
Strike/Counter-Strike:
Reverse Engineering Shiva

Chris Eagle

Naval Postgraduate School



Outline

• Introduction
• Runtime encryption tools

• Shiva review

• Reversing Shiva

• Summary



Introduction

• Executable encryption/obfuscation
– Post compilation manipulation of an

executable to prevent/slow reverse
engineering efforts



Introduction (II)

• Typical approach
– Encrypt/compress executable

– Bind it with an unwrapper front end

– Unwrapper provides minimal compliance
with executable format standards



Introduction (III)

• Execution
– Unwrapper extracts (in some way) the

original binary

– Unwrapper transfers control to the entry
point of the original binary

– Unwrapper is effectively jettisoned



Outline

• Introduction

• Runtime encryption tools
• Shiva review

• Reversing Shiva

• Summary



Tools Overview

• Windows PE manipulators
– UPX, ASPack, tElock

– Scramble UPX

• Linux ELF manipulators
– UPX, Burneye

– Shiva



Outline

• Introduction

• Runtime encryption tools

• Shiva review
• Reversing Shiva

• Summary



Shiva

• Developed by Neel Mehta and Shaun
Clowes

• Introduced at CanSecWest 2003

• Discussed again at Black Hat USA 2003

• Released as a Shiva protected binary
only



Shiva Goals*

• Introduce some novel new techniques

• Advance the state of the art for runtime
encryption of Unix executables

• Promote interest in reverse engineering
on Unix platforms

* Mehta - Black Hat USA 2003



Shiva Protective Measures

• Outer encryption layer
– Defeats “strings” cripples

– Slows access to the protected code

• TRAP flag detection
– Defeat single-stepping

• “checkme” data check



Shiva Protections (II)

• ptrace defense
– Exits if ptrace is active

– Clones itself and the two processes ptrace
each other
• Prevents PTRACE_ATTACH

• A process can only be ptraced by one other
process

• Dubbed “inter-ptrace” by Mehta



Shiva Protections (III)

• Timing checks

• Optional AES, password protected
middle encryption layer
– Protected binaries won’t run unless correct

password is supplied

• Inner encryption layer
– Provides runtime protection



Shiva Protections (IV)

• /proc defenses
– Only portions of the binary are decrypted at

any given time
• Demand mapped blocks

– Can’t dump fully decrypted image via /proc
file system



Shiva Protections (V)

• INT 3 instruction replacement
– Some instructions are replace with INT 3

• Software breakpoint

– The instruction’s operands are stored

– When encountered, Shiva emulates the
instruction

– Even if you capture a decrypted code block,
some instructions may be missing!



Outline

• Introduction

• Runtime encryption tools

• Shiva review

• Reversing Shiva

• Summary



Reversing Shiva

• This talk focuses on static analysis
techniques

• You just can’t hide from static analysis

• But we need to make it faster/easier

• Won’t discuss password protected
binaries
– Cryptographic attacks rather than R.E.



Static Analysis

• Given the defenses present in Shiva,
this seems like a good (only?) approach

• IDA Pro Rocks!

• But, Shiva tries to make disassembly
tough
– Jumping into the middle of instructions

– Polymorphic code generation





Minor Annoyance

• In IDA, just undefine the false target and
redefine code at the proper places
– We can make it almost painless as we

shall see

• Much more tedious with gdb



What Can We Achieve

• Static analysis will only give us a
glimpse into the unwrapping algorithm

• It won’t execute it for us
– Do it in our head for fun!

• IDA scripting offers some capability

• IDA plugins offer MUCH more



Getting Past Layer 1

• Unlike UPX, Shiva offers no option to
undo itself

• Ideally, let Shiva run itself through the
outer decryption routine
– gdb, b *0x0A048068, r, generate-core-file

– A048068 is currently the address of the
first function called following decryption



But I Want to Live in IDA!

• We can load the core dump into IDA
and analyze
– Without some help, which function is the

entry point?

• Analyzing the layer 1 decryption
provides better understanding



Scripted Decryption

• If the algorithm is well-defined we can
write an IDA script to mimic it
– Decrypt and patch the binary within IDA

– Done for UPX

– Succeeds where UPX fails when Scramble
has been applied

• Shiva isn’t so nice



What I Wanted

• As close to automated script generation
as possible

• IDA has great annotation and navigation
features

• BUT it won’t run code

• Tired of running it in my head



What I Built

• Virtual x86 plugin for IDA

• Utilizes IDA database for virtual address
space

• Provides it’s own stack

• Allows you to step through x86 code
within IDA

• No need for scripts, just run it!



Demo



Some Benefits

• No need to generate scripts for
unpackers/decryptors
– Just run the code

• Almost a debugger
– No library descent

• Step through any x86 code
– Not tied to a specific OS



Back To Shiva

• Layer 1 details
– Simple XOR and ADD loops over three

data blocks
• Block 1 - Shiva runtime support

• Block 2 - .rodata for Shiva runtime

• Block 3 - .data for Shiva runtime

– Block 3 contains the encrypted user binary



Shiva Protected File Layout

Block 1
(shiva runtime)

Block 2

Block 3
(crypt blocks)

start

0A048000

0A04B0C0

0A04B8C0

0A04CA20

0A048068



Shiva Runtime

• Following layer 1 decryption control
transfers to the Shiva runtime controller

• Performs anti-R.E. checks

• Allocates a heap

• Clones monitor process

• Decrypts static crypt blocks
– User application .data among others



Layer 3 Encryption

• Remember:
– layer 2 was optional password protected

AES

• Utilizes Tiny Encryption Algorithm (TEA)
– 128 bit keys

– Keys obfuscated within binary



Crypt Blocks

• Shiva breaks a binary up into blocks

• Primarily along the lines of code vs data
– Data blocks align roughly on natural data

boundaries
• I’ll call these Type II blocks

• Decrypted into place immediately, remain for
life of program



Crypt Blocks (II)

• Code blocks partitioned to about 1k in
size
– I’ll call these Type III blocks

– May split in the middle of functions

– This is why they need to do instruction
length decoding (see Mehta’s presentation)

– Demand paged



Demand Paging

• Shiva keeps unused memory filled with
0xCC
– 0xCC = INT 3

– Jump to empty location or run off end of
block generates trap

• In response Shiva decrypts and maps
the required page



Memory Image

• Shiva maintains a page table for Type
III crypt blocks
– Table size is 1/3 the number of Type III

blocks (min size is 10)

– For sufficiently large programs no more
than 1/3 of the program will be decrypted
at any given time

– Random page replacement once table fills



Other Crypt Blocks

• Type 0 and Type I blocks
– describe the program’s memory layout

• Abstracted ELF header information

– A program has 1 of each of these

• Type IV crypt block
– Master index of on-demand crypt blocks
– Only one Type IV block as well
– Decrypted to the heap at startup



Crypt Block Key Recovery

• Each type of crypt block gets its own
key
– Blocks of same type share the same key

• In this case we need to recover 5 keys
in order to decrypt all of the types of
blocks



Key Obfuscation

• Shiva contains a key reconstruction
function for each type of crypt block

• Block decryption
– Identify block type (0-IV)
– Call appropriate key reconstruction

function
– Decrypt block
– Clear the key



Key Construction

• Functions are obfuscated
– Similar to layer 1 decrypt

– Differ from one binary to the next

– Resistant to script based recovery

• But
– They are easy to locate



Key Extraction

• Hand trace the functions

• Use the plugin to run the functions and
collect the keys!

• Demo



Using the Keys

• With 5 keys in hand it is possible to
decrypt all of the crypt blocks

• Each block is identified by a magic
number that provides it’s type (0-IV)

• All blocks are contiguous

• Drop the keys in an IDA script and run it



IDA Decrypt Script

• Implements TEA

• Patches original bytes in IDA database

• Unfortunately the IDC language has
lousy array support
– Script is ugly



Last Line of Defense

• Some instructions replaced with INT 3
traps (software breakpoint)

• When encountered, Shiva emulates
them using the ptrace interface

• An emulation record entry is maintained
for each such instruction



Last Line of Defense (II)

• We must repair decrypted blocks by
restoring these instructions

• Walk the emulation record list to patch
over Shiva inserted INT 3 instructions

• Currently emulates
– PUSH (3 flavors)
– JMP (2 flavors)
– CALL



Block 3 Structure
Shiva runtime variables
Crypt block key material

Key extraction function offsets/code

INT 3 patch and emulated instruction data

Type 0-4 crypt blocks



Binary Recovery

• Ultimate goal is to recover the original
binary

• Decrypted blocks contain
– Memory layout information (Elf32_Phdr)

– Code

– Data



Binary Recovery (II)

• Emulation record list contains enough
information to repair all code blocks

• Once repaired, ELF headers and
segments can be generated to construct
an unwrapped binary



Binary Recovery (III)

• Automated process once the data is
pulled out of IDA
– Automatically patch the INT 3s

– Automatically generate ELF headers

– Automatically paste (de)crypt blocks into
segments

• Then you get to reverse the recovered
binary!



Full Auto Mode

• Not everyone owns a copy of IDA

• stripshiva
– Command line tool to remove Shiva

protection

– Contains an x86 emulator

– Performs all of the steps previously
outlined to yield an unprotected binary

– On your CD



garbage

garbage

stripshiva

Block 1

Block 2

Block 3

start

stripshiva

X86 Emulator

Block 3

e_entryKey
data

x.shiva

x.shiva.elf



Active Analysis?

• /proc fs snapshots over time
– At best a third of the binary at a time

– How to stimulate all control paths?
• Some blocks never paged in

– Still need to capture emulated instruction
data

– Can't read /proc/<pid>/mem unless you
PTRACE_ATTACH!



Kernel Module Approach

• Load module

• Walk process list
– Look for Shiva characteristics

• 0x0A048000, checkme

• Dump data segment to file

• Use stripshiva to recover binary from
dump file



Kernel Module Approach (II)

• Advantages
– Bypasses /proc defenses

– Only way (without brute forcing) to recover
password protected binaries

• Limitations
– Must keep process alive long enough to

insert lkm



Outline

• Introduction

• Runtime encryption tools

• Shiva review

• Reversing Shiva

• Summary



Other

• Performance Impact of Shiva
– Paging/decryption overhead

– ptrace/emulated instruction overhead



Summary

• Recovery of Shiva protected binary is
possible

• Can be done with static analysis tools
only

• You may hate Windows, but you've got
to love IDA Pro!



Questions?

• Thanks for coming

• Contact info:
– Chris Eagle

–



References

• Armouring the ELF: Binary encryption on the UNIX
platform, grugq & scut,
http://www.phrack.org/phrack/58/p58-0x05

• Shiva: Advances in ELF Runtime Binary Encryption,
Clowes & Mehta, Black Hat USA 2003,
http://www.blackhat.com/presentations/bh-usa-03/bh-us-
03-mehta/bh-us-03-mehta.pdf



References

• Shiva-0.96, Clowes & Mehta,
http://www.blackhat.com/presentations/bh-usa-03/bh-us-
03-mehta/bh-us-03-shiva-0.96.tar

• Burneye-1.0.1, scut, http://teso.scene.at/releases/burneye-
1.0.1-src.tar.bz2

• IDA Pro, Data Rescue,
http://www.datarescue.com/idabase/


