
Mitigating Information Exposure to Cheaters in Real-Time
Strategy Games

Chris Chambers Wu-chang Feng Wu-chi Feng Debanjan Saha
Portland State University IBM Research

{chambers,wuchang,wuchi}@cs.pdx.edu dsaha@us.ibm.com

ABSTRACT
Cheating in on-line games is a prevalent problem for both

game makers and players. The popular real-time strategy

game genre is especially vulnerable to cheats, as it is fre-

quently hosted as a peer-to-peer game. As the genre has

moved towards a distributed simulation approach to game-

play, the number of cheats has been reduced to bug exploits

and “maphacks”: a form of information exposure that re-

veals the opponent’s units and positions when they should

be hidden. This paper proposes a technique for detect-

ing maphacking based on bit commitment and explores the

tradeoffs in network traffic and information exposure inher-

ent in reducing information exposure in peer-to-peer games.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Applications

General Terms
Algorithms, Performance, Security

Keywords
cheating,games,peer-to-peer

1. INTRODUCTION
Video games grow more popular every year, with the total

market approaching $10US billion dollars in 2004 sales [1].

The Interactive Digital Software Association (IDSA) 2004

report cites half of all Americans aging six and older as video

game players, and shows a marked rise in players of on-line

games over the last two years [2]. Popular on-line games

such as Half-life, Lineage, and Warcraft record hundreds of

thousands of players per day.

Cheating in on-line games is an area of growing concern

for both the security and networking research community

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’05,June 13–14, 2005, Stevenson, Washington, USA.
Copyright 2005 ACM 1-58113-987-X/05/0006 ...$5.00.

as well as the video game industry [3, 4, 5, 6, 7]. This is

because of the difficultly in preventing cheating as well as the

substantial money at stake in terms of sales and continued

player satisfaction. One genre in which cheating is prevalent

is the popular real-time strategy (RTS) genre.

In RTS games, a few (2-6) players command virtual armies

on a game field and attempt to gain tactical or strategic

superiority over their enemies. Players act as the generals,

issuing orders to each unit individually or in groups. The

size of these armies typically starts small (one to ten units)

and grows larger as the game progresses, not usually growing

larger than two hundred units.

Central to RTS games and our work is the concept of the

fog of war, summarized here: player A cannot see player

B’s unit x unless a unit controlled by player A observes x.

Each unit has a scouting radius and any enemy unit within

this radius is revealed to the player. The player’s vision is

comprised of the union of the vision of each of his units, and

everything outside of that area is in the fog of war.

This work focuses on maphacks, a form of information ex-

posure cheating in RTS games where one player runs a mod-

ified version of the game that eliminates the fog of war and

displays the entire game state, including the other player’s

units and move choices, thereby gaining an extremely large

advantage in the game.

Players typically have a selection of many units to com-

mand, and the games are generally balanced with a “rock,

paper, scissors” scheme: one kind of unit is strong against

another kind, but weak against a third. Typically the games

are finished when a player concedes or loses all units. In

this context a maphack, by removing the fog of war for one

player, confers an unfair advantage on the user.

Because of the large number of units involved per player,

and the financial impact of hosting client/server games, RTS

games are typically played via a peer-to-peer architecture.

Maphacks are common in RTS games because the players ex-

change only user input information over the network. Each

player’s computer simulates the complete game individu-

ally. This technique of distributed simulation prevents many

other forms of cheating by placing no trust in the other play-

ers. For example, players cannot fabricate units that they

did not legally build. However distributed simulation leaves

the complete game state on each computer, leaving the game

open to maphacks.

Figure 1: Example RTS game (Warcraft 3) interface.

The map in the lower left corner shows the player’s

units and viewable area.

At a high level, our scheme for securing RTS games from

maphacks alters the network protocol from exchanging per-

fect information about what the other player is doing to ex-

changing information based on what region each player can

see. We call the region a player can see his viewable area. We

propose to utilize distributed simulation for actions within

each player’s viewable area, but to hide all other actions.

We then secure these other actions from cheats by using

bit-commitment and post-game verification.

We evaluate our scheme on both network impact and ef-

fectiveness in preventing information exposure. We create

a model of the network protocol and perform some initial

measurements on the network size of viewable areas. We

hypothesize that the viewable area bandwidth will domi-

nate the network impact of our scheme, but show the likely

increase in message sizes will only be a few hundred bytes.

We also quantify the amount of player information con-

cealed by viewable areas. By exchanging viewable areas,

players no longer know the exact game state, but they know

something about the other player’s units. We create a model

of an RTS game and simulate the increased uncertainty and

information loss as we vary the unit density on the map

and size of the viewable area. We demonstrate a substantial

reduction in the total information available and increased

uncertainty of unit position.

In the rest of the paper we first discuss work closely related

to ours. In Section 3 we show how to use bit commitment to

solve the easier problem of securing a simple game such as

Battleship from a maphack, and then detail how we apply

the same technique to RTS games. In Section 4 we show

our initial experiments quantifying the increased bandwidth,

uncertainty and information loss introduced by our scheme.

In Section 6 we present our conclusions.

2. RELATED WORK
In recent years there have been several attempts to classify

and categorize cheating in on-line games [6, 5, 7]. These

attempts discuss maphacks specifically, or under the more

general category of information exposure.

Baughman et. al. apply bit-commitment to secrets in on-

line games in the context of dead-reckoned games and peer-

to-peer games [8]. They introduce a scheme called AS that

prevents look-ahead cheats by requiring players to commit

to their moves in advance of revealing them. They also use

a zero-knowledge proof to determine if two players occupy

the same general region (cell) of space without revealing

location information. Given the small cell size required for

RTS games and the large number of units, this technique

would scale exponentially and is infeasible in this context.

Our work builds upon theirs by using bit commitment to

hide secrets, but focuses on the challenges of RTS games.

Buro addresses the issue of maphacks in RTS games by

presenting a client-server architecture (ORTS) to perform

visibility culling for each player [9]. ORTS does not meet

our goal of a peer-to-peer architecture and instead requires

server resources for each game played. With hundreds of

thousands of RTS games played on-line per day this solution

has scalability issues we wish to avoid.

3. METHODOLOGY
A basic building-block of modern cryptography is bit com-

mitment: a party’s ability to make a choice without reveal-

ing it and then, at a later date, reveal the choice. Central to

the concept is that the committer cannot change his choice

after making it, and that others cannot determine the choice

before it has been revealed.

We first demonstrate how bit-commitment can secure the

simple game of Battleship and then we apply it to the more

complicated case of RTS games.

3.1 Preventing Cheating in Battleship
In Battleship, each player has five ships placed on a grid.

Players take turns calling out a single grid position and

telling each other whether the shot was a hit or miss. A

player wins when all positions on the other’s ships are hit.

Without bit-commitment, Battleship is easy to cheat at,

especially in an environment such as a networked game. The

kind of cheating depends on whether or not you know the

other player’s ship positions. It is assumed that this infor-

mation would not be intentionally displayed to the user, but

the reality of today’s cheating-heavy environment is that if

the information is available on a person’s computer, some-

one will write a program to reveal it.

If player p1 knows where player p2’s ships are, p1 can easily

cheat by calling out a sequence of shots that hit. If, on the

other hand, p1 does not know where p2’s ships are, p2 can

cheat by telling p1 that all shots are misses. Player p1 would

never be able to verify that player p2 was cheating.

One simple technique to secure Battleship is to use bit

commitment. Each player pi picks a secret si and a set of

initial ship positions spi. Each player then sends h(si, spi)

to the other player where h is a cryptographic hash function.

Each player must take the other’s word when they declare if

each shot missed or hit, but at the end of the game, players

exchange (si, spi). They can verify these against the initial

hash, then verify each of the given answers as correct.

Note that the game is not secured in the sense that it

is impossible to cheat, but rather each can verify that the

other did not cheat. This is the approach we would like to

take with RTS games as well.

3.2 Preventing Cheating in an RTS game
Our goal is to secure RTS games such that cheats will

be detected. Detection of cheaters is an adequate goal for

on-line games because of the high level of control held over

players. Players are typically authenticated via a code on

their purchased copy of the game to a central server before

beginning a peer-to-peer on-line game. This gives the host-

ing company the ability to globally ban known cheaters from

playing.

Cheating in RTS games presents more challenges than

cheating in Battleship. Battleship has a few static secrets:

the ship locations. RTS games have dynamic sets of units,

each of which has a dynamic location. Some of the enemies

secrets are supposed to be known, and some are not, based

on a player’s viewable region.

Our scheme is designed to minimize network traffic while

concealing as much information as possible about the enemy

without permitting cheating. While the protocol could gen-

eralize to a multiplayer peer-to-peer game, we confine our

discussion to the simpler two player game for this paper.

Our scheme is as follows:

Initial exchange: Each player i generates an initial game

state gsi according to the game rules. Each player gener-

ates a secret si and sends h(si, gsi) along with the player’s

viewable area vi to the other player.

In-game exchanges: For each time slice player Pi per-

forms the following:

1. Send viewable area v

2. Receive opponent’s viewable area v′

3. If current move m is in v′, send it clear-text

4. Otherwise, send h(m, si)

5. If Pi’s units u just entered v′, send them clear-text

Post-game exchange and verification: After the game

is completed, each player Pi sends si as well as a log of all

the moves mi for which they sent hashes h(mi, si). Then

each player simulates the game with complete knowledge of

all moves and checks the validity of each sent hash, viewable

area and unit.

Using this protocol, players can lie about their viewable

area, their hashed move, and what units they control. In

the post-game exchange and verification, these lies will be

detected. For this process we believe that the Baughman et.

al. [8] definition of a logger service for each client to record

secret moves is adequate. Verifying proper gameplay is be-

yond the scope of this paper, but we assume it is possible

given the moves, hashes, and gameplay engine.

3.2.1 Viewable areas
The network impact of sending the viewable area could

be very large, depending on its accuracy and representation.

The two extremes of representation for a viewable area are a

vectorized representation of units and radii, or a rasterized

representation. As the representation more accurately de-

picts the location of the individual units (as in a vectorized

representation), the amount of uncertainty about where the

opponents units are decreases. We want to increase uncer-

tainty and minimize bandwidth overhead, so we believe a

rasterized viewable area is appropriate for RTS games

We create our rasterized viewable areas from the actual

viewable area by mapping onto a raster. We further increase

uncertainty and decrease network impact by downsampling

to a smaller raster. For our experiments this ratio of larger

to smaller raster is fixed at 64:1, and we vary the unit density

by varying the number of units.

3.2.2 Proving cheating
The protocol as presented is sufficient for a player to know

if a game was played fairly at the verification step. To meet

the larger goal of proving to another party that cheating

took place, each player must have a public and private key

pair. The natural place to store the public keys would be

at the authentication server for the game. To alter the

protocol to allow for provable cheating each player must

send an additional message during the in-game exchange:

a signed, dated cryptographic hash of the player’s message

(v1, m1|h(m1, s1), u1) for that timeslice.

By cryptographically signing each message sent with a

player’s private key, players can achieve non-repudiation; a

player can prove that another player cheated if and only

if cheating actually took place. This technique enables the

central authentication server to ban cheaters, forcing them

to buy another copy of the game to play again.

4. EVALUATION
We evaluate the impact of the bit-commitment scheme on

three characteristics: the uncertainty it adds, the quantity of

information it loses, and the added cost in bandwidth. We

model our experiments after the map sizes, unit numbers

and proportions used in Warcraft 3.

4.1 Uncertainty
We wish to quantify the amount of information concealed

by sending viewable regions instead of unit locations. One

general measure of information is Shannon’s uncertainty,

which measures the disorder and unpredictability contained

in a random variable. Shannon uncertainty is defined on

random variable x with n possible values over probability

distribution p(x) as

H(x) = −
nX

i=1

pilog(pi) (1)

We use this equation to calculate the gained uncertainty

between a raster containing (random) unit locations and

Experiment Map area View Avg. Num

Radius Units

Warcraft 3 112002 860 100

vary-num 6402 49 vary(1-100)

vary-rad 6402 vary(1-100) 6

quant 6402 49 vary(1-100)

overlap 6402 49 vary(1-100)

Table 1: Data on experiments performed to quantify

uncertainty and information loss

one containing only viewable regions. We assume black and

white pixels are equally likely. We evaluate the uncertainty

impact of varying the number of units and the view radius

of each unit as outlined in Table 4.1.

Figure 2 shows the amount of uncertainty gained as com-

pared to the uncertainty in the maphacked version of the

game. Experiment vary-num varies the number of units

from one to 100 and leaves the radius fixed at the map pro-

portions of Warcraft 3. Each point represents the average

of 50 uncertainty calculations with x randomly distributed

units. Even at one unit we see a 0.2 uncertainty gain, and

this rises rapidly as we add units. At 20 units we gain the

most uncertainty, and past that we see some noise in the

signal as a result of the increased probability of unit regions

overlapping.

For experiment vary-rad we vary the radius of the units by

an order of magnitude around the Warcraft 3 radius, while

keeping the number of units proportional with the map size.

Figure 3 shows a substantial initial uncertainty gain initially

even at a radius of one, with uncertainty leveling off slowly

as the radius exceeds 100. We conclude that the specific

radius per unit is less important than the number of units

in the game in increasing uncertainty.

The uncertainty gain from unit radius and quantization

is considerable. Shannon uncertainty does not directly cor-

relate to the amount of gameplay information hidden (for

example, it does not capture the hidden unit types) but it

is a useful comparison as it is completely separate from the

meaning of the information transmitted. Our results indi-

cate that the peak uncertainty of our scheme falls within the

bounds of normal gameplay in terms of unit numbers and

viewing radius.

4.2 Information loss
We also present a second metric for evaluating the scheme:

information loss. Whereas uncertainty quantifies the likeli-

hood of guessing the color of a pixel, information loss quanti-

fies the number of data points that are deleted. For example,

when quantizing a large map into a two by two black and

white grid, it is not possible to represent more than four

points, no matter how many points existed initially. The

lost information in our scheme comes from two sources: the

dispersal of a unit’s location over an area via its view radius,

and the quantization of a large image into a small one.

We model each of these two sources. For quantization, we

scatter points in a large map, downsample to the small map,

0 20 40 60 80 100
Number of units

0.2

0.4

0.6

0.8

1

U
nc

er
ta

in
ty

 g
ai

n

Figure 2: Uncertainty gain from varying the number

of units (experiment vary-num)

0 20 40 60 80 100
Viewable radius

0

0.2

0.4

0.6

0.8

1

U
nc

er
ta

in
ty

 g
ai

n

Figure 3: Uncertainty gain from varying the view-

able radius of each unit (experiment vary-rad)

and count the number of points. The ratio of downsampled

points to original points is the measured information loss.

For the view overlap, we scatter points in a large map.

When we calculate the viewable area for each point, we dis-

perse its information value (say the constant 1) throughout

its viewable area, but do not add anything to an area that

is nonzero. By summing over the map and comparing to

the original amount of information we have measured the

information lost to overlap.

We calculate this loss with experiments quant and over-

lap from Table 4.1. Figure 4.2 shows that the information

loss from overlap rises more rapidly than quantization for

this map size, but both level off very slowly, and the com-

bined positional information loss for our scheme is 11% for

proportional numbers of units and map size.

We expect our modeling results show less information loss

than trace-driven data would. This is because it is more

common for units in RTS games to position in clusters in-

0 20 40 60 80 100
Number of units

0%

10%

20%

30%

40%

50%

In
fo

rm
at

io
n

lo
ss

quantization
overlap

Figure 4: Information loss from quantization and

overlap

stead of randomly, which increases information loss in both

quantization and overlap.

4.3 Bandwidth
To calculate bandwidth requirements over time, we build

towards an equation that determines how much data is sent

by one player in a game played up to a particular instant.

RTS games supposedly happen in “real time”, but in fact

they do have turns, albeit of the high granularity of a mil-

lisecond. In theory players could act every millisecond, but

a typical move rate is an action every second, or four to five

per second for especially intensive bursts. Our formal defi-

nition for bandwidth consumed should therefore scale down

to milliseconds, but take into account the case of no user

input for a given time slice.

Let vri be the enemy’s viewable region at time i. We

define mi as the player’s move at the given moment. This

move can be considered a string containing the keyboard

and mouse input.

Let

mi =


player’s move at time i

ε if no move

ff
We define smi, the secured version of the move as

smi =

 mi if mi ∈ vri

h(mi, s) if mi ∈/vri

ε if mi = ε

ff
We define ni, the new units at moment i as

ni =


the string of units entering vri at time i

ε if no units enter vri at time i

ff
Let sign(x) be a function that cryptographically signs

string x with a player’s secret key. We define si, the sig-

nature for the message at moment i as

si =


sign(vri, smi, ni)

ε if (vri, smi, ni) = ε

ff

Using these definitions, we can construct the size of the

data sent up to time t as

dataSent(t) =

tX
i=1

|vri| +
tX

i=1

|si| +
tX

i=1

|smi| +
tX

i=1

|ni|

The last two summations of this equation are, for infre-

quent user input, considerably smaller in number of nonzero

terms than the first two summations. Additionally, if |vri|
is stored as an image, it will likely exceed the data require-

ments for a string of user-input, or a signed hash. Users of

today’s Internet cannot expect to send and receive vri ev-

ery millisecond. Therefore we relax the restriction that the

viewable region be sent every time slice, and instead, send

the region every r ms. This changes the definition to

dataSent(t) =

bt/rcX
i=1

|vri| +
tX

i=1

(|si| + |smi| + |ni|) (2)

Viewable areas can dominate equation 2 if they are large,

as they may be sent frequently regardless of player interac-

tion. On the other hand, if the cryptographic hashing or

signing process is space-intensive, signatures will dominate

the equation.

5. DISCUSSION
We propose to more fully evaluate the network impact of

our protocol by driving it from user traces of real-world War-

craft 3 games. These are freely available for download, and

contain the information in them of which actions each user

takes. They do not contain the viewable area information or

unit positions, but we have built a prototype system which

extracts the data from a running replay. Given enough of

these replays, viewable area information, and unit positions,

we expect to accurately evaluate the success of our scheme.

One technique to extract the needed data from a replay

is to create a video capture of the replay, decode the video

and focus on the “mini-map”, which displays a small graphic

indicating a player’s units and their viewable area. The

data is approximate; the mini-map is a downsampled two-

dimensional representation of a three-dimensional collection

of units and necessarily inaccurate. However, we can draw

order-of-magnitude conclusions from this data. We analyze

a single replay and calculate the bandwidth consumed by

the viewable areas as well as the number of units controlled

by the player as the game progresses.

In Figure 5 we show an approximation of the number of

units controlled by a single player over the course of a typical

game of Warcraft 3. It is difficult to deduce if a player-

controlled block of pixels in the mini-map is a single large

unit or several small ones. We choose to over-estimate the

number of units by assuming each block is composed of many

units, and as Figure 5 shows, provide an estimated upper

bound of 150 units for a game. This demonstrates that our

experiments cover the appropriate range of units relative to

the map size.

To estimate viewable region bandwidth, we extract the

viewable region from a replay of a tournament Warcraft 3

0 10000 20000 30000
milliseconds

0

25

50

75

100

125

150

175
N

um
be

r
of

 u
ni

ts

Figure 5: Number of units over time as extracted

from a Warcraft 3 replay

0 5000 10000 15000 20000 25000 30000
PNG of viewable region

100

150

200

250

300

350

400

by
te

s

Figure 6: Viewable regions encoded as PNG

game and convert 30000 frames to black and white PNG

format images. Figure 6 shows the sizes of these regions,

which peak at 360 bytes. To compare this with the space

required for cryptographic signatures, the size of a signature

using SHA-1 as the hash and RSA-1024 for the encryption

is 128 bytes.

Aside from viewable regions and signatures, the other two

components of Equation 2 require small lists of units (a few

bytes) or user-interface commands (also a few bytes). Given

the comparatively large size of the viewable regions, this

suggests that the even with a large r = 5000ms, the viewable

regions and to a lesser extent the signatures would dominate

the bandwidth. We expect to verify this in future work.

6. CONCLUSION
We have presented a technique for securing on-line peer-

to-peer RTS games from maphack cheats using bit commit-

ment. This scheme does not completely eliminate informa-

tion exposure of player locations but instead exposes only a

player’s viewable area. We recognize at least two limitations

to this technique: it does not prevent cheating, but merely

detects it, and the detection step requires a potentially com-

plex verification procedure.

The goal of the scheme is to hide information. We have

evaluated the total information hidden using the metrics

of uncertainty and information loss. The information con-

cealed by our scheme is substantial, with the total uncer-

tainty approaching one and information loss approaching

11% for typical gameplay parameters. Varying the radius

of view changes the amount of uncertainty very slowly com-

pared to varying the number of units.

We have presented an initial model for the bandwidth con-

sumed by this scheme. While we believe it to be dominated

by the viewable regions (and, to a lesser extent, the crypto-

graphic signatures), we also believe the increased bandwidth

required to be generally acceptable for real play. We recog-

nize the need for real gameplay data in accurately evaluating

the scheme’s impact on both bandwidth and uncertainty.

As future work, we plan to capture a volume of game-

play data from Warcraft 3 traces and perform a more exten-

sive evaluation of our scheme. We believe that providing a

dataset of real-world gameplay traces, including player unit

locations and viewable regions would be a valuable asset

for the community to evaluate this and other schemes for

improving RTS games.

7. REFERENCES
[1] The NPD Group, “NPD News,” http://www.npd.com/

dynamic/releases/press_050119.html, 2005.

[2] IDSA: Interactive Digital Software Association, “IDSA

Digital Press Room,”

http://www.idsa.com/pressroom.html, 2004.

[3] S. Davis, “Why cheating matters,” in Proceedings of the

Game Developer’s Conference, 2001.

[4] David Becker, “Cheaters take profits out of online

gaming,”

http://news.zdnet.com/2100-3513_22-933853.html.

[5] M. Pritchard, “How to Hurt the Hackers: The Scoop

on Internet Cheating and How You Can Combat It,”

http://www.gamasutra.com/features/200000724/

pritchard_01.htm.

[6] K. Mørch, “Cheating in online games- threats and

solutions,” in Publication No: DART/01/03. January

2003, Norwegian Computing Center/Applied Research

and Development.

[7] J. Yan and H-J Choi, “Security Issues in Online

Games,” The Electronic Library: International Journal

for the Application of Technology in Information

Environments, vol. 20, no. 2, 2002.

[8] Nathaniel E. Baughman and Brian Neil Levine,

“Cheat-proof playout for centralized and distributed

online games,” in INFOCOM, 2001, pp. 104–113.

[9] M. Buro, “ORTS: A Hack-free RTS Game

Environment,” in Proceedings of the International

Computers and Games Conference, 2002.

