
A Survey of Reverse Engineering Tools for the
32-Bit Microsoft Windows Environment

RAYMOND J. CANZANESE, JR., MATTHEW OYER, SPIROS MANCORIDIS, and

MOSHE KAM

College of Engineering

Drexel University, Philadelphia, PA, USA

Reverse engineering is defined by Chikosfky and Cross as the process of analyzing a subject system
to identify the system’s components and their relationships, and to create representations of the
system in another form or at a higher level of abstraction. The process of reverse engineering
is accomplished using specific tools that, for the 32-bit Microsoft Windows environment, are
categorized as hex editors, disassemblers/debuggers, decompilers, or related technologies such as
code obfuscators, unpackers, and PE editors. An evaluation of each tool is provided that identifies
its domain of applicability and usability.

Categories and Subject Descriptors: A.1 [General]: Introductory and Survey; D.2.5 [Software
Engineering]: Testing and Debugging

General Terms: Security, Documentation

Additional Key Words and Phrases: Reverse Engineering, Disassemblers, Debuggers, Decompilers,
Code Obfuscators, PE Editors Unpackers, Hex Editors

1. INTRODUCTION

1.1 The Reverse Engineering Process

Software engineers are sometimes asked to understand the behavior of a program
given that program’s binary executable file. If they have access to the appropriate
reverse engineering tools, they might choose to adhere to the following process.
First, a general disassembler/debugger is used to determine the basic functionality
of the program. If disassembly and debugging shows that the binary code has been
obfuscated, the next step would be to determine whether the obfuscator used is
a common commercial obfuscator or a custom protection scheme. A PE editor
would be used to make this determination. If the obfuscator used was a common
commercial obfuscator, an unpacker could be used to restore the original code. If the
obfuscation has been customized, however, manual unpacking would be necessary.
This is accomplished by tracing the execution of the program in a debugger until the
original code is found. Then, a memory dumper can be used to write the program
to the disk, and a PE editor can be used to restore the PE Headers and make the

This survey was supported in part by the Lockheed Martin Corporation in Moorestown, NJ, USA.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–0??.

2 ·
program executable again.

Once the obfuscation has been cracked, or if there was no obfuscation used, the
process continues with a disassembler/debugger. Typically, a debugger can be used
to locate code that needs to be changed, such as text strings, message box calls, or
read/write functionality. To alter this code permanently, an opcode patch needs to
be applied in a hex editor. Once the change has been made and applied using a
hex editor, an executable will be created with the new functionality.

In some cases, using a disassembler/debugger may reveal that the code being
examined was written in Delphi, Java, or Visual Basic. In the case of Java, the
next step would be to use a decompiler to examine the code. In the case that the
code is written in Delphi or Visual Basic, which is often made evident from the
headers and the strings, a disassembler that is targeted specifically toward one of
these two languages should be used. These special disassemblers can provide much
more analyses of the code, and a more accurate disassembly. These programs also
provide a convenient interface to alter executable files and save changes to them
onto the disk.

Often, when the end of the aforementioned reverse engineering process is reached,
a software engineer must return to the beginning of the process to evaluate the
outcome of this process and possibly make additional changes. Sometimes, the ef-
fectiveness of these changes is compromised by anti-reverse engineering techniques.
These anti-reverse engineering techniques include debugger detection, which at-
tempts to prevent the use of reverse engineering tools, and checksums, which are
computed values used to check whether changes have been made to the executable
files of programs. Often, multiple iterations of this process are necessary to de-
feat anti-reverse engineering code, eliminate checksum checks, and so on. Figure 1
shows a flow chart of the reverse engineering process.

1.2 Categorization of Reverse Engineering Tools

Since the determination of target functionality of a binary executable is hardly
practical, an arsenal of tools has been developed over the years to assist in data
gathering, extraction, organization, and classification. In this survey, we concen-
trate on tools, which we describe in four categories, for the Microsoft Windows
environment.

(1) Hex editors are programs that facilitate the editing of binary files using, typi-
cally, a hexadecimal (base-16) representation of the binary data. Hex editors
are also able to display ASCII and Unicode equivalents of the hexadecimal
format.

(2) Disassembler/Debuggers are programs that support the translation of hexadec-
imal text into assembly language, which, although human readable, is often not
as intuitive as the original source code. This translation is performed by dis-
assemblers. Debuggers can stop a program’s execution at specified locations in
the code to examine the program’s state, thereby assisting in the comprehen-
sion of executing programs. Disassemblers and debuggers are often combined
into a single tool that displays a program in assembly language and allows the
execution of the program to be controlled.

(3) Decompilers attempt to translate an executable program into source code. Usu-

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 3

Fig. 1. The Reverse Engineering Process

ally specific to a particular compiler, decompilers also display assembly lan-
guage code for parts of the program they were unable to decompile.

(4) Related technologies such as code obfuscators, PE editors, memory dumpers,
and unpackers have specific applications in reverse engineering. Code obfus-
cators can operate on either source code or binary code in order to make the
code more difficult to understand. PE editors extract the headers from PE
files and allow them to be edited more efficiently than by using a hex editor.
Memory dumpers allow a debugged program that has been altered in memory
to be saved to disk. Unpackers are designed to overcome commercial protection
techniques.

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 ·
1.3 Portable Executable File Format

In order to understand the content of this paper better, one must be familiar with
the Portable Executable file format. When a software engineer is provided with a
target software system to dissect, he or she is often presented with a program in
binary form. This paper focuses on the reverse engineering of executables designed
to be run on Microsoft Windows NT/2000/XP/2003. To understand the reverse
engineering process and tools better, it is important to be familiar with the basic
structure of a Windows NT/2000/XP/2003 executable. Since the introduction of
Windows 95, Microsoft has relied on the Portable Executable (PE) file format for
executables and dynamic link libraries. The PE format is used for executables in
all 32-bit versions of Windows and is the standard for Visual C++. The PE file
format is designed so that an executable is loaded into memory as one contiguous
block.

It is important to understand that the PE header is not the first item loaded
into memory when a program is executed. A Microsoft DOS portion of the ex-
ecutable runs first to determine if a compatible version of Microsoft Windows is
being used. The DOS header then points to the beginning of the 32-bit program,
the PE Header. The PE Header contains information about how the executable
was compiled, as well as the AddressOfEntryPoint (entry point), BaseOfCode (code
base) and BaseOfData (data base). These items are stored as relative virtual ad-
dresses (RVAs) and point to the first line of code to be executed, the beginning of
the section where the code is located, and the beginning of the section where the
data used by the program is located, respectively. A relative virtual address (RVA)
is the location of a line of code relative to the address of where the program begins
in memory.

In addition to the PE header, each executable has a Section Table, which pro-
vides RVA’s of various sections of the program, including the import table, export
table, and directory table. The import table stores information about the various
functions that the program calls from DLL files. The export table, typically used
only in DLL files, stores information about its own functions that it allows other
programs to access.

For example, message boxes, a common feature of software in the Microsoft
Windows environment, are typically implemented by calling MessageBoxA, located
in KERNEL32.DLL. The RVA of MessageBoxA would be included in the Import Table
of program creating the message box and would be included in the Export Table of
KERNEL32.DLL. DLL files such as this are implemented to allow multiple programs
access to common functions. The Directory Table contains debug information, also
stored as RVAs, including the location of the Import and Export Tables. While
there are many other items included in a PE Header and Section Table, being
familiar with these sections is not vital to understanding the information contained
in this paper. Figure 2 shows a graphical representation of the PE file format.

We conducted a survey of the different categories of reverse engineering tools,
using each tool to reverse engineer various executable programs. Our focus was to
evaluate the functionality of each tool, and its applicability to the reverse engineer-
ing process.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 5

Fig. 2. PE File Format

2. HEX EDITORS

2.1 Basic Hex Editing: HHD Hex Editor

Hex editors allow users to edit binaries such as EXE and DLL files in hexadecimal
form, a process known as opcode patching. Figure 3 shows this functionality. Hex
editing is useful when specific instructions or strings in an executable program file
need to be changed. For example, one may want to change a call for a message box
to NO-OP (no operation) codes. A disassembler/debugger would be used to locate
the call to the message box and the hexadecimal code equivalent of this instruc-
tion. A Microsoft Windows API reference [Microsoft Corporation 2004] is a neces-
sary resource for recognizing these calls and their corresponding arguments. This
reference includes all the functions that are native to the Microsoft Windows envi-
ronment. These functions are exported from native DLL files such as USER32.DLL

and KERNEL32.DLL.

Fig. 3. The Execution of a Hex Editor

Once the corresponding hexadecimal code has been determined, the software
engineer can use the search function of a hex editor to locate the code, and replace
it with 90’s, which is the hexadecimal code for NO-OP. A hex-editor can also be
used to search for the strings displayed in a message box, alter them, and finally
save the changes to an executable file. HHD Hex Editor [Bessonov 2000] contains
all of the features that are necessary to complete these functions. It supports the
viewing and editing of hexadecimal, ASCII (text) and Unicode (extended text)
representations of a binary file, as well as a search feature. HHD Hex Editor also
has a file comparison utility. UltraEdit [Mead 2004], another basic hex editor,

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 ·
features a text editor and programmer’s editor in addition to basic hex editing
capabilities. Several dissasemblers/debuggers, such as OllyDbg can also function
as basic hex editors.

2.2 Advanced Hex Editors: WinHex, Hex Workshop, and Hackman Hex Editor

While the basic features of HHD Hex Editor or Ultra Edit are sufficient to reverse
engineer most executables, sometimes a more powerful hex editor is needed. Some
features common to advanced hex editors are the ability to view and edit logical
and physical drives, view and edit the memory, split and merge files, perform hash
calculations, and perform searches for integers and floating point values.

WinHex [Fleischmann 2004] is unique among the advanced hex editors because it
features the secure deletion of files, disk cloning, and file recovery. Figure 4 shows
WinHex displaying the hexadecimal and ACSII equivalents of a binary program.
The search function is also displayed in the pop-up window in the center, as well
as detailed information about the file and some extracted icons on the left.

Fig. 4. Screenshot of WinHex

While WinHex is ideal for data backup, deletion, and recovery, Hex Work-
shop [BreakPoint Software 2004] can perform various mathematical operations and
display extensive data for selected bytes. Hex Workshop’s capabilities are useful
when working to alter an executable that involves extensive mathematical opera-
tions either as part of its functionality or as part of its protection scheme. It can

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 7

also interpret binaries written for big endian (i.e. PowerPC) or little endian (i.e.
Intel’s x86 architecture) applications. This refers to the byte ordering of multibyte
scalar values: Big endian refers to the convention where the high-order byte of the
number is stored in lowest memory address, while little endian refers to the con-
vention where the the low-order byte of the number is stored in the lowest memory
address [Peikari and Chuvakin 2004].

Table I compares various features of these popular hex editors. It compares the
following features: the license of the software package (License); performing hex
editing directly on the disk (Disk Hex Editing); performing hex editing operations
on the memory (RAM hex editor); recovering lost files on the hard drive (Data
Recovery Tools); comparing two files for differences (File Comparing); opening
logical and physical drives for editing (Disk Utilities); and calculating and modifying
checksums (Hash Calculations).

Table I. Comparison of Major Features of Hex Editors (* – functionality included in a seperately
distributed program)

3. DISASSEMBLERS/DEBUGGERS

A disassembler’s main function is to convert binary code into assembly code. Disas-
semblers also extract strings, used libraries, and imported and exported functions.
Additionally, disassemblers typically provide heuristic analyses of the disassembled
code such as locating loops, calls, and other structures. Debuggers expand the
functionality of disassemblers by supporting the viewing of the stack, the CPU
registers, and the hex dumping of the program as it executes. Debuggers allow
breakpoints to be set and the assembly code to be edited at runtime. The applica-
tions of disassemblers/debuggers include: manually unpacking software, breaking
custom protection schemes, and checking a program for faults. Using a disassem-
bler/debugger can also provide a user with insight into the structure of the program,
a feature that is especially useful when trying to modify or replicate the function-
ality of a program. Disassemblers/debuggers are also useful for finding passwords,
creating key generators, and removing message box nag screens. Figure 5 illustrates
the execution of a disassembler and a debugger.

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 ·

Fig. 5. Execution of a Dissasembler and Debugger

3.1 Current State of Art: OllyDbg and IDA Pro

OllyDbg [Yuschuk 2004] is an application-level debugger. Application-level de-
buggers are programs that are used to debug applications, and do not allow the
debugging of system-level processes. OllyDbg features an interface to facilitate
the simultaneous viewing of the disassembly, hex dump, stack, and CPU registers.
Additionally, OllyDbg features run tracing, conditional breakpoints, PE header
viewing, hex editing, and plug-in support (including memory dumping and hiding
OllyDbg from the the IsDebuggerPresent API call). A shortcoming of OllyDbg is
its inability to trace into SYSENTER commands called by the exception handler.
Rather than trace into these calls, the debugged program continues to execute until
the next exception. Figure 6 is a screenshot of OllyDbg’s interface, including the
disassembly with a breakpoint (top left), registers (top right), hex dump (middle
left), stack (middle right), memory map (bottom left) and run trace (bottom right).

IDA Pro [DataRescue 2004] features a powerful disassembler that presents the
disassembly of a binary executable program file in a color-coded and well-organized
format, but lacks sufficient debugging capabilities. Like OllyDbg, IDA Pro uses
arrows and brackets to the left of the disassembly to indicate jumps and loops.
IDA Pro’s features include hex editing, string extraction, and import and export
viewing. IDA Pro also features a window for viewing all of the functions called
by a program, and provides accurate analyses of the program, summarizing them
in a color-coded bar at the top of the screen, which classifies the various sections
of the program’s code. IDA Pro’s customizable kernel and processor options also
facilitate accurate analyses. Although a debugger is included in one of the menus,
it is a simplistic program that runs slowly and does not offer many of the features
included in other debuggers, such as the ability to step through the code. Figure 7
shows IDA Pro’s interface, including the disassembly and the color-coded analysis
bar at the top of the screen. The titles of the other windows are visible on the tabs
above the disassembly.

Two disassembler/debuggers, which we did not review, are SoftIce [Compuware
Corporation 2004] and TRW [KnlSoft 2002]. These system-level debuggers are able
to debug any code running in Windows, including device drivers and the kernel
itself. TRW is available for Windows 9x while SoftIce runs under Windows 98/NT

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 9

Fig. 6. Screenshot of OllyDbg

and features a remote interface. SoftIce is a commercial software library with
extensive functionality but is also the target of much anti-debugging code. For this
reason, lesser-known debuggers are often more practical to use.

3.2 Other Disassemblers/Debuggers

While OllyDbg and IDA Pro are two of the most fully-featured disassembler/debuggers,
it is still important to have a knowledge of the disassembler/debuggers with less
functionality. Like SoftIce and TRW, IDA Pro and OllyDbg are targeted by anti-
debugging code, and the authors of some protection schemes specifically target the
weaknesses of these debuggers.

Two debuggers feature functionality and interfaces similar to OllyDbg. The most
similar in functionality is the open-source Debuggy [Fuckar 2003]. Its interface,
however, is not user friendly, and its code analyses are minimal. Additionally,
when running the debugger, some features of programs (even ones that are not
being debugged) such as the menus, become inaccessible. W32DASM [URSoftware
1997], last updated in 1997, also has an interface similar to OllyDbg, but has less
functionality than Debuggy. W32DASM lacks the color-coding and analyses that
OllyDbg provides.

BORG [Cronos 2001] is a disassembler without a debugging engine. While BORG
has processor options to increase the accuracy of the disassembly, the program has
not been updated since the introduction of the Intel Pentium II processor. The

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 ·

Fig. 7. Screenshot of IDA Pro

disassembler still features a searchable disassembly, with separate windows to view
the imports, exports, and all of the called functions. It also features a unique
function to decrypt encrypted binaries.

Hackman Disassembler and Hackman Debugger [TechnoLogismiki 2004] are two
separately distributed tools. The disassembler performs very few analyses on the
code and has an interface that is virtually identical to BORG’s, but its processor
options are more up to date. Hackman Debugger’s debugging capabilities are lim-
ited to setting breakpoints on predetermined events, such as the loading/unloading
of DLL files or the exit process calls. Hackman Debugger can also display the DOS
Header, PE Header, and dependencies in a collapsible tree format. It also features
an interface to view the imports and exports of a binary executable program file.

3.3 Programming Language-Specific Debuggers

Some disassembler/debuggers target executables compiled from a specific program-
ming language. These disassembler/debuggers provide much more accurate anal-
yses and make editing an executable program file easier. DeDe [DaFixer 2002] is
a disassembler targeted specifically toward Delphi programs. Its tabbed interface
provides information about the classes, units, forms, and procedures of a Delphi
executable. DeDe has a multi-pass analysis engine, which provides for accurate
analyses of an executable program, and can export its findings to project files.
Additionally, DeDe can export its references to W32DASM or SoftIce. DeDe also

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 11

features an OpCode-to-assembly code converter, a memory dumper, and an RVA
(Relative Virtual Address) converter.

VBReFormer [Bruyere 2003] is specifically targeted toward executables compiled
in Microsoft Visual Basic 5 and 6. It supports the disassembly of EXE, OCX and
DLL files, and is able to display PE Headers. VBReformer is able to recover VBP,
FRM, CTL, PEG, and SR files, as well as external controls, which it then displays in
a windowed, color-coded environment that supports editing and saving. It also
supports patching disassembled code, and is able to decompile basic code.

Table II compares the following features of some of the most popular disassem-
blers/debuggers: translating a binary into assembly code (Disassembly), specifying
the type of processor being used (Processor Options), controling the execution of a
binary (Debugger), displaying all the text strings contained in an executable (String
Extraction), editing the hexadecimal equivalent of a binary (Hex Editor), viewing
or editing the contents of RAM (Memory Viewer/Editor), writing a program that
has been altered in memory to the disk (Memory viewer/dumper), displaying the
libraries that were called by the executable (Libraries Used) and decrypting certain
encrypted executables (Decryptor).

Table II. Comparison of Major Features of Disassembler/Debuggers

4. DECOMPILERS

Decompilers attempt to generate high-level source code from binary code, and
are targeted toward specific languages and often specific compilers. Decompilers
examine the semantics of the instructions in the machine code generated by a
compiler and attempt to generate source code [Cifuentes 1994b]. The decompiler
generates assembly code for any code that fails to decompile. Figure 8 shows that
a decompiler accepts an executable as byte code or machine code, and generates
source code, which in some cases can be compiled directly back to machine code
or byte code by a compiler, with only slight or no modifications. While most
decompilers do not generate compileable source code, and the pseudo-source code
they generate is often cryptic compared to human-written source code, the code
that they supply is usually easier to understand than assembly code. The code

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 ·
generated by decompilers can be vital in discovering how a program works, or
trying to duplicate a program’s functionality.

Fig. 8. Execution of a Decompiler

4.1 C Decompilers

REC [Backer Street Software 2000] is a multi-platform/multi-format decompiler.
Available for Linux (i386), Windows, and SunOS, REC can decompile 386 68k,
PowerPC and MIPSR3000 programs in Playstation, PE, ELF, COFF, AOUT, and
CMD formats. These features make REC the most diverse decompiler we reviewed.
REC also provides a command-line and HTML interface. While it works in Win-
dows NT/2000/XP/2003, it does not disassemble the 32-bit PE format accurately
unless the target was compiled with debugging information. Generally, the output
code generated by REC from a 32 bit PE file without debug information is not
useful.

Figure 9 shows the execution of REC in the left frame: An executable is passed
to REC and is decompiled to a file with the extension REC. The right frame shows
a part of this REC file. The code interacts directly with the processor’s registers
(ebp, ecx, etc.) and resembles assembly code rather than C source code. This is
illustrative of one of the shortcomings of this, and every C decompiler we reviewed:
The decompilation, even on simple files, was not complete, and assembly code was
included for any code that was not disassembled. In addition, the successfully
decompiled code was often poorly organized code in a cryptic format with alphanu-
meric identifiers. As a result, the use of a disassembler/debugger is preferred as a
primary means of reverse engineering executable programs. Debuggers also have
the advantage of being interactive, while decompilers simply provide static code to
the user.

The two other C decompilers we evaluated, which lack the diversity of REC, are
DCC and DISC. DCC [Cifuentes 1994a] is a C decompiler developed in the early
1990s and is available under the GNU Public License. It was designed to decompile
i386 Microsoft DOS binaries with EXE and COM extensions into C source code.
While DCC dissassembles simple Microsoft DOS binaries, it, like REC, is unable
to decompile executables in the PE format accurately. DisC [Kumar 2003] is a
C decompiler targeted toward binaries compiled by Borland’s TurboC compiler.
It is designed to decompile DOS executables to C source code, which, with only
slight modifications, can be recompiled. It is able to identify library functions by

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 13

Fig. 9. Screenshot of REC(left) and Code Decompiled by REC(Right)

cross-referencing code with standard C library files and user input. The decompiler
also includes a code reorganizer, which helps format the output into a readable
format. DiSC also has a built-in disassembler. While it does not always decompile
to compileable source, the generated code is more accurate than REC or DCC. DisC
fails to recognize strings separately, and does not recognize floating point code.

4.2 Java Decompilers

Since Java files are compiled to Byte Code, which is interpreted by a Virtual Ma-
chine and not compiled to machine code like C programs, Java decompilers can
decompile Java programs to compileable source code with near-perfect accuracy.
As a result, Java decompilers are more widely available than C decompilers, and
are also more useful. When reverse engineering an executable program written in a
language that compiles into machine code (such as C), a reverse engineer relies pri-
marily on a disassembler/debugger, due to the inaccuracy of C decompilers. When
reverse engineering a Java program, however, a decompiler is a reverse engineer’s
primary tool. The major shortcoming of Java decompilers is that they have diffi-
culty decompiling optimized Byte Code. The Java decompilers we surveyed were
based on three core command-line java decompilers.

JAD [Kouznetsov 2001], the first of the three command-line Java decompilers,
is freeware and written in C++. In our tests, JAD was able to decompile our
test code into compileable source code. Known shortcomings of JAD, however,

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 ·
include its inability to decompile compressed ZIP or JAR archives. JAD also fails
to decompile some nested loops, and has difficulty decompiling inline commands
and inner functions. Because JAD is a command-line decompiler, its libraries are
implemented in other front-end GUI applications, such as DJ [Neshkov 2004]. DJ
features built-in compilation, applet viewing, JAR management, and exportation
to HTML. The features of DJ are comparable to most other available Java decom-
pilers based on the JAR decompiler. Figure 10 shows DJ displaying a decompiled
file. Since JAD is also a code-optimizer, the code displayed is optimized, indented
properly, and color-coded. JAD also supports compiling source code back to byte
code.

Fig. 10. Screenshot of DJ

JODE [Hoenicke 2004], the second command-line decompiler we reviewed, is
an open-source decompiler available for use on the developer’s website as an ap-
plet, and is therefore platform-independent. JODE is also a code optimizer, and
the decompiled code is indented properly, but not color-coded. JODE cannot al-
ways determine all of the dependant classes. When this occurs, the decompiled
code is not compileable. JODE, however, is generally more accurate than JAD.
Like JAD, JODE also has various front-ends available, including Back To Java
(BTJ) [CHAROLOIS 2001]. BTJ simply displays the raw classfile and Byte Code
hierarchically, in addition to the decompiled source code.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 15

DAVA [Miecznikowski 2004], the third command-line research decompiler, was
developed by the Sable group at McGill University [Miecznikowski and Hendren
2001]. DAVA has been tested with other Byte Code languages, such as Haskell,
Eiffel, ML, Ada, and Fortran. It performed better on these languages than JAD,
while JODE’s performance was comparable to DAVA’s [VanEmmerik 2004]. DAVA,
however, lacks a front-end such as those available for JODE or JAD. While DAVA
and JODE are more accurate, JAD is the most user-friendly of the Java decompilers
because of the availability of graphical front ends.

Table III compares the following features of the decompilers we evaluated: the
operating systems on which they run (platform), the programming language they
decompile to (language), whether they include a graphical user interface (GUI),
and the filetypes they are capable of decompiling (filetypes).

Table III. Comparison of the Features of Decompilers

5. CODE OBFUSCATORS

Code obfuscation began as an effort to prevent the reverse engineering of software
by making code less readable and more difficult to interpret. Code obfuscation tech-
niques enable software developers to protect their intellectual property from being
viewed by users or by other developers. There are two types of code obfuscation:
source code obfuscation and binary code obfuscation.

5.1 Source Code Obfuscation

When a file containing source code is passed to a source code obfuscator, the ob-
fuscator creates a file containing the obfuscated source code, as seen in Figure 11.
Source code obfuscators remove indentations, comments, and spacing, and rename
variables, constants, and functions. The result appears cryptic, and is difficult to
read. Source code obfuscation is particularly useful when source code must be
provided to a customer for compilation. Obfuscating the source code before com-
piling a program can also make decompilation more difficult. However, source code
obfuscation typically does not complicate disassembly or debugging. Source code
obfuscators are available for a variety of programming languages, such as C++ and
Java.

The Semantic Designs family of Source Code Obfuscators [SemanticDesigns 2004]
provide all of the basic functions of a source code obfuscator in many languages,

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 ·

Fig. 11. Execution of a Source Code Obfuscator

including Ada, JavaScript, C, C++, Java, PHP VBScript, Verilog, and VHDL. In
addition to obfuscation, these utilities help format and organize code to make it
more readable to developers prior to obfuscation. This tool is also able to apply
proper spacing and indentation to obfuscated code. This family of obfuscators
has both a GUI and command line interface. Table IV shows an example of how
obfuscated source code differs from regular source code [SemanticDesigns 2004].
This example was obfuscated with the Semantic Designs Java obfuscator. The top
frame shows original source code as it was written by a programmer. The obfuscated
code is displayed on the bottom. The names of the variables and functions have
been replaced, and the original indentation and spacing have been removed. All
this is done in an effort to make the code less readable.

Table IV. Original Source Code vs. Obfuscated Source Code

While C source code obfuscation is a worthwhile form of software protection,
source code obfuscation has a more important role to play in languages that em-
ploy a virtual machine, such as Java. As we mentioned in the previous section,
decompiling programs from machine code to source code often results in cryptic
pseudo-source code that is intermixed with assembly code. However, when we de-
compiled a Java program, the decompiler often generated compileable source code
that was virtually identical to the original code, complete with indentations and
proper spacing. Thus, with applications written in Virtual Machine-dependant lan-
guages such as Java, source code obfuscation appears to be more important. While
obfuscation does make the decompilation more cryptic, Java decompilers such as
DJ organize the code using indentation and spacing, making the code much more
readable, although the changed names remain in their altered state. Figure 10

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 17

shows the decompilation of a simple Java program decompiled with DJ. The vari-
able names are simply letters and numbers, but the strings are intact and illustrate
the function of the program. This serves as an example of why both variable names
and strings need to be encrypted.

PreEmptive Solutions offers an source code obfuscator targeted specifically to
Java and a .NET source code obfuscator. PreEmptive Solutions’s Java source code
obfuscator, DashO [PreEmptive Solutions 2004], contains all of the features of a ba-
sic obfuscator, including a command line interface and GUI, with added features of
code optimization and packaging. DashO also boasts an advanced renaming engine,
and a string encryption feature, which is also available in Semantics’ obfuscator.

Table V compares the following features of these two families of source code ob-
fuscators: the languages that it can obfuscate (languages), whether it can optimize
source code before compiling it (code optimization), whether it has the added pro-
tection of string encryption (string encryption), whether it includes a graphical user
interface(GUI), and whether it contains a command-line interface (command-line).

Table V. Comparison of Features of Source Code Obfuscators

5.2 Binary Code Obfuscation: Packing and Encrypting

Binary code obfuscators accept a binary executable and a series of user-set parame-
ters, and output a packed and/or encrypted executable, as seen in Figure 12. They
also insert a decryption routine into the executable so that it can be decrypted
and unpacked at run-time. Packing differs from encrypting because it also com-
presses the code, greatly reducing the file size of the executable program. This
feature is important for programs that are to be distributed over the Internet. An
obfuscated binary appears to be an undecipherable series of symbols, and only the
decryption routine (or only a part of it in the case of polymorphic code) is visible
on the disk. After the decryption routine has been executed, the original program
becomes visible in memory. Once in memory, the program can be edited dynam-
ically. However, in order to edit the program statically, an inline patch must be
applied, or the program must be dumped from memory. The memory dumping
process is complicated by anti-memory dumping code, and the fact that the PE
(Portable Executable) headers and Import Address Tables will need to be restored
to their original state. Figure 13 compares the structure of a packed executable as
it appears statically on the disk (left) and as it appears in dynamically in memory

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 ·
(right). Binary code obfuscators that involve encryption and/or packing include
ASProtect, Y0da’s Cryptor, NFO, and Armadillo. [Cerven 2002]

Fig. 12. Execution of a Binary Code Obfuscator

Fig. 13. Static Packed Executable (left) vs. Dynamic Packed Executable(right)

ASProtect [Solodovnikov 2003] is widely used to obfuscate shareware programs or
demos that are distributed through the Internet. ASProtect inserts anti-debugging
code into obfuscated executables, and contains features specific to demonstrations,
including time limits and registration code handling. Figure 14 shows some of the
customizeable features available in the trial version of ASProtect. ASProtect also
uses the Windows Structured Exception Handler to complicate run-tracing and to
execute its anti-debugging code. ASProtect deters run tracing in OllyDbg, because
OllyDbg is unable to trace into SYSENTER commands at the end of the exception
handlers.

ASProtect also uses a technique known as “stolen bytes.” Stolen bytes refers to
an anti-memory dumping technique that involves the deletion of a section of code
immediately after it is executed. In ASProtect, six bytes from the beginning of the
program are executed before the Original Entry Point is reached, and subsequently
deleted. The Original Entry Point (OEP) refers to the line of code where the
program began execution prior to obfuscation. As a result of this deletion, the
program will not run after being dumped unless these bytes are restored.

ASProtect can also check whether the unpacking code is in memory to determine
whether the program has been dumped. ASProtect’s protections, features, and

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 19

customizability define the state-of-the-art of prepackaged packers/encrypters, and
therefore it is one of the most difficult to reverse. Other binary code obfuscators,
such as Y0da’s Crypter, NFO, and Armadillo rival some of ASProtect’s protections.

Fig. 14. Screenshot of ASProtect

Y0da’s Crypter [Danehkar and Bzdok 2004] is a freeware binary obfuscator that
implements CRC checksum calculations to check whether the program has been al-
tered. While not as customizeable as ASProtect, Y0da’s crypter creates executables
that are difficult to reverse and is often used to protect non-commercial software.

Armadillo [Silicon Realms Toolworks 2004] provides basic protections and is not
difficult to reverse. Armadillo has an optional feature that decrypts the program
in parts, decrypting and executing parts of the code, then encrypting them and
moving on to the next piece of code. Consequently, the entire original program is
never present in memory at any point in time. This unique feature makes dumping
an Armadillo-protected executable from memory difficult.

The binary obfuscator NFO [bartĈrackPl 2000] differs from ASProtect, Y0da’s
Crypter, and Armadillo because it does not allow any parameters to be passed to
the packer. As a result, all executables that are packed with NFO are packed in
an identical manner. Therefore, once the protection scheme is broken, writing an
automatic unpacker is simple, and such an unpacker will work on all NFO-packed
executables. NFO serves as an example of why the customizability of a protection
scheme is vital to protecting it against the writing of automatic unpackers.

Table VI compares the following features of these binary obfuscators: The license
of the program, whether it encrypts the executable (Encryption), whether it reduces
the size of an executable (Packing), whether it protects against the use of a debugger
(Anti-debugging techniques), whether it provides security against memory dumping

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 ·
by altering the PE headers and Import Address Table (PE and IAT Mangling) and
whether it contains a GUI.

Table VI. Comparison of Major Features of Binary Obfuscators

6. UNPACKERS

Several tools, commonly known as unpackers, have been developed to combat binary
obfuscation. Unpackers are widely available on the Internet for specific protection
schemes.

6.1 “Universal” Unpackers

Some programmers have attempted to create universal unpackers, which can deter-
mine the binary obfuscator used to pack a program and then unpack the program.
The Generic Unpacker for Windows (GUW) [Gabler 2001], and ProcDump [G-RoM
et al. 2000] are two such programs. Both fail to unpack binaries protected by com-
plex and configurable protection schemes, such as ASProtect. Their functionality
is limited to unpacking simpler protection schemes, such as Armadillo.

Programs such as PeiD [Snaker and Qwerton 2004] are able to identify specifics
such as the version of the binary obfuscation package used to protect a binary.
These programs, however, are designed solely to identify the protection scheme.

6.2 Packer-Specific Unpackers

Once the protection scheme is known, the decision of which unpacker to use be-
comes easier. Universal unpackers work well for simple protection schemes, while
packer-specific unpackers or manual unpacking may be a better approach for more
complex or less common protection schemes. One example of a packer-specific un-
packer is unNFO [Dulek 2000], which can unpack executables obfuscated with NFO
version 1.0. In all tests we conducted unNFO was successful in unpacking NFO 1.0
protected executables. This provides further evidence that binary obfuscators that
offer little customizability do not provide adequate protection.

Generally, packer-specific unpackers have a greater success rate than universal
unpackers, provided that the binary obfuscator used to obfuscate the executable
program can be identified. Complications arise, however, when highly configurable
packers are used. For example, we found that several unpackers targeted specifically
toward ASProtect were unable to unpack any of the ASProtected program we had
in our possession. We attributed the unpacker failures to the highly customizable
nature of the protection scheme.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 21

When automatic unpackers fail, as is often the case when ASProtect or other
customizable obfuscators are used, debuggers can be used to trace a program to its
original entry point, and then memory dumpers, such as those provided in OllyDbg
or ProcDump, can be used to dump the program back onto the hard drive. After
dumping a program from the memory however, the program’s PE header and import
address table will likely be corrupted and will need to be repaired in order for the
dumped code to be executed. Figure 15 shows this basic framework for unpacking
a file.

Fig. 15. Execution of an Unpacker

7. PE EDITORS

PE headers and import address tables (IAT’s) need to be repaired after dumping
a program from memory because the location of each item is stored as a relative
virtual address (RVA). Once the program is dumped and the new entry point is
set, the reference point of these addresses will be different. The addresses of all
the other items will need to be changed to reflect this new reference point. To
further complicate the process, some binary obfuscators encrypt the import table,
alter its size, use emulated addresses, or otherwise mangle the import table. While
hex editors can be used to edit the PE headers, the complexity of the PE headers
makes this a laborious process. PE Editors simplify this process by allowing PE
headers to be edited in an organized, graphical environment. Figure 16 illustrates
the execution of a PE Editor.

Fig. 16. Execution of a PE Editor

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 ·
7.1 General PE Editors

When manual modifications are necessary, PE Editors are useful for displaying and
modifying PE header and import table information. Many PE editors are available,
including ProcDump, LordPE, and PEditor. PEditor [Danehkar 2004] supports the
editing of PE headers, section tables, directory tables, and the imports and exports.
These features are common to most PE Editors. PEditor also includes support for
section splitting and checksum repairing, as well as an automatic rebuilder, which
will attempt to repair and optimize altered PE headers automatically. Figure 17,
a screenshot of PEditor, shows the amount of information a simple PE editor is
capable of displaying. The top left displays the base PE header, the top right shows
the directory table, the bottom left shows the section table, and the bottom right
shows the imports.

Fig. 17. Screenshot of PEditor

Procdump [G-RoM et al. 2000] and LordPE [Bzdok 2002] contain most of the
features of PEditor, but do not support import, export, or resource viewing or
editing. They stand out, however, because of their added features, including a
memory dumper capable of dumping an entire process, or a user-defined section of
a process. LordPE also supports merging split binaries, while ProcDump includes
a “universal” unpacker.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 23

7.2 Tools Specific to Import Address Tables

OllyDump [Gigapede 2004], a memory dumper plug-in for OllyDbg, attempts to
fix the PE header and import table when dumping a program, but fails when the
import table has been altered manually. As a result, additional effort is needed to
restore the import table and make the program executable again, and a basic PE
Editor is often inadequate. Two tools in particular focus on restoring the import
tables, REVirgin [Tsehp 2002] and ImpRec [Mackt 2003]. Both programs attach
to a running process and monitor it as it executes, attempting to discover the
RVA of each imported function, utilizing multiple passes and run tracing. They
also identify any unresolved imports, and support saving the discovered table to a
dumped executable. ImpRec’s functionality is automated, while REVirgin allows
for user intervention when automation fails.

APISpy [Evseenko 1999] is a tool specific to identifying imported functions, and
the locations where they are called. APISpy allows for the viewing of imports
statically, and also allows a program to be executed, so the imports can be traced.
The trace of the program displays the offsets where each of the imported functions
were called. APISpy, however, is not a PE Editor or an IAT editor. It only allows
the viewing of imported functions. APISpy also differs from the other tools we
reviewed in this section because it is the only shareware utility (the others are
freeware).

Table VII compares the following features of PE Editors: The ability to easily
edit PE headers (PE Editor), tools for automatic repair of PE headers (Auto PE
Repair), a function that allows an executable from memory to be saved to the disk
(Memory Dumper), automatic import address table rebuilding (Auto IAT Repair),
import and export table viewing (Import/Export Viewing), tracing the execution
of a binary (Run Tracing), splitting and merging PE headers and files (Header and
File Splitting/Repair), and altering checksums manually (Checksum Altering).

Table VII. Comparison of Major Features of PE Editors

8. CONCLUSIONS AND SHORTCOMINGS OF THE TOOLS

Our survey of reverse engineering tools for the Microsoft Windows environment
comprises four categories: hex editors, disassemblers/debuggers, decompilers, and
related technologies. The related technologies were then further divided into Code

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 ·
obfuscators, PE Editors and Unpackers. We reviewed several popular tools, de-
termined which tools in each category appear best for specific applications, and
presented their main features along with their applicability and usability. As our
survey progressed, we found that some tools had noticeable shortcomings.

8.1 Hex Editors

All the hex editors we reviewed provide users with a method of manipulating the
hexadecimal representation of a file. However, most hex editors appear to be lacking
more advanced features such as RAM hex editing, data recovery, and disk utilities.
The compare feature in some of the more basic hex editors such as HHD Hex Editors
was also rather primitive.

8.2 Disassemblers/Debuggers

While IDA Pro features accurate analyses and disassembly, its debugging capabil-
ities were limited to a simplistic debugger available as a menu option. OllyDbg,
because it features both disassembly and debugging capabilities, is more useful.
OllyDbg, however, has one major shortcoming: its inability to trace into SYSENTER

calls. This command, introduced by the Intel Pentium II processor, was designed
for making fast system calls. It is often invoked by Windows Structured Excep-
tion Handler, and thus employed by many advanced protection schemes. These
protection schemes use the exception handler to execute necessary code, check if
a program is being debugged, and clear the debug registers. When OllyDbg hits
a SYSENTER command, however, it is unable to trace into it, and simply executes
until the next exception. This is a major shortcoming of the debugger, and requires
the user to break at SYSENTER commands, analyze the registers, and then deter-
mine where the target code of the SYSENTER command is, in order to trace into
it. While SoftIce can trace into these commands, it is limited by the abundance
of anti-SoftIce code that is constantly being developed to counter this mainstream
debugger.

8.3 Decompilers

The decompilers we surveyed had numerous shortcomings. We were, however, sat-
isfied with the operation of the Java decompilers, as they were able to decompile
even obfuscated code with great accuracy. For other decompilers, especially the C
decompilers, we found that the ability to decompile code was often limited to pro-
grams compiled for Microsoft DOS. We were also disappointed by the low accuracy
and limited readability of the decompiled code. In most cases, understanding a de-
compiled executable was difficult and only practical for experienced programmers.
We hope that as decompilers evolve, their accuracy will improve and their ability
to produce better human-readable code will materialize.

REFERENCES

Backer Street Software 1997-2000. Reverse engineering compiler(rec).
http://www.backerstreet.com/rec/rec.htm.

bartĈrackPl. 2000. NFO. http://protools.anticrack.de/files/packers/nfo.zip.

Bessonov, A. 2000. HHD Hex Editor. HHD Software. http://www.hhdsoftware.com/ hexedi-
tor.html.

ACM Journal Name, Vol. V, No. N, Month 20YY.

· 25

BreakPoint Software 2004. Hex workshop. http://www.bpsoft.com/.

Bruyere, S. 2003. VBReFormer. http://www.decompiler-vb.tk/.

Bzdok, D. 2002. LordPE. http://y0da.cjb.net/.

Cerven, P. 2002. Crackproof Your Software. No Starch Press.

CHAROLOIS, R. 2001. Back to Java. http://www.backtojava.org.

Cifuentes, C. 1991-1994a. DCC. http://www.itee.uq.edu.au/ cristina/dcc.html.

Cifuentes, C. 1994b. Reverse compilation techniques. Ph.D. thesis, Queensland University of
Technology.

Compuware Corporation 2004. Softice. http://www.compuware.com/.

Cronos. 2001. BORG. http://homepage.ntlworld.com/cronos/.

DaFixer. 1999-2002. DeDe. http://www.balbaro.com/.

Danehkar, A. 2004. PEditor. http://freak2freak.cjb.net/.

Danehkar, A. and Bzdok, D. 2004. Yoda’s Crypter.
http://www.softpedia.com/progDownload/Yodas-Crypter-Download-24.html.

DataRescue. 2004. IDA Pro. http://www.datarescue.com/.

Dulek 2000. unnfo. http://protools.reverse-engineering.net/files/unpackers/unnfo.zip.

Evseenko, V. 1999. APISpy. http://www.matcode.com/apis32.htm.

Fleischmann, S. 1995-2004. WinHex. SF-Soft. http://www.x-ways.net/winhex/index-m.html.

Fuckar, V. 2003. Debuggy. http://web.vip.hr/inga.vip/.

G-RoM, Lorian, and Stone. 1998-2000. ProcDump. http://procdump32.cjb.net/.

Gabler, C. 2001. Generic Unpacker for Windows (GUW).
http://protools.anticrack.de/files/unpackers/guw32.zip.

Gigapede. 2004. OllyDump. http://ollydbg.win32asmcommunity.net/stuph/.

Hoenicke, J. 2004. JODE. http://jode.sourceforge.net.

Kaparo. 2004. Programmers Tools. http://protools.anticrack.de.

KnlSoft. 2002. TRW. http://www.knlsoft.com/.

Kouznetsov, P. 1997-2001. JAD. http://kpdus.tripod.com/jad.html.

Kumar, S. 2001-2003. DISC. http://www.debugmode.com/dcompile/disc.htm.

Mackt 2003. Import reconstructor. http://www.woodmann.com/crackz/Unpackers/Imprec16.zip.

Mead, I. 2004. UltraEdit. IDM Computer Solutions. http://www.ultraedit.com/.

Microsoft Corporation 2004. The msdn library. http://msdn.microsoft.com/library/default.asp.

Miecznikowski, J. 2004. DAVA. http://www.sable.mcgill.ca/soot/.

Miecznikowski, J. and Hendren, L. 2001. Decompiling java using staged encapsulation. In
Proceedings of the Working Conference on Reverse Engineering (WCRE’01) (Stuttgart, Italy).

Neshkov, A. 2004. DJ. http://members.fortunecity.com/neshkov/dj.html.

Peikari, C. and Chuvakin, A. 2004. Security Warrior. O’Reilly & Associates.

PreEmptive Solutions 2004. Dasho. http://www.preemptive.com/products/dasho.

SemanticDesigns 1995-2004. Source code obfuscators. http://www.semdesigns.com/Products/Obfuscators/index.html.

Silicon Realms Toolworks 1998-2004. Armadillo. http://www.siliconrealms.com/armadillo.shtml.

Snaker and Qwerton 2004. Peidentifier. http://peid.has.it/.

Solodovnikov, A. 2003. AsProtect. AsPack Software. http://www.aspack.com/.

TechnoLogismiki. 1996-2004. Hackman Products. http://www.technologismiki.com.

Tsehp 2002. Revirgin. http://tsehp.cjb.net/.

URSoftware. 1997. W32DASM. http://www.expage.com/page/w32dasm.

VanEmmerik, M. 2004. Java Decompilers. http://www.program-
transformation.org/Transform/JavaDecompilers.

Yuschuk, O. 2000-2004. OllyDbg. http://home.t-online.de/home/Ollydbg.

ACM Journal Name, Vol. V, No. N, Month 20YY.

