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Abstract— Emerging network applications require
packet classification at line speed on multiple header
fields. Fast packet classification requires a careful at-
tention to memory resources due to the size and speed
limitations in SRAM and DRAM memory used to imple-
ment the function. In this paper, we investigate a range
of memory architectures that can be used to implement
a wide range of packet classification caches. In partic-
ular, we examine their performance under real network
traces in order to identify features that have the greatest
impact. Through experiments, we show that a cache’s
associativity, replacement policy, and hash function all
contribute in varying magnitudes to the cache’s overall
performance. Specifically, we show that small levels of
associativity can result in enormous performance gains,
that replacement policies can give modest performance
improvements for under-provisioned caches, and that
faster, less complex hashes can improve overall cache
performance.

Index Terms — Caching, Hash, Network Processor,
Packet Classification

I. I NTRODUCTION

There are innumerable network devices and applications
that require fast packet classification. Examples include
edge routers performing priority marking [1], web switches,
network address translators [2], firewalls, accounting mech-
anisms within routers. The packet classification process de-
termines which flow [3] a packet belongs to based on one
or more fields in the packet. Typical classifications being
done today involve fields of a packet’s header including the
source IP address, the source port, destination IP address,
destination port, and protocol. With the increasing speeds of
modern networks, the decreasing packet sizes of emerging
network applications [4] and the economic realities facing
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equipment vendors, it is of paramount importance to deliver
fast packet classification functionality at a very low cost.

Over the last several years, there has been a large amount
of work done on packet classification [5] [6] [7] [8]. The
problem itself is a generalization of the one-dimensional
IP route lookup problem, but is much harder and requires
considerably more resources to perform. It has been well-
established [9] that memory access delays limit the classi-
fication speeds. While the lookup algorithm itself can be
implemented in hardware, the dynamic nature of the classi-
fying rules requires that the classification table be stored in
memory. As memory speeds have not kept pace with the rest
of the hardware advances, classification speeds are limited
by memory access latency. State-of-the-art memory access
latencies are about 50 to 60 nsec in DRAM, 5 to 20 nsec in
SRAM, and 1 to 2 nsec in on-chip SRAM [9]. Even with
on-chip SRAM to store the classification table, the classi-
fication process can only afford about 4 memory lookups
at 40Gbps. Unfortunately, the best solutions to this prob-
lem still require a significantly higher number of memory
accesses.

The best way to speed this classification lookup is to avoid
doing it by caching previous classification decisions and us-
ing them directly. Caching improves lookup speeds by tak-
ing advantage of the locality in the traffic [3]. While full
classification algorithms require multiple memory accesses,
cache lookups can be performed using a single memory ac-
cess. Unfortunately, while IP route caches only need to
scale to the number of routes, packet classification caches
must scale up to the total number of flows. Because of this,
packet classification caches must be reasonably sized in or-
der to maintain high hit rates. One solution to this prob-
lem is to use a large amount of hardware resources. How-
ever, with the emerging network processor platforms that
are focused on high-performance at a low-cost [10], it is be-
coming imperative to develop solutions that maximize per-
formance while minimizing the amount of silicon resources
consumed. In addition, resources that are not used to imple-
ment such a cache can be utilized to speed up the full packet
classification algorithm that must be run on a cache miss.

In this paper, we attempt to answer the following ques-
tion: Given a limited silicon resources, how should we



choose the aspects of a cache architecture, such as asso-
ciativities, replacement algorithms, and hash functions, to
implement fast packet classifications?

The main consumption of silicon resource by a classifica-
tion cache is the cache memory and the logic to index, store
and verify the cache results. More specifically, to deter-
mine how to best use the limited resource, we investigate the
performance of different cache associtivies, cache replace-
ment policies and hash functions under several real network
traces, in order to identify features that have the greatest im-
pact on performance. By performing multi-factor experi-
ments using a cache simulator on real traces, we examine
the impact that these architecture aspects have on the perfor-
mance of packet classification caches over modern network
workloads.

This paper is structured as follows. Section II describes
the related work on packet classifications with and with-
out caching. Section III presents our approach to evaluat-
ing ways of improving cache performance while keeping a
small cache size. Section IV reviews the general structure
of a packet classification cache by comparison with a tradi-
tional CPU memory cache, and section V evaluates different
aspects of cache architectures. Section VI concludes the pa-
per with a recommendation.

II. RELATED WORK

There have been a number of related studies in this area.
Strong temporal localities have been observed in the Internet
back to the early NSF backbone. A study of the NSFNET
backbone by Claffy [3] in 1994 showed that caching has sig-
nificant potential to improve route lookup performance. Re-
cent studies [11] [12] [13] show that the arrival of a packet
on an Internet link implies a very high probability of the
arrival of another packet with the same flow identifier.

Various packet classification algorithms have been pro-
posed in the last few years, and Gupta et.al. [14] present a
survey for various classification algorithms. For implemen-
tations, Lakshman et al. [6] use a hardware implemented
packet classification to achieve 1 million lookups per sec-
ond for a few thousand filter rules. Srinivasan et al. [15]
propose an algorithm that can achieve 2.47 million lookups
per second for less than 50 filtering rules. All of these num-
bers are measured by assuming static filtering rules so the
classification can be fully implemented in hardware.

Routing tables are dynamically updated and have to be
saved in memory, and thus the lookup can not be purely im-
plemented in hardware. Patridge et al. [16] place an Alpha
processor on each line card and use its96KB L2 cache to fit
the entire route cache, showing that a 5000 entry cache can
achieve a higher than 90% hit rate. Studies for packet classi-
fications based on flow identifier show similar improvement

Fig. 1. Flow volume in traces

as route lookup by using a cache. Using a custom ASIC im-
plementation, Xu et. al. [5] achieve a hit rate over 90% for
a layer-4 classification.

Our study differs from the above in that we address the
following:

• A range of cache architecture aspects
• Validation using recent traces

III. A PPROACH

The method we use to evaluate caching performance is to
use trace-driven simulations. In particular, we use real traf-
fic traces as inputs to a highly parameterizable cache simu-
lator that can be configured to vary the cache’s size, associa-
tivity, replacement policy, and hash function.

A. Trace Data Sets

We use three sets of data for our evaluation. Among these
traces, the BELL and Auckland data sets are obtained from
the NLANR PMA project [17] and the OGI data set is ob-
tained from an OC-3 link that connects a university campus
network to the Internet. two In these statistics, a flow is con-
sidered to be a uni-directional entity, defined by a unique 5-
tuple (source IP address, destination IP address, source port,
destination port, protocol). We call the 5-tuple a FlowID. A
flow begins when the first packet bearing a unique FlowID
arrives. A flow ends when the last packet is observed, or af-
ter a 60 second timeout. The number of active flows in each
trace are shown in Figure 1.

B. Packet Classification Cache Simulator

To conduct our packet classification caching study, we
implemented a trace-driven cache simulator (PCCS) that al-
lowed us to test a number of cache architectures and sizes.
PCCS simulates a packet classification cache in software. It
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Fig. 2. Cache Architecture

takes traffic traces (in tcpdump or NLANR data format) as
input, and calculates hit rates based on the cache configura-
tion. PCCS supports a large set of cache parameters that the
user can set such as cache size, associativity, replacement
policy, and hash function. In addition, PCCS can also report
statistical information about the flows in the input trace. The
PCCS simulator is an open-source tool that is available for
download [18].

IV. CACHE ARCHITECTURE

A packet classification cache is intended to give classifi-
cation results in a speed close to the fastest memory speed,
so that the classifications can be conducted at link speed. It
achieves its low-latency lookups by remembering past clas-
sification results in high-speed memory, and first searching
these results upon the arrival of new packets.

Figure 2 depicts a general packet classification cache,
which is very similar to a CPU memory cache [19], in that
both take advantage of locality. In this packet classification
cache, the cache memory is an N-way set associative cache,
which splits the cache memory into N memory banks. Each
memory bank is a directly mapped cache that is addressable
by the output of the hash function. For an N-way set asso-
ciative cache, every input FlowID selects N memory entries,
one from each memory bank. Each cache entry contains an
m − bit FlowID and ak − bit classification result1. One
difference from a CPU memory cache and a packet classi-
fication cache is that a packet classification cache does not

1The classification result is at least 1 bit for a packet filter, but could be
multiple bits for example, to record the service levels of diff-serv applica-
tions.

need a valid bit associated with each unit, because an invalid
FlowID, such as 0, can be used for this purpose.

Once one cache unit has been selected from each of the
N memory banks, comparisons are made to find out if any
of N cached FlowIDs match to the input FlowID. If a match
is found, then there is a cache hit, and the corresponding
classification result is selected. If there are no matching
FlowIDs, then a cache miss happens. A full classification
must start to search for the input FlowID. The classifica-
tion result is then forwarded back to the packet classification
cache, and a cache replacement may happen depending on
the replacement policy.

Various cache aspects of this cache architecture can affect
its performance. In the next section, we evaluate the impacts
of three important aspects: cache associativities, cache re-
placement algorithms, and hash functions.

V. EVALUATION

A. Cache associativity

Increasing associativity is a widely used technique in
CPU memory caches to reduce the impact of conflict misses
and increase hit rate. In this section, we first study the
impact of increasing associativities on packet classification
caches, and estimate the best level of associativities that a
packet classification cache should have. The study is per-
formed by running cache simulations with various traffic
traces, and observing the impact of various associativities
on cache performance.

Figure 3 plots the cache miss rates over a range of cache
sizes and associativities on our three workloads. The cache
uses a Least-Recently-Used (LRU) replacement policy and
a SHA-1 hash function. The cache miss rate is plotted since
it directly determines the performance required from the
packet classification algorithm being used for a given tar-
get packet rate. Doubling the miss rate effectively doubles
the required performance of the full packet classification
lookup. The figures plot the storage costs of the cache as-
suming a standard, 13-byte IPv4 FlowID is stored per entry.
Note that for supporting IPv6-based packet classification
caching, the storage costs will be significantly larger. The
graphs show the performance of a direct-mapped cache, a 2-
way associative cache, a 4-way associative cache, and a fully
associative cache using a LRU replacement algorithm. Fig-
ure 3 shows small increases in levels of associativity greatly
improve the performance of the cache with a 4-way associa-
tive cache, closely matching the performance of a fully asso-
ciative cache. The saving in storage costs between a direct-
mapped and a 4-way associative cache are quite significant.
In particular, depending on the trace used, a direct-mapped
cache requires between two to three times more storage than
a 4-way associative cache in order to maintain a miss rate
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Fig. 3. Cache associativity

below 8%, shown with the dashed horizontal lines in the
graphs.

Now let us look at the cost of increasing cache associativ-
ities. In our evaluation, we focus only on the storage costs
of the cache. The additional costs of implementing asso-
ciativity is not considered, since both the memory storage

and associativity logic can be implemented in several dif-
ferent ways with varying costs. However, the results should
be somewhat calibrated to the complexity that each addi-
tional level of associativity brings. For the example archi-
tecture given in Figure 2, the added costs of adding associa-
tivity scales with the level of associativity, not the number
of entries. More specifically, the additional hardware for
an N-way associative memory compared to direct-mapped
memory is the logic gates that compare the output from
each memory bank to the input FlowID, and the logic gates
that select the right output. Approximately each additional
FlowID comparison requiresm XOR logic gates, wherem
is the FlowID size. An N-way selector requires(N − 1)
AND gates and(N − 1) ∗ k OR gates. Here,N is the cache
associativity, andk is the result size. Thus, compared to
a direct-mapped memory, the overall overhead of a N-way
associative memory, in logic gates, is(N − 1) ∗ m XOR,
(N − 1) ∗ k OR, and(N − 1) AND. If we assume the aver-
age memory cell size is approximately twice as big as a logic
gate [19], the overhead of using N-way associative cache in
memory cells, is

(N − 1) ∗ (m + k + 1)/2 (1)

bits.

With this derivation, we can estimate the overhead of in-
creasing the cache associativities, in terms of silicon space
usage. For example, for an IPv4 FlowID, the overhead of
increasing the associativity from direct-mapped to 4-way is
equivalent to using an additional silicon space of 21 bytes
of memory, independent of the cache size. The real over-
head of an N-way associative cache might be different be-
cause the derivation is based on the simplest implementa-
tion. However, as we can see early in this section, this over-
head cost for 4-way associativities is very small compared to
the improvement it makes to the overall cache performance.

We also evaluate the cache performance with higher than
4-way associative memory. The performance of higher asso-
ciativities is between the result of 4-way associativities and
the full associative cache, but is close to the performance
of 4-way associative cache. Thus we conclude that a light
associative memory, such as a 4-way associative one, is a
good choice for the packet classification cache architecture.

B. Cache replacement

Cache replacement determines which entry, if any, must
be replaced in order to make room for a newly classified
flow. Intuitively, given the temporal locality of packets
within most flows, an LRU strategy should provide the most
effective results.

While such a strategy is sound when caches are relatively
empty, it is not clear whether or not it is effective when
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caches are more fully occupied. For example, consider the
case of an on-line game flow consisting of a periodic stream
of UDP packets [4] colliding in a direct-mapped cache with
a short web transfer. Assuming the packets of the flows are
perfectly interleaved, an LRU strategy exhibits a high degree
of thrashing.

This thrashing phenomenon motivates our examination
of a number of different cache replacement algorithms. In
particular, we focus on a family of algorithms based on a
Least-Frequently-Used (LFU) policy and a probabilistic re-
placement policy based on an estimate of the current miss
rate. Both algorithms attempt to reduce thrashing by hold-
ing entries in the cache if they have a chance of producing a
subsequent hit later on.

The LFU algorithm is fairly straight-forward. Each cache
entry includes a small counter. Cache hits on an entry in-
crement the entry’s counter up to a certain cap limit, while
cache misses decrement the counter. If a cache miss occurs
and the counter is zero, the entry is replaced with the result
of the new classification. In this paper, we examine counter
caps of 2 and 3. Larger caps were also evaluated but they
did not improve cache performance and are not included in
this discussion.

The probabilistic algorithm is also fairly simple. The
cache keeps a running estimate of its recent hit rateh. In our
experiments, we use the exponentially weighted average of
the hit rate as the estimate. When cache misses occur, the
entry is replaced with probabilityh. Thus, when the hit rates
plummet, the cache assumes that it is due to thrashing and
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Fig. 5. Replacement policies using 4-way caches

attempts to hold onto entries longer in order to salvage some
cache hits. Figure 4 shows the probabilistic algorithm used
to avoid cache threshing.

Figure 5 shows the performance of the different cache re-
placement algorithms using a 4-way associative cache. Ex-
periments with a range of different associativities were also
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performed and showed similar results. Figure 5(c) shows
that for the university trace that includes a large amount
of gaming traffic (which is highly periodic in nature), re-
placement algorithms that attempt to prevent thrashing do
have some impact on performance when the cache is under-
provisioned. However, the benefit of using such replace-
ment policies is insignificant compared to using LRU for the
more traditional workloads as the cache becomes less fully
occupied. In fact, for the BELL and New Zealand traces,
both the LFU and the probabilistic algorithms increase miss
rates due to stale flows being held in the cache for longer
periods of time before being replaced. Thus, while LFU
handles emerging continuous streams better when the cache
is small, it should not be used in other circumstances.

C. Hash function

A critical component to implementing a cache is the hash
function used to index into it. Without a strong hash func-
tion, a large number of collisions may occur leading to
thrashing. Traditional hash functions, such as SHA-1 and
MD5, are popular because they produce well-balanced out-
put in which a single bit change in the input can change ev-
ery bit of the output with equal probability. There are several
shortcomings with using such hash functions in this context.
While it would be preferable to use a hash function such
as SHA-1 or MD5 on every packet header, the hardware
costs for designing a low-latency, high-capacity hardware
hash unit can be prohibitive, requiring a significant amount
of logic circuitry. For example, according to the reference
implementation [21], the generation of a SHA-1 hash out-
put takes more than 1000 logic operations (Shift, AND, OR,
and XOR) using 32-bit words. Building complex hash func-
tions into hardware such as a network processor consumes
precious transistors that could be otherwise used for other
functions. Even worse, the delay caused by a hash function
can be problematic since the delay of hardware implemen-
tations is proportional to the number of transistors on the
signal path.
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Fig. 7. Hash performance using 4-way, LRU caches

Recent work analyzing the mix of IP addresses present
in real traffic [22] has shown that the allocation is highly
structured. In particular, addresses tend to cluster around
pre-CIDR address classes and often exhibit sequential allo-
cation in the lower-order byte. Such address structure can be
leveraged to potentially provide a faster, but slightly weaker
hash function. To reduce the size of the hash function and



the latency, we design a simple hash function based on XOR
operations on the packet header that works on a small in-
put size, and consumes only 16 logic operations (XOR and
Shift). We show that a hash function as simple as ours can
achieve similar performance result for implementing caches.
Figure 6 shows the XOR-based hash algorithm.

In order to demonstrate the effectiveness of the weaker
hash, Figure 7 compares the performance of our XOR-based
hash versus the SHA-1 hash on a 4-way associative LRU
cache. As the figure shows, the simple XOR-based hash
function’s performance is almost equal to that of the SHA-1
hash across all workloads.

While the XOR-based algorithm appears to be compet-
itive, its impact on overall performance depends on sev-
eral factors including the time it saves in execution and the
penalty incurred by performing a full classification. For ex-
ample, the speedup of using the XOR-based hash may be
completely offset by the additional overhead in performing
additional packet classifications due to the increasing miss
rates.

VI. CONCLUSION

In this paper, we have presented results evaluating three
important aspects of packet classification caching. Our ex-
periments show that using memory with even a low level of
associativity can improve the cache performance and signifi-
cantly reduce the cache size. In addition, attention is needed
to choose cache replacement policies for under-provisioned
cache. LRU is generally the best replacement policies for
most type of traffic. Finally, a fast, less complex hash can
improve overall cache performance.
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