ~17%
Parallel Bit-Vector: ~22%

Impacts device predictability and algorithm/compiler design
Avoid branches, utilize range-matching?

Memory bottleneck favors parallel over pipelined in IXP1200
Pipelined slightly worse than parallel due to multiple header parsing
Will change with IXP2xxx next-neighbor registers

Questions?
Packet classification

http://www.cse.ogi.edu/sysl/projects/ixp

Back

Deepa Srinivasan, “Performance Analysis of Packet Classification
Algorithms on Network Processors”, OGI MS Thesis, May 2003
(submission planned)

Panoptes: A Flexible Platform for
Video Sensor Applications

Wu-chi Feng
Brian Code
Ed Kaiser
Mike Shea

Wu-chang Feng
Louis Bavoil

in Proceedings of ACM Multimedia 2003, November 2003.

Motivation
Emerging video sensor applications with varying
requirements

Environmental observation
Home health-care monitoring
Security and surveillance
Augmented reality
Robotics
UAV applications

Goal
Design, implement, and demonstrate a small, low-power,
programmable video platform

Push as much functionality out to the sensors
Allow easy reconfiguration of functionality to support multiple
applications

Panoptes

320 x 240 pixel video @ 24 fps
802.11 wireless, USB-based video, Linux

400 MHz Intel Xscale
~4 Watts (fully loaded)

206 MHz Intel StrongARM
~5.5 Watts (fully loaded)

Panoptes
Software architecture

Functions implemented and compiled in C
Buffering
Blending
Motion detection
Dithering
Compression
Adaptation

Python scripts to compose functionality
Similar to the ns simulator and Tcl
Supports dynamic reconfiguration of video sensors to application-specific needs
without recompilation

Demo
Little Sister Sensor Networking Application
Visit OGI for a full demo!

Back

Approximate packet classification
caching

Results
Order of magnitude space savings for an error rate of one in a billion
Analytical model for controlling misclassification rate

Back

Francis Chang, Kang Li, Wu-chang Feng, “Approximate Caches for
Packet Classification”, in ACM SIGCOMM 2003 Poster Session,
Aug. 2003. Poster
Francis Chang, Kang Li, Wu-chang Feng, “Approximate Caches for
Packet Classification”, in submission. Paper

Exact Packet Classification Caching
Initial results

Address allocation policies allow µ-engine based XOR-hashes
to outperform stronger hashes (i.e. centralized IXP hash unit)
LFU provides only marginal improvement over LRU with
multimedia traffic

Back

Kang Li, Francis Chang, Damien Berger, Wu-chang Feng, “Architectures
for Packet Classification Caching”, in Proceedings of International
Conference on Networks, Sept. 2003.

TCPivo: High-Performance Packet Replay
Linux x86-based tool for accurate replay above OC-3

Trace management with mmap()/madvise()
Timer management with firm timers
Low transmission overhead
Proper scheduling and pre-emption via low-latency and pre-emptive
patches

Software available
http://www.cse.ogi.edu/sysl/projects/tcpivo

Back

Wu-chang Feng, Ashvin Goel, Abdelmajid Bezzaz, Wu-chi Feng, Jonathan
Walpole, “TCPivo: A High-Performance Packet Replay Engine”, in
Proceedings of ACM SIGCOMM Workshop on Models, Methods, and Tools
for Reproducible Network Research (MoMeTools) August 2003.

Extra slides

Where's the IXP implementation?
Big issue: IXP1200 is not built for security

Pseudo-random number generator can be predicted
Internal hash unit cyptographically weak

Have a very short wish-list of functions
IXP 2850 has most of them

Future work
Application interface to puzzle manager

Integration with IDS
Integration with applications

Puzzle expiry and pre-issuing system
Better adaptation control

Fairness
Inserting a “trust” estimator into the knowledge plane

Answer the “WHO” question?
Who is a likely source of a future DoS attack?

No keys, no signatures, no centralized source
Based on time-varying distributed view of client behavior
Similar to GeoNetMap's “confidence” measure

IP puzzle scenario #2
Coordinated DDoS: simultaneous attacks against multiple
sites from the same set of zombie machines

Mafiaboy (2000)
Have zombies initiate low bandwidth attacks on a diverse set
of victims to evade localized detection techniques (such as
mod_dosevasive)

IP puzzle scenario #2
Mitigation using IP puzzles

