Got MIPS?
The in On-line Games

Wu-chang Feng
Portland State University

Sponsored by:
A big business
- $25.4 billion market in 2004
- $54.6 billion market in 2009 (projected)

Drives advances in computing platforms
- Intel vs. IBM
 - PC platform vs. console platform

This talk
- What functions do these platforms need to support for future games?
Outline

- From client to server
 - Humans as input devices
 - Procedural content
 - Simulation
 - AI in breadth
 - Cheat detection and prevention
 - Scaling users and worlds
Humans as input devices

- Physical gaming
 - Blurring the real and virtual
 - Physical motion initiating virtual equivalents
 - Prevalent in high-end video arcades in Asia
 - Faster CPUs at clients enabling richer HCI
 - Real-time image and sensor processing
 - Used for traditional video games & augmented reality games
EyeToy

- Entire body as input
 - Real-time image processing
 - Arm, leg, head tracking
 - Embedded in game or driving game actions
Karaoke Revolution

- Voice pitch as input
- Not enough MIPS to detect enunciation
 - The humming cheat
 - BNL’s-”One Week” or REM’s-”It’s the End of the World ...”
 - Simon would not be impressed
 - But humming works in the American Idol game, too!
Human Pacman

- Physical location as input
 - Virtual overlaid on physical via goggles
 - Similar to NFL first-down markers
Future directions

- Higher-resolution input
 - Real-time speech recognition
 - Stereo EyeToy for depth
 - Motion capture akin to current production of sports games
 - Obviate the need for motion-sensor suits?
 - Facilitated by 100-fold increase in processing PS2 to PS3
Future directions

- Multi-modal input
 - Karaoke Revolution Party
 - EyeToy
 - DDR pad
 - Microphone
Future directions

- Other input
 - Psychophysiologic sensors
 - Sensing and using emotional state via passive monitoring
 - Gesture-based input
 - Accelerometer tilt sensors
 - Gyroscopic motion sensors (Nintendo Revolution magic wand controller)
 - Not far from a “Minority Report” interface
Outline

- From client to server
 - Humans as input devices
 - **Procedural content**
 - Simulation
 - AI in breadth
 - Cheat detection and prevention
 - Scaling users and worlds
Procedural content

- Run-time generation of audio and visual effects

Why?

- Artists are a huge part of budget

- Higher resolutions exacerbate problem
 - Increases development time and cost
 - Content generation dominates cost of MMORPG after launch
 - Increases storage and/or bandwidth costs of game
 - Example: Everquest 2 on 10 CDs!
 - Xbox 360 games on 4 dual-layer DVDs?
 - Send new “tree generation algorithm” vs. new trees
 - Procedurally generate all objects, textures, and sound
 - Demo coders can generate a 3D game in 64KB
Generate character aging

- Versus static pre-rendered models of discrete ages
 - 3 pre-rendered ages of Sims in original (baby, kid, adult)
- Simulate aging and continuously update model
 - Avoid 1000 renderings of same character
Generate character animation

- Versus manually generating static animations
 - Example: The Sims 2 with 22,000 different animations
- Procedural animation based on player’s character design
 - Will Wright’s Spore
 - GDC 2005 talk
Generate weathering effects

- Versus pre-rendered images of discrete levels of decay
- Simulate rust, stains, and moss growth
 - See Chen et. al. SIGGRAPH 2005
 - MasterWorks talk “Computing Visual Effects is like Compiling Code”
Generate lighting

- Versus fixed levels of lighting in virtual worlds
 - Shadows and lighting pre-rendered in textures/maps apriori and shipped to client
 - Example: Counter-Strike
 - Two pre-rendered versions of a tunnel in cs_militia
Generate lighting

- Simulate lighting effects dynamically
 - Lighting to reflect time of day and available light sources
 - Global illumination simulation (photon mapping)
 - Photon maps calculated at server based on virtual world
 - Allow server to control time of day on map
 - Allow player “flashlights”, shooting lights out, opening doors, etc.
 - See Henrik Jensen’s animations at http://graphics.ucsd.edu/~henrik
 - More later in talk...
Generate character voices

- **Versus static pre-recorded dialogue**
 - Example: Call of Duty 2 battle chatter system (10/2005)
 - 20,000 lines with static levels of hoarseness and tones
 - Takes up more space than original CoD!
 - 8% of $14.5 million budget on audio

- **Run-time speech synthesis**
 - Epson/Fonix 5 language TTS chip (11/2005)
Future directions

- Better algorithms
 - Can we write good artwork generators?
 - Need trees not fractals
 - Film CGI tools in games
 - NaturalMotion Ltd.’s endorphin http://www.naturalmotion.com
 - Maxon
 - Lucasfilm
 - Need human not computer voices
Outline

- From client to server
 - Humans as input devices
 - Procedural content
 - Simulation
 - AI in breadth
 - Cheat detection and prevention
 - Scaling users and worlds
Simulation

- Low-level modeling of objects and activity
 - Done at run-time (a form of procedural content)
- CPU advances driving simulations at all levels
 - Physics,
 - People
 - Civilizations
Serious games

- Large-scale simulations for education, training, and forecasting
 - Made possible by recent CPU advances
 - Can finally simulate something useful
 - Pioneered by the military (largest consumer)
 - Economy simulator
 - Japanese Finance Minister game: http://www.mof.go.jp/zaisei/game.html
 - Trauma care center trainer
 - University simulator
 - University management game http://www.virtual-u.org/
 - Iraqi cultural simulator
 - Interaction with allies and local communities (USC/DoD)
Serious games

Non-entertainment games for training and education

Military
- 24 Blue: flight deck operations simulator
- Public safety personnel trainer
- Secret service building security analysis

Leadership
- Virtual leader: http://www.simulearn.net/

Business
- Business War Games: http://www.prisim.com/

Planning and government
- Traffic simulators http://www.traffic-simulation.de/
- Government (Civilization, SimCity, Diplomacy)

Biology
- ImmunoAttack (see next talk)
Serious games

- Non-entertainment games for training and education
 - People
 - PsychSim http://www.isi.edu/isd/carte/proj_psychsim/
 - Bio-terrorism
 - University of Chicago: http://www.uic.edu/sph/cade
 - Science
 - Aerospace simulators
 - Vehicles
 - Cars (GT4, Need for Speed)
 - Airplanes (Flights Simulator)

- More information on serious games
 - http://www.seriousgames.org/
 - http://www.gamasutra.com
Physics simulation

- Scaling collision detection
 - Per-polygon collision detection
 - Polygons increasing rapidly
 - CPU becoming a severe bottleneck
 - Inverse Kinematics (tackling in Madden ’06)
 - Large particle systems (rain, fire, etc.)

- Custom physics
 - Vehicles (cars, planes)
 - Weapons (recoil, ricochets, shrapnel spray)
 - Fluids (water, wind)
 - Activities (parachuting, sailing, snowboarding)
 - SIGGRAPH virtual canoe with algorithm-driven fluid resistance oar
Audio

- High-fidelity, 3D audio
 - Environmental effects on sound propagation
 - Doppler effects (bullet localization in Dolby 5.1)
 - Reverberation and echo effects
 - Non-repetitive procedural sounds (footstep sounds of FPS games)
 - Per-player VoIP mixing based on virtual player positions

- Creative X-Fi (Extreme Fidelity)
 - 51 million transistors, 10,000 MIPS
Graphics

- Next-generation graphics
 - Consoles leading the way
 - 3 year window ahead of PC platforms
- Key feature: Highly programmable shaders
 - Dominates current generation of graphics hardware
 - Examples: UE3, Xbox 360, PS3
 - Dependent texture mapping (procedural generation of textures)
 - Realistic fluids, cloth, sweat
 - UE3’s water demo
 - Per-pixel processing (“per-frame” Photoshop)
 - Soft shadows
 - Depth of field
Graphics

- Highly programmable shaders
 - Dependent texture mapping
 - Realistic fur and grass
 - Concentric layers with programmable textures based on motion
 - Alpha-blending (transparency effects)
 - Per-pixel color-texture combination
 - Specific pixel effects “per-frame PhotoShop”
 - Z-buffering (depth of field)
 - Per-pixel blurring based on focus of player
 - Stencil-buffering (soft shadows)
 - Blooming and starring effects
 - Light bending around objects
 - Tone mapping
 - Blinding effects based on eye adjustment time
 - Anti-aliasing
 - Radiosity
 - Simulating reflected light
 - Motion blurring
Graphics

- Highly programmable shaders
 - Requires massive memory bandwidth and close CPU/GPU coupling
 - GPU is main memory controller of Xbox 360
 - Up to 100 instructions per pixel in shader (versus 1)!
 - Accesses across 5-10 textures per pixel (versus 1)
 - Memory bandwidth from CPU to GPU
 - Xbox 360 = 25 GB/s
 - PCI-E = 4.1 GB/s
 - 8x AGP = 2.1 GB/s
 - Internal GPU memory bandwidth
 - PS3 and Xbox 360 = ~256 GB/s
 - Xbox 360 = 10MB of EDRAM for per-pixel processing
Highly programmable shaders

Unified shader architecture of Xbox 360

- Observation
 - Resource consumption of different stages changes with scene
 - Dynamic ALU allocation between vertex/shader operations
 - Similar to Intel IXP µ-engines
 - 3 banks of 16 shaders
 - Each shader with 4 ALUs
 - 64 hardware threads
Graphics

- Increasing polygon counts
 - UE1 (200 polygons)
 - UE2 (2000 polygons)
 - UE3
 - 4,000,000 polygons (Pre-rendered, cut-scenes)
 - 7000 polygons (real-time)
- Avenues of improvement
 - Parallel rendering on clusters
 - Chromium (Stanford)
 - Out-of-core rendering
 - Large maps and worlds
 - UE3 streaming from disk
Future directions

- Hardware acceleration
 - Identify common functions, put in specialized hardware
 - Ageia PhysX physics acceleration chip
 - Hardware acceleration for physics and collision detection
 - 120 million transistors
 - Go from 200 simultaneous objects to 32000
 - Supported in UE3
 - Falling rocks demo
 - Rumored hardware support in PCs (Dell?)
 - A threat to Intel?
 - Havok
 - GPU-based physics acceleration
Future directions

- **Physiological simulation**
 - **Face simulation**
 - Simulate facial motion based on audio phenomes
 - Examples
 - FaceFX face animation (UE3)
 - Di-o-matic LipSync and Facial Studio (http://www.di-o-matic.com)
 - **Muscle simulation**
 - Simulate human muscular and nervous system to synthesize animations
 - NaturalMotion Ltd.’s endorphin (http://www.naturalmotion.com)

- **Evolutionary simulation**
- **Other simulations?**
Outline

- From client to server
 - Humans as input devices
 - Procedural content
 - Simulation
 - AI in breadth
 - Cheat detection and prevention
 - Scaling users and worlds
AI in breadth

- George Lucas at SIGGRAPH 2005
 - “The next breakthrough in games will be artificial intelligence and voice recognition”
- AI providing more separation in games vs. graphics and art
 - 7-fold increase in CPU time devoted to AI since 1997
 - Killzone (PS2) devotes 12% of CPU to AI
 - NPCs no longer need to “cheat”
AI in breadth

- State of AI in games
 - Dominant at static, turn-based games with strict rules of movement
 - Example: Chess and Deep Blue
 - AI developers have difficulty with
 - Games with heavy independent thought and action
 - Dynamic, open-ended games with emergent behavior (Counter-Strike)
 - Games that require diverse virtual characters, allies, and opponents
 - Need better breadth!
Path-finding

- Age-old AI problem still consuming most of CPU
 - Find shortest, safest, most tactically advantageous path
 - Consumes 40% of CPU for bots on FPS games
 - Map complexity
 - Updates every 50ms
- Path-finding in WoW
 - Too difficult
 - Too many creatures
 - Mobs go directly to points in world
- SDKs for pathfinding
 - PathEngine
Minimally scripted AI

- Riots in State of Emergency
- Soldiers in Metal Gear Solid
- Police tactics in GTA3
- Platoons in Far Cry
Minimally scripted AI

The Sims

- Free-will button allows characters to take care of themselves indefinitely based on goals
Role-specific intelligence

- Better NPC allies
 - Automating WoW?
 - Fix class imbalance
 - Everyone wants to play the hero
 - No one wants to heal the hero
 - Coordination and protection in Halo
- Better NPC enemies
 - Provide diverse opponents
 - Munch’s Oddysee: Monster-specific intelligence
 - AI based on skills, experience, equipment, race, etc.
 - Understanding and adapting to players
 - Play at the level of the person paying you money
 - Play to keep customer happy
Personality training and acquisition

- Pavlov dog training on a grand scale
 - Psychological simulation
 - Mimicry and penalty-reward training
 - Nintendogs
 - Black & White Titans (pets)
 - Continuous training to train titan (pet)
 - Glutton, killer, care-taker, athlete, etc.
 - Non-programmed behavior
 - Eating its own arm when starving
 - “My ape couldn’t find someone to heal. He got pretty upset. So he threw a guy against a mountain. Then he healed him”
Game Master replacement

- Humans that keep game running at a huge cost
 - Detect and ban cheaters
 - Observe and ban griefers
 - Free players who are stuck
 - Provide technical support

- Game Master automation
 - Currently primitive
 - HLGuard for cheaters
 - Swear filter for griefers
 - The Sims On-line
 - AMX plug-in (In action at cs.mshmro.com)
Future directions

- Hardware acceleration
 - AI seek AIS-1 “AI chip”
 - Path-finding and terrain analysis
 - Squad formation and movement
 - Is there an AI ISA that works across games?
 - Counter-Strike vs. Chess
 - Civilization vs. Nintendogs

- Combining a variety of techniques
Outline

- From client to server
 - Humans as input devices
 - Procedural content
 - Simulation
 - AI in breadth
 - Cheat detection and prevention
 - Scaling users and worlds
Cheat detection and prevention

- Cheating impacts bottom-line of any game
 - Wrecks virtual economies
 - Causes legitimate, paying players to quit
 - Creates bad word-of-mouth to discourage new players
- The Achilles heel of the PC gaming platform
 - Must be fixed to compete with consoles
Information exposure cheats

- Server or peer sends complete information to other client
 - Cheat reveals information that should be hidden
- Wallhack
 - Quake 4 – released 10/18/2005
 - Call of Duty 2 – released 10/25/2005 (Server boycott due to cheats)
Information exposure cheats

- Maphack (reveal map and enemy units)
 - Warcraft3 without Maphack
Information exposure cheats

- Maphack (reveal map and enemy units)
 - Warcraft3 with Maphack
Information exposure cheats

- Counter-measures (MIPS to the rescue!)
 - Remote rendering
 - Games symmetrically designed currently
 - Both sides run exact simulation
 - Client gets all data about world
 - Bad for preventing cheating
 - Sending the deck in on-line poker
 - Server rendering
 - Fixes information exposure problem
 - Can aid mobile game playing as well
 - Client no longer has to be powerful enough to run full engine
 - Example: PS3 to PSP
 - Problems
 - Not scalable, only simple games
 - Latency issues
Information exposure cheats

- Counter-measures (MIPS to the rescue!)
 - Data culling
 - Cull data based on player’s location and field of view
 - Example: Cheating-Death for Half-Life (client only)
 - Does not work for P2P games
 - No authoritative server to perform culling (Starcraft)?
 - No trusted third-party (i.e. non-player)
Information exposure cheats

- Counter-measures (MIPS to the rescue!)
 - Data culling with bit-commitment
 - Distributed game simulation (can’t trust each other)
 - Data culling combined with cryptographic move and game state signing followed by post-game verification
 - Shameless plug #1: see our work in NOSSDAV 2005! 😊
 - http://www.thefengs.com/wuchang/work/cstrike
Automation cheats

- Automate game activities via Bots
- Aimbots
 - Automate aiming in FPS
- Macros and game bot farming
 - Automate wealth acquisition via programs
Bots and farming cheats

- Counter-measures (MIPS to the rescue!)
 - Continuous player performance monitoring
 - Example: HLGuard
 - Machine learning of reasonable human reaction time
 - Ban those who react too fast
 - Prone to false positives
 - Cal-I (Cyberathlete league) players
 - Reverse turing tests
 - Captchas
 - Solve a hard problem in pattern recognition to cheat
 - Personal favorite: secure mice/keyboards
 - Hardware signing its movement and clicks
 - Solve a hard problem in robotics and image processing to cheat!
Bug exploitation

- Exploit inconsistencies and errors in game code
- Item duping
 - Disconnect while dropping item
 - Ambiguity in whether event happened globally
- Other game glitches and errors
 - Magic “pizza” machine in The Sims On-line
 - Vending machine and pawn shop hack in Lucasfilm’s Habitat
- Counter-measures (MIPS to the rescue!)
 - Formal verification
 - NetGames 2004
 - Wealth heuristics
 - Analyze “Gross Game Product” continuously
 - Check per-player anomalies (i.e. use credit card fraud detection algorithms)
 - Personal favorite
 - Monitor currency devaluation on Ebay (Eve On-line, EverQuest)
Future directions

- Generic solutions
 - Use of cryptographic mechanisms
 - Authenticity, attestation, non-repudiation
 - Machine learning, clustering, anomaly detection
 - Security folks: sound familiar?
 - Learn normal behavior, flag abnormal
 - HLGuard for reaction-time (see Bots and Farming cheats)
 - Wealth acquisition for MMORPG (see Bug Exploitation)
- Scanners
 - Continuously scan memory for foreign libraries and cheats
 - Steam and VAC, PunkBuster
 - Heuristics not perfect: Steam and modified OpenGL drivers
Future directions

- **Generic solutions**
 - Trusted computing (LaGrande, TPM)
 - Software integrity
 - Ensure no other foreign library is loaded
 - Curtained memory
 - Peripherals
 - Keyboard, mice
 - Secure remote screenshots
 - PunkBuster
 - Sign geometry info or raster output
 - Trusted network output
 - Cryptographic timestamping/ordering
 - Prevent look-ahead cheats
 - Issues
 - Customization vs. Trusted Computing
 - Mods and macros are successful parts of games
 - Counter-Strike, Neverwinter Nights, and Second Life
Outline

- From client to server
 - Humans as input devices
 - Procedural content
 - Simulation
 - AI in breadth
 - Cheat detection and prevention
 - Scaling users and worlds
Scaling users

- Goal
 - A single virtual world with everyone in it

- Current games
 - Entire game application replicated into separate instances
 - Socket, thread, memory limitations
 - FPS
 - Single server with 32-64 players
 - Run 20,000 – 50,000 independent servers to support large numbers of users
 - MMORPG
 - Single server and DB with 5,000-10,000 players
 - Run hundreds of independent instances to support large numbers of users
Fixing FPS

- Parallel and clustered FPS server implementations
 - Parallel Quake II (Glenn Deen, OptimalGrid, IBM Research)
 - Clustered implementation with 70ms transition between nodes
Fixing MMORPG

- Next generation game engines and scripting environments
 - Massive per-entity multithreading (> 20,000)
 - Event-driven programming too difficult
 - Efficient threading, scheduling, synchronization
 - Transparent thread migration between processors
 - Serialization and migration of entity objects
 - Flexible scripting languages
 - Interpreted languages for rapid prototyping and debugging
 - Lua (WoW)
 - UnrealScript (Lineage II, Unreal games, America’s Army, Deus Ex)
 - Python (Civilization, Eve On-line, Kaneva engine, BigWorld)
 - Torque (Torque game engine)
Fixing MMORPG

- Solutions
 - Unreal Engine 3 with UnrealScript
 - Next-generation scripting with Stackless Python
 http://www.stackless.com/
 - Cooperative user-level multithreading (minimize synchronization)
 - “Tasklets” and “microthreads” (think user-level threads and co-routines)
 - Heap-based stacks (vs. 1MB per pthread for OS threads)
 - Massive threads with slight heap overhead
 - O(1) RR scheduler (minimize scheduling)
 - “Pickling” (think Java serialization) to swap to disk and to migrate to other processors
 - Examples:
 - Eve On-line http://www.eve-online.com/
 - BigWorld game engine http://www.bigworldtech.com/
 - Butterfly.net
Scaling users

- Databases for MMORPG games
 - DB performance a limiting factor
 - Most use relational DB backends
 - May not need flexibility of relational model
 - Application-specific or hierarchical databases
 - Restrict queries and data representations in exchange for speed
 - Hierarchical DBs
 - No longer taught in database classes
 - Used in credit card transaction processing (IMS)
 - Large MMORPGs need transaction rates akin to credit cards
Scaling worlds

- **Large, deformable, persistent worlds**
 - Currently, server and client share identical maps, textures, & models
 - Small and static
 - Want worlds that are large (do not have to fit entirely in memory)
 - Streaming large maps on-demand (UE3)
 - Does one need to deliver worlds on CD or download them entirely beforehand?
 - Want deformable worlds with persistent and shared effects
 - Persistent "worlds" not just "characters“
 - Terrain that reflects results of the day’s battles
 - Digging a hole and covering it up with grass
 - Enabled via remote rendering, out-of-core rendering?
 - Second Life and a new PSU course
 - www.secondlife.com
 - PSU CS 199: Introduction to Video Game Development (Winter 2007)
Scaling users and worlds

- Hosting infrastructure for large workloads
 - Enabling games on grids
 - IBM on-demand services for games, Butterfly.net
 - Dynamically allocate resources based on predicted load
 - Reduce risk in hardware purchasing at game launch
 - Shameless plug #2: See our game workload studies at IMC 2005
 - http://www.thefengs.com/wuchang/work/cstrike
Outline

- From client to server
 - Humans as input devices
 - Procedural content
 - Simulation
 - AI in breadth
 - Cheat detection and prevention
 - Scaling users and worlds

- Wrapping up
 - Other areas
 - The future
Other areas

- Development engines CPU hungry
 - Engines merging with most games 3D (FPS, RPG, RTS)
 - Unreal Engine 3 (Deus Ex, Lineage II, Splinter Cell, Unreal II, AA, etc.)
 - Modeling, rendering, animation on large clusters

- User content
 - Remote execution of code written by players in VMs (Second Life)
 - Ensuring safety and preventing cheating
 - Virtual machines (Vanderpool?)
 - Language-level mechanisms
 - Code inspection, analysis, and verification
 - Execution monitoring

- OS and networking issues
 - Large number of sockets and threads
 - Large bursts of small packets
 - Efficient handling of one-to-many broadcasts (NOSSDAV 2005)
Other areas

- **Game services**
 - Geographic and multi-player server selection
 - Reputation and ranking systems
 - Game broadcasts and game replay sharing

- **Multi-modal output**
 - Force-feedback control
 - Electric shock? (Manipulate balance through ear)
 - Sensory surround experience
 - Philips amBX system http://ambx.com
 - Control ambient light, sound, heat, and airflow during gameplay
Outline

- From client to server
 - Humans as input devices
 - Procedural content
 - Simulation
 - AI in breadth
 - Cheat detection and prevention
 - Scaling users and worlds

- Wrapping up
 - Other areas
 - The future
Crystal ball

- The killer application for multi-core CPUs
 - Both at the client and server
 - All three consoles multi-core
 - PC platform becoming multi-core
 - Most functions in talk are independent
 - Rapidly growing CPU budget allows for interesting new combinations
 - But which is the most appropriate “core” for future games?
 - x86
 - Cell
 - GPU shaders
 - PhysX ALUs
- Roadblocks
 - Most game engines are single-threaded
 - Most developers are not trained to write parallel code
Acknowledgements

- Sponsors
 - Intel Research Council award
 - IBM Faculty Partnership award
- The Game Group at Portland State University
 - Faculty
 - Nirupama Bulusu, Bryant York, Wu-chi Feng, Melanie Mitchell
 - Students
 - Chris Chambers
 - Jim Snow, Francis Chang, Ed Kaiser
- ACM NetGames and mshmro.com communities
Final note

- You can upgrade the CPU in the computer, but not the one in the person.

Questions?
Caveats about talk

- If you’re looking for deep CS research, move along
- Breadth not depth
 - Gaming landscape is massive
 - Talk is not
Doom (1993)

Doom 3 (2004)
Caveats about talk

- MIPS numbers hard to come by
 - Not really publicized by makers
 - Talk is qualitative not quantitative
Real Tournament

- Physical location and direction as input
 - Virtual game world displayed on attached iPaq
 - Remote simulation
 - Position and direction of gun determine where shot goes
Current consoles

- PS2, Xbox, Gamecube
 - ~5-10 GFLOPS
- PS3, Xbox 360
 - ~1-2 TFLOPS
Supporting “Emergence”

- Process of complex pattern formation from simpler rules
- Create larger behaviors by simulating many smaller interactions
 - Unscripted interactions
 - Varying game play under same set of rules
 - Large number of outcomes and end-states
- Keeps game interesting and new for players
 - Examples: SimCity, Civilization, Black & White, Spore
Bots and farming attacks

- Automating game activities
 - Real-world farming
 - Use workers in third-world countries to generate wealth
 - Counter-measures
 - Machine learning of language and behavior
 - Lawyers
 - http://www.gameguidesonline.com/guides/articles/ggoarticleoctober05_01.asp
Other cheats

- Collusion
 - On-line poker, bridge
 - StarCraft ladders
- Look-ahead (timing) cheat
 - Strategy games
- Speed-hack
 - Half-Life
- Disconnect cheat
 - Madden on-line
- Denial-of-service
 - Time-sensitive P2P games with remote score tracker
 - Go, Chess
- Performance enhancing drugs
Detailed sims

- Teams
 - Sports management
 - Tournament Dreams
 http://www.400softwarestudios.com/tdcb
Generate lighting

- Simulate lighting effects dynamically
 - Lighting to reflect time of day and available light sources
 - Global illumination simulation (photon mapping)
 - Photon maps calculated at server based on virtual world
 - Allow server to control time of day on map
 - Allow player “flashlights”, shooting lights out, opening doors, etc.
 - See Henrik Jensen’s animations at http://graphics.ucsd.edu/~henrik
 - More later in talk…
A word about games in curricula

- Now is the right time to teach Math and CS through games
- Why?
 - Plummeting enrollments in Computer Science
 - Many students turned off by the way CS is being taught
 - Games keep students engaged!
 - Advanced tools allow CS to be taught “top-down”
 - Currently, CS taught “bottom-up”
 - Game engines allow non-CS majors to build a game easily
 - Build a modern game first, then teach underpinnings
A word about games in curricula

Examples at Portland State University
- Algorithms, data structures and math via games
 - PSU CS 442: Combinatorial Games
- Artificial intelligence via games
 - PSU CS 410: Interactive Games and Cognition
- Systems programming via games
 - PSU CS 200: Computer Systems Programming
- The “top down” approach
 - PSU CS 199: Introduction to Video Game Development (Winter 2007)
 - Freshman non-major course
 - Second Life www.secondlife.com
 - Leverage built-in physics, graphics, scripting engines
 - Build on top of engine
 - Art, audio, video tools for content generation
 - Introduction to programming