
Lecture 11

Example Rootkit



Intel internship
• Intel CTG (Corporate Technology Group)

– Advanced research & development
– System integrity services using AMT

• Detecting rootkits
• C programming experience
• Low-level OS knowledge
• Embedded programming

• Who can I send?



Rustock.B rootkit
• Frank Boldewin, “A Journey to the Center 

of the Rustock.B Rootkit”, Jan. 20, 2007
– http://reconstructer.org

• Combines a number of obfuscation 
techniques found in other malware



Stage 1: Ollydbg
• Drop from Mother Ship

– Gives you rustock.exe, a Windows PE
• Step 1

– In Ollydbg, search for all referenced text 
strings

• Not much shown due to obfuscation/packing
– Use PEID or Protection-ID tools to 

determine packer/compiler/protector
• Not much shown, perhaps a proprietary packer used

– Check for unrecognized data in code
• Code loaded at virtual address of 0x400000
• Entry point of Rustock.B at 0x401000



Stage 1: Ollydbg
• Looks like obfuscated code at 0x401B82

– Find references to this address



Stage 1: Ollydbg
• At 0x040198D

– PUSH of 0x401B82 followed by RETN
– Same as a CALL
– Set breakpoint and run
– Obfuscated code should be unobfuscated now



Stage 1: Ollydbg
• Not quite, have Ollydbg analyze code

– Step through API importing code to obtain API names 
for subsequent call instructions



Stage 1: Ollydbg
• Find call to kernel32._lcreat

– Creates a file called lzx32.sys (kernel mode driver)
– Set breakpoint and run again
– Select EDI in Registers window and follow it



Stage 1: Ollydbg
• EDI points to C:\windows\system32:lzx32.sys

– Use of : instead of \
– Alternative Data Stream (ADS)

• Hides the driver from easy detection
• Windows Explorer and cmd.exe do not show ADS
• Change memory to replace “:” (0x3a) to a “\” (0x5c)
• Attach ADS to directory since ADS viewers do not show this

– Rerun code and step through driver creation
– Stop code at lclose at address 0x401cc7

• Driver has been deobfuscated and unpacked now



Stage 2: PE-Tools
• Driver now detached

– Analyze it in IDA to find obfuscated code
– Detached driver code and .idb file in “stage1” 

directory
– Attempt to load in Ollydbg

• Launch using LOADDLL.EXE fails



Stage 2: PE-Tools
• Change driver

– Currently a DLL, a native executable, and 
contains imports from kernel libraries 
(NTOSKRNL.EXE and HAL.DLL)

– Change to no DLL, a Windows GUI 
application, and no imports

– Fix PE-files using PE-Tools
• Unmark DLL bit in PE-Tools



Stage 2: PE-Tools
• Change driver

– In Optional Header of PE-Tools, change 
Subsystem value from 1 to 2 (Windows GUI)



Stage 2: PE-Tools
• Change driver

– Set RVA and size to 0
– Will be reset later



Stage 2: Ollydbg
• Driver loads now

– Same as Stage 1: obfuscated code at 0x116a4



Stage 2: Ollydbg
• Find references to this address 0x116a4



Stage 2: Ollydbg
• Two places with PUSH 0x116a4/RETN

– Set breakpoint and run



Stage 2: Ollydbg
• Analyze code now…



Stage 2: Ollydbg



Stage 2: Ollydbg
• Dump debugged process



Stage 2: Ollydbg
• Dump debugged process

– Unmark “Rebuild Import”



Stage 2
• After dump, restore PE-File settings

– DLL bit
– Subsystem native
– RVA and Size of Import directory field



Stage 3: IDA
• Load dumped file into IDA



Stage 3: IDA
• Obfuscated data

– Can not use the previous approach



Stage 3
• Read code at 0x116a4

– Import APIs from NTOSKRNL
– Query system modules running
– Allocate kernel memory
– Unpack routine (0x11788)

• Unpacks code to kernel memory
– Move unpacked code over packed code area
– Grab imports from NTOSKRNL and HAL.DLL, 

destroy PE-Header, rebase API calls
– Free unused kernel memory
– JMP EAX at address 0x117c8

• Real driver created dynamically
– Must rip the unpacking code at 0x117d3 and dump 

whole data as file before PE-Header destroyed and 
driver code rebased



Stage 3
• Program included



Stage 3: Reversing Rustock.B
http://www.sarc.com/avcenter/venc/data/back

door.rustock.b.html#technicaldetails



Doing it faster with a kernel debugger
• SoftICE+ICEEXT

– Special function in NTOSKRNL.EXE to load 
driver

• IopLoadDriver
• Is not exported by default

– Need proper .pdb file of NTOSKRNL.EXE 
from Microsoft server

– Need to convert it to SoftICE format .nms
– Problem: SoftICE symbol retriever unreliable
– Read Frank Boldewin’s SoftICE howto

• http://reconstructer.org
• Alternative

– Leech Windows Debugging Tools from MSFT
– Read paper for recipe



Cleanup
• Run RkUnhooker


