Got MIPS? The in On-line Games

Wu-chang Feng
Portland State University

Sponsored by: Intel, IBM
Outline

- From client to server
 - Humans as input devices
 - Procedural content
 - AI in breadth
 - Cheat detection and prevention
 - Large, detailed, persistent simulations
 - Content generation via tools and users
Humans as input devices

- Physical gaming
 - Blurring the real and virtual
 - Physical motion initiating virtual equivalents
 - Prevalent in high-end video arcades in Asia
 - Faster CPUs at clients enabling richer HCI
 - Real-time image and sensor processing
 - Used for traditional video games & augmented reality games
EyeToy

- Entire body as input
 - Arm, leg, head tracking
 - Embedded in game or driving game actions
Karaoke Revolution

- Voice pitch as input
- Not enough MIPS to detect enunciation
 - The humming cheat
 - BNL’s-”One Week” or REM’s-”It’s the End of the World …”
 - Simon would not be impressed
 - But humming works in the American Idol game, too!
Human Pacman

- Physical location as input
 - Virtual overlaid on physical via goggles
 - Picking up real cookies
 - Catching ghosts
Real Tournament

- Physical location and direction as input
 - Virtual game world displayed on attached iPaq
 - Remote simulation
 - Position and direction of gun determine where shot goes
Future directions

- Higher-resolution input
 - Real-time speech recognition
 - Gesture-based input
 - Accelerometer tilt sensors
 - Gyroscopic motion sensors (Nintendo Revolution magic wand controller)
- Stereo EyeToy for depth
 - Motion capture akin to current production of sports games
 - Obviate the need for motion-sensor suits?
- Facilitated by 100-fold increase in processing
 - PS2, Xbox, Gamecube ~5-10 GFLOPS
 - PS3, Xbox 360 ~1-2 TFLOPS
Future directions

- Multi-modal input
 - Karaoke Revolution Party
 - EyeToy
 - DDR pad
 - Microphone
Future directions

- Multi-modal input
 - Weight sensors for balance
 - Not too far from a “Minority Report” interface..
Future directions

- Multi-modal output
 - Force-feedback control
 - Electric shock?
 - Manipulate balance through ear
- Sensory surround experience
 - Philips amBX system
 http://ambx.com
 - Control ambient light, sound, heat, and airflow during gameplay
Outline

- From client to server
 - Humans as input devices
 - Procedural content
 - AI in breadth
 - Cheat detection and prevention
 - Large, detailed, persistent simulations
 - Content generation via tools and users
Procedural content

- Run-time generation of content
- Why?
 - Artists are a huge part of budget
 - Higher resolutions exacerbate problem
 - Increases development time and cost
 - Content generation dominates cost of MMORPG after launch
 - Increases storage and/or bandwidth costs of game
 - Example: Everquest 2 on 10 CDs!
 - Send new “tree generation algorithm” vs. new trees
 - Procedurally generate all objects, textures, and sound
 - Demo coders can generate a 3D game in 64KB
Examples

- Generate weathering effects
 - Versus static pre-rendered images of discrete levels of decay
 - Simulate rust, stains, and moss growth
 - See Chen et. al. SIGGRAPH 2005
 - MasterWorks talk “Computing Visual Effects is like Compiling Code”
Procedural content

Examples

- Generate character voices
 - Call of Duty 2 (10/2005)
 - Battle chatter system with 20,000 lines of dialogue
 - Static levels of hoarseness and tones
 - Takes up more space than original CoD!
 - 8% of $14.5 million budget on audio

- Run-time speech synthesis
 - Epson/Fonix multilingual TTS chip (11/2005)
 - 5 languages
Procedural content

Examples

- Generate character aging
 - Static pre-rendered models of discrete ages
 - 3 pre-rendered ages of Sims in original (baby, kid, adult)
 - Black & White fixed age titan models
 - Simulate aging and continuously update model
 - Avoid 1000 renderings of same character
Will Wright’s Spore

- Procedural character generation and aging
 - Sims 2: 22,000 animations
 - Spore: dynamically generated animations based on player’s character design
 - GDC 2005 talk
Future directions

- Better algorithms
 - Can we write good artwork generators?
 - Need trees not fractals
 - Applying film CGI tools to games
 - Film and game production tools
 - NaturalMotion Ltd.’s endorphin http://www.naturalmotion.com
 - Lucasfilm
Outline

- From client to server
 - Humans as input devices
 - Procedural content
 - AI in breadth
 - Cheat detection and prevention
 - Large, detailed, persistent simulations
 - Content generation via tools and users
AI in breadth

- George Lucas at SIGGRAPH 2005
 - “The next breakthrough in games will be artificial intelligence and voice recognition”
 - “..where you can talk to the game and it will talk back”
 - “..change games from first person shooters narratives to intelligent and challenging first-person shooter type dramas”

- AI providing more separation in games vs. graphics and art
 - 7-fold increase in CPU time devoted to AI since 1997
 - Killzone (PS2) devotes 12% of CPU to AI
 - NPCs no longer need to “cheat”
Al in breadth

State of Al in games

- Dominant at static, turn-based games with strict rules of movement
 - Example: Chess and Deep Blue
- AI developers have difficulty with
 - Games with heavy independent thought and action
 - Dynamic, open-ended games with emergent behavior (Counter-Strike)
 - Games with diverse virtual characters, allies, and opponents
- Need better breadth!
Path-finding

- Age-old AI problem still consuming most of CPU
 - Find shortest, safest, most tactically advantageous path
 - Consumes 40% of CPU for bots on FPS games
 - Map complexity
 - Updates every 50ms
- Path-finding in WoW
 - Too difficult
 - Too many creatures
 - Mobs go directly to points in world
“Unscripted” AI

- Minimally scripted behavior
 - Riots in State of Emergency
 - Soldiers in Metal Gear Solid
 - Police tactics in GTA3
 - Platoons in Far Cry
Role-based intelligence

- Cooperative (allies)
 - Coordinating attacks in Halo
 - Providing cover fire
 - Flanking maneuver
 - Protection in Munch’s Oddysee
 - Automating roles in WoW?
 - Fix class imbalance
 - Everyone wants to be the hero
 - No one wants to heal the hero
Role-based intelligence

- Adversarial (opponents)
 - Synthesizing tactical strategy in Killzone
 - Suppression fire to pin down opponent
 - Tactical withdrawal
 - Based on skills, experience, equipment, race, etc.
 - Beyond scripted AI of WoW
 - Richer sets of MMORPG characters

- Opponent-specific adaptation
 - Play at the level of the person paying you money
 - Play to keep customer happy
 - FreeCell 70% win threshold
Goal-oriented activity

- Enabling free-will button in The Sims
 - Sims taking care of themselves
Personality training and acquisition

- Pavlov dog training on a grand scale
 - Mimicry and penalty-reward training
 - Nintendogs
 - Black & White Titans (pets)
 - Continuous training to train titan (pet)
 - Glutton, killer, care-taker, athlete, etc.
 - Eat enemy villagers but not your own
 - Heal your own villagers but not the enemy’s
 - Non-programmed behavior
 - Eating its own arm when starving
 - “My ape couldn’t find someone to heal. He got pretty upset. So he threw a guy against a mountain. Then he healed him”
Game Master replacement

- Humans that keep game running at a huge cost to publishers
 - Detect and ban cheaters
 - Observe and ban griefers
 - Free players who are stuck
 - Provide technical support

- Game Master automation
 - Currently primitive
 - HLGuard for cheaters
 - Swear filter AMX plug-in for Counter-Strike for griefers
 - See it in action at cs.mshmro.com
Future directions

- Hardware acceleration
 - AI seek AIS-1 “AI chip”
 - Path-finding and terrain analysis
 - Squad formation and movement
 - Is there an AI ISA that works across games?
 - Counter-Strike vs. Chess
 - Civilization vs. Nintendogs

- Combining a variety of techniques
Outline

- From client to server
 - Humans as input devices
 - Procedural content
 - AI in breadth
 - Cheat detection and prevention
 - Large, detailed, persistent simulations
 - Content generation via tools and users
Cheat detection and prevention

Cheating impacts bottom-line of any game
 - Wrecks virtual economies
 - Causes legitimate, paying players to quit
 - Creates bad word-of-mouth to discourage new players
Information exposure cheats

- Server or peer sends complete information to other client
 - Cheat reveals information that should be hidden

- Wallhack
 - Quake 4 – released 10/18/2005
 - Call of Duty 2 – released 10/25/2005
Information exposure cheats

- Maphack (reveal map and enemy units)
 - Warcraft without Maphack
Information exposure cheats

- Maphack (reveal map and enemy units)
 - Warcraft with Maphack
Information exposure cheats

- Counter-measures (MIPS to the rescue!)
 - Remote rendering
 - Currently, games symmetrically designed with both sides running simulation
 - Client gets all data about world
 - Bad for preventing cheating
 - Sending the deck in on-line poker
 - Server rendering
 - Fixes information exposure problem
 - Can aid mobile game playing as well
 - Client no longer has to be powerful enough to run full engine
 - Example: PS3 to PSP
 - Problems
 - Not scalable, only simple games
 - Latency issues
Information exposure cheats

- Counter-measures (MIPS to the rescue!)
 - Data culling
 - Cull data based on player’s location and field of view
 - Example: Cheating-Death (client only)
 - Does not work for P2P games
 - No authoritative server (Starcraft)?
 - No trusted third-party (i.e. non-player)
Information exposure cheats

- Counter-measures (MIPS to the rescue!)
 - Bit-commitment
 - Distributed game simulation (can’t trust each other)
 - Data culling combined with move and game state signing followed by post-game verification
 - Shameless plug #1: see our work in NOSSDAV 2005! 😊
 - http://www.thefengs.com/wuchang/work/cstrike
Automation cheats

- Automate game activities via Bots
- Aimbots
 - Automate aiming in FPS
- Macros and game bot farming
 - Automate wealth acquisition via programs
Bots and farming cheats

- Counter-measures (MIPS to the rescue!)
 - Continuous player performance monitoring
 - Example: HLGuard
 - Machine learning of reasonable human reaction time
 - Ban those who react too fast
 - Prone to false positives
 - Cal-I (Cyberathlete league) players
 - Reverse turing tests
 - Captchas
 - Solve a hard problem in pattern recognition to cheat
 - Personal favorite academic idea: secure mice/keyboards
 - Hardware signing its movement and clicks
 - Solve a hard problem in robotics and image processing to cheat!
Bots and farming cheats

- Automating game activities
 - Real-world farming
 - Use workers in third-world countries to generate wealth
 - Counter-measures
 - Machine learning of language and behavior
 - Lawyers
 - http://www.gameguidesonline.com/guides/articles/ggoarticleoctober05_01.asp
Bug exploitation

- Exploit inconsistencies and errors in game code
 - Item duping
 - Disconnect while dropping item
 - Ambiguity in whether event happened globally
 - Other game glitches and errors
 - Magic “pizza” machine in The Sims On-line
 - Vending machine and pawn shop hack in Lucasfilm’s Habitat
- Counter-measures (MIPS to the rescue!)
 - Formal verification
 - NetGames 2004
 - Wealth heuristics
 - Analyze “Gross Game Product” continuously
 - Check per-player anomalies (i.e. use credit card fraud detection algorithms)
 - Personal favorite
 - Monitor currency devaluation on Ebay 😊 (Eve On-line)
Other cheats

- Collusion
 - On-line poker, bridge
 - StarCraft ladders
- Look-ahead (timing) cheat
 - Strategy games
- Speed-hack
 - Half-Life
- Disconnect cheat
 - Madden on-line
- Denial-of-service
 - Time-sensitive P2P games with remote score tracker
 - Go, Chess
- Performance enhancing drugs
Future directions

- Generic solutions
 - Use of cryptographic mechanisms
 - Authenticity
 - Attestation
 - Non-repudiation
 - Scanners
 - Continuously scan memory for foreign libraries and cheats
 - Steam and VAC, PunkBuster
 - Heuristics not perfect: Steam and modified OpenGL drivers
Future directions

- Generic solutions
 - Trusted computing
 - Software
 - Ensure no other foreign library is loaded
 - Binary modification detection (Second Life)
 - Peripherals
 - Keyboard, mice
 - Secure remote screenshots
 - PunkBuster
 - Sign geometry info or raster output
 - Trusted network output
 - Cryptographic timestamping/ordering
 - Prevent look-ahead cheats
 - Issues
 - Customization vs. Trusted Computing
 - Mods and macros are successful parts of games
 - Counter-Strike, Neverwinter Nights, and Second Life
 - Work currently being sponsored by Intel
Future directions

-Generic solutions

- Machine learning, clustering, anomaly detection
 - Learn normal behavior, flag abnormal
 - HLGuard for reaction-time (see Bots and Farming cheats)
 - Wealth acquisition for MMORPG (see Bug Exploitation)
 - Security folks: sound familiar?
Outline

- From client to server
 - Humans as input devices
 - Procedural content
 - AI in breadth
 - Cheat detection and prevention
 - Large, detailed, persistent simulations
 - Content generation via tools and users
Large-scale sims

- Scaling users in a FPS
 - FPS games historically monolithic, single-server games
 - Limits maximum player numbers to 32-64 on a server
 - Planetside ~200-300
 - Parallel and clustered FPS server implementations
 - Parallel Quake II (Glenn Deen, OptimalGrid, IBM Research, ICPP 2005)
 - Clustered implementation with 70ms transition between nodes
Large-scale sims

- Scaling users in an MMORPG
 - Single server limited to thousands
 - Socket, thread, memory limitations
 - Must resort to realms, sharding, and instancing
 - WoW ~ 8,000 per continent in a realm
 - Fundamentals of MMORPG server internals
 - Common use of scripting languages
 - Programmability, maintainability, extensibility
 - Thread per-player or per-object (> 10k)
 - Event-driven approaches too difficult to debug and maintain
 - Examples
 - Lua (WoW)
 - UnrealScript (Lineage II, Unreal games, America’s Army, Deus Ex)
 - Python (Civilization, Eve On-line, Kaneva engine)
Large-scale sims

- Scaling users in an MMORPG
 - Improving MMORPG server internals
 - Issues with massive threading and scripting
 - Scheduling and synchronization overhead
 - Memory footprint 1MB per pthread if OS threads used
 - Inability to migrate threads
 - Next-generation scripting with Stackless Python
 - Cooperative user-level multithreading with heap-based stacks and an O(1) RR scheduler
 - Tasklets, microthreads (i.e. user-level threads and co-routines)
 - Minimal need for objects to synchronize
 - Massive thread scaling with slight heap overhead
 - Add “pickling” (think Java serialization) to swap to disk and to migrate to other processors
Large-scale sims

- Scaling users in an MMORPG
 - Database limitations
 - DB performance forces MMORPGs to restrict players in realm/shard
 - Most games use relational DB backends, but don’t need flexibility of relational model
 - Application-specific databases (XML and hierarchical DBs)
 - Restrictive queries and data representations but extremely fast
 - Hierarchical DBs no longer taught in database classes, but used prevalently in credit card transaction processing
 - Large MMORPGs need transaction rates akin to credit cards
Large-scale sims

- Hosting infrastructure for large workloads
 - Enabling games on grids
 - IBM on-demand services for games, Butterfly.net
 - Dynamically allocate resources based on predicted load
 - Reduce risk in hardware purchasing at game launch
 - Shameless plug #2: See our game workload studies at IMC 2005
 - http://www.thefengs.com/wuchang/work/cstrike
Supporting “emergence”

- Process of complex pattern formation from simpler rules
 - Characterized by
 - Unscripted interactions
 - Varying game play under same set of rules
 - Large number of outcomes and end-states
 - Keeps game interesting for players

CPU advances enable certain modes of emergence

- Create larger behaviors by simulating many smaller interactions
- Occurs at all levels and genres
 - SimCity, Civilization, Black & White
 - Counter-Strike, World of Warcraft, The Sims
 - Spore
Detailed sims

- Physics
 - Modern game engines do per-polygon collision detection
 - CPU becoming a severe bottleneck
 - Advanced physics for...
 - Vehicles (cars, planes)
 - Weapons (gun recoil, bullet ricochets, shrapnel sprays based on environment)
 - Activities (parachuting, sailing, snowboarding, canoeing)
 - SIGGRAPH virtual canoe with algorithm-driven fluid resistance oar
 - Environmental simulation
Detailed sims

- Graphics
 - 3D, HD rendering
 - Increased polygon counts
 - Parallel rendering on clusters
 - Chromium (Stanford)
 - Out-of-core rendering
 - Streaming large maps on-demand?
 - Does one need to deliver worlds on CD or download them entirely beforehand?
Detailed sims

Audio

- 3D and HD audio
 - Mixing
 - Environmental effects (wind, gunfire, etc.) on sound propagation
 - Doppler effects (bullet localization)
 - Per-player VoIP mixing based on virtual player positions
 - Creative X-Fi (Extreme Fidelity)
 - 51 million transistors, 10,000 MIPS

- Procedural generation of speech vs pre-recorded scripts
 - See previous slides
Detailed sims

- Serious games (non-entertainment training games)
 - http://www.seriousgames.org/
 - http://www.gamasutra.com
 - Large-scale simulations for education, training, and forecasting
 - Made possible by recent CPU advances
 - Can finally simulate something useful
- Economic
 - Japanese Finance Minister game: http://www.mof.go.jp/zaisei/game.html
- Education
 - University management game http://www.virtual-u.org/
- Health
 - Trauma care trainer
- Biology
 - ImmunoAttack (see next talk)
Detailed sims

- Serious games (non-entertainment training games)
 - Leadership
 - Virtual leader: http://www.simulearn.net/
 - Business
 - Planning and government
 - Government (Civilization, SimCity, Diplomacy)
 - Cultural
 - Voice interaction with allies and (see USC/DoD)
Detailed sims

- Serious games (non-entertainment training games)
 - People
 - PsychSim http://www.isi.edu/isd/carte/proj_psychsim/
 - Bio-terrorism
 - University of Chicago: http://www.uic.edu/sph/cade
 - Science
 - Aerospace simulators
 - Vehicles
 - Cars (GT4, Need for Speed)
 - Airplanes (Flights Simulator)
 - Teams
 - Sports management
 - Tournament Dreams http://www.400softwarestudios.com/tdcb
Persistent sims

- Dynamic persistent worlds
 - Deformable maps and worlds
 - Currently, server and client have identical maps, textures, & models
 - Want persistent and shared effects
 - Persistent "worlds" not just "characters"
 - Terrain that reflects results of the day’s battles
 - Digging a hole and covering it up with grass
 - Multiple players interacting with map itself
 - Enabled via remote rendering, out-of-core rendering?
Persistent sims

- Dynamic persistent worlds
 - Dynamic lighting
 - Fixed levels of lighting in virtual worlds (FPS and MMORPG)
 - Shadows and lighting pre-rendered in textures/maps apriori and shipped to client
 - Want procedural generation of lighting effects
Persistent sims

- Dynamic persistent worlds
 - Dynamic lighting
 - Terrain that reflects time of day and available light sources
 - Dynamically simulated lighting
 - Global illumination simulation (photon mapping)
 - Photon maps calculated at server based on virtual world
 - Allow server to control time of day on map
 - Allow player “flashlights”, shooting lights out, opening doors, etc.
 - See Henrik Jensen’s animations
 - http://graphics.ucsd.edu/~henrik
 - Roughly approximate?
 - Pre-generated global illumination simulation compiled into levels
Future directions

- Hardware acceleration
 - Identify common functions, put in hardware
 - Ageia PhysX physics acceleration chip
 - 120 million transistors
 - Go from 200 objects to 32000 (physics and collision detection)
 - Havok
 - GPU-based physics acceleration

- Other lower-level simulations
 - Physiological simulation?
 - Evolutionary simulation?
Outline

- From client to server
 - Humans as input devices
 - Procedural content
 - AI in breadth
 - Cheat detection and prevention
 - Large, detailed, persistent simulations
 - Content generation via tools and users
Content generation via tools

- Development engines CPU-hungry
 - Most games 3D
 - 3D FPS popularized by Doom (1993)
 - 3D MMORPG popularized by Everquest (1999)
 - 3D RTS popularized by Warcraft III (2002)
 - Applying film CGI tools for games
 - Modeling, rendering, animation on large clusters
 - See previous slides
 - Consolidation of engines for FPS, RPG, RTS (genres blurring)
 - Unreal Engine 3 (Epic)
 - Deus Ex, Lineage II, Splinter Cell, Unreal II, AA, etc.
 - Kaneva, Emergent
Content-generation via users

Content generation is the largest cost after launch

Many successful “user-driven” games
- Counter-Strike
- Neverwinter Nights

Second Life
- First MMORPG with user content explicitly designed for
- Remote execution of code written by players in VMs
Future directions

- Ensuring safety
 - Virtual machines
 - Vanderpool?
 - Language-level mechanisms
 - Code inspection, analysis, and verification
 - Execution monitoring
Crystal ball

- Games have only just begun ...
 - Networks and graphics were key in last 10 years
 - Supercomputing and AI will be key in next 10 years
 - Research from AI and Supercomputing has not been applied to games

- The killer application for multi-core CPUs
 - Both at the client and server
 - Most functions in talk are independent
 - Rapidly growing CPU budget allows for interesting new combinations
 - New system requirement?
 - # of cores along with GHz, RAM, disk space
Acknowledgements

- Sponsors
 - Intel Research Council award
 - IBM Faculty Partnership award

- The Game Group at Portland State University
 - http://games.cs.pdx.edu/
 - Faculty - Bryant York, Wu-chi Feng, Melanie Mitchell
 - Students - Chris Chambers, Jim Snow, Ed Kaiser, Francis Chang

- ACM NetGames and mshmro.com communities
Final note

- You can upgrade the CPU in the computer, but not the one in the person
 - http://www.ebaumsworld.com/asianarcade.html

- Questions?
Extra slides
Caveats about talk

- Gaming landscape is massive
 - Talk is not
- MIPS numbers hard to come by
 - Not really publicized by makers
 - Talk is qualitative not quantitative
Other CPU draws

- OS/Networking issues
 - Lots of tiny packets and low bandwidth connections
 - Unicast work in NOSSDAV 2005
 - Overhead miniscule really
 - Not much here for us networking folks, move along

- Services
 - Geographic server selection
 - http://www.thefengs.com/wuchang/work/cstrike
 - Sharing game replays
 - Spectator networks
Doom (1993)

Doom 3 (2004)