A5: Security misconfiguration

e

Ab5: Security Misconfiguration

 Web applications must rely on a secure

foundation...

e Everywhere from the OS up through the application
server

e Throughout its entire lifetime (from development to

production)
Especially in the age of agile development, deployment and
operations (DevOps)

e

Security Misconfiguration lllustrated

i

Custom Code

e
Examples

* Not properly reducing privileges of services

e Not disabling all unnecessary functionality in OS, web
framework, web application

 Not hardening the configuration of vulnerable

frameworks (PHP)

e Not disabling eval(), passthru(), or system()

e Not removing unused modules/plugins and minimizing dynamic
extensions

Not hiding errors from site visitors (display_errors)

Not turning on safe_mode

Not limiting or disallowing file uploads

Not controlling POST size

* Not removing credentials in source code control
* Not changing default credentials (Mirai)

e Improperly configured networking
e Use of deprecated TLS/SSL protocols and encryption schemes
(Poodle)
e Not enabling HSTS (HTTP Strict Transport Security)

-

e

A5-Prevention

e

A5 - Prevention

* Secure configuration “hardening” guideline
covering entire platform and application

e Automate checks of application configuration
In development and deployment process

e Verify
e Scan to find any credentials improperly stored
e Remove credentials from code repositories via SQL Safe
Mode in PHP or .gitignore

e
HTTP’s Strict-Transport-Security:

e HTTP response header to force the use of

HTTPS

e Informs client to automatically redirect all HT TP requests
to HTTPS for domain

e Example
$ curl -I http://facebook.com | head -10
HTTP/1.1 301 Moved Permanently
Location: ..

Server set up to redirect HTTPS version (an improvement)
Note, assumes response is not hijacked by adversary

e SO0, after redirection, use header to force client to use
HTTPS in the future (to avoid MITM)

S curl -I | head -10
Strict-Transport-Security: ..

Now, if client goes onto open WiFi, adversary can not perform
MITM as client browser automatically redirects
to

https://www.facebook.com/
http://facebook.com/
https://facebook.com/

e
HTTP’s Strict-Transport-Security:

 How can we avoid this initial request in the first place?

$ curl -I facebook.com
HTTP/1.1 301 Moved Permanently
Location: https://facebook.com/

Hard-coded list of domains (HSTS preload list) shipped with
browser that are HTTPS only

Check and add site to list
* https://hstspreload.org

https://facebook.com/
https://facebook.com/

e

HTTP’s Strict-Transport-Security:

e Configuration

Within Apache,
» Set up redirection of unencrypted requests
<VirtualHost *:80>

ServerName example.com

Redirect permanent / https://example.com/
</VirtualHost>
» Set up Strict-Transport-Security header
<VirtualHost *:443>

Header always set Strict-Transport-Security "max-

age=63072000; includeSubdomains;"
</VirtualHost>
nginx server {} block

add header Strict-Transport-Security "max-age=63072000;
includeSubdomains; ";

e

HTTPS and Rogue CAs

e Certificate Authorities (CAs) lynchpin of TLS
(https)
e Sign certificates of sites
e Browsers packaged with code that can validate
certificates signed by each CA (several hundred)
e Used by web browser to signal users that they can “trust”
web server

e Prevents hijacking secure connections via proxy
Browser detects MITM

e Apply not only to web site, but also for all API calls
(Amazon Echo hijacking via Burp Suite)

e
HTTPS certificate pinning issue

e But...

e Any CA can generate a valid certificate for any web site
e What happens with rogue CAs (e.g. WoSign’s Github
certs, Symantec test certs)?
Removing WoSign from browsers
e Certificate pinning
e Associate a site’s certificate to a specific CA
Initial attempt HTTP Public-Key Pins failed
e Use TLS/SSL transparency logs to identify rogue
certificates

e

Prevalence of usage

60%

50%

40%

30%

20%

10%

0%

—t— CSP

—e— HSTS
wfp= X -Frame-Options
== httponly cookie
=¥ = Content Sniffing

2006 2008 2010 2012 2014 2016

Use of Security Headers per year

A9: Using Known Vulnerable

Components

The amount of custom code
in an application hasn’t changed
very much in the past 10 years.

80%
Libraries But library use
IS growing at a

staggering rate

4 N
Everyone Uses Vulnerable

Librari

29 MILLION
vulnerable
downloads in

100’000’000 _ Vulnerable
Download
10,000,000 26%
Safe
1,000,000 Download
100,000
10,000
1.000 Libraries
Library 1,261
100 @ Versions
10 M Organizations 61,807
Downloads 113,939,358
1 _ - - - - - - - -
& 2 O F K& & @2 Q8 0 2. & 2.0 &
§~\3}0®q® < N 06\‘@\&@ 0\?:\5 & \$\\l~ \/\6\0@‘\0@%\ N Q}(\'beé(\\ Q'Z’oe;\{'o‘b@
' & F TP oK A RN
& e g W& e > &£ &
W& v N S < w9
3 K
e N

https://www.aspectsecurity.com/news/press/the-unfortunate-reality-of-insecure-libraries

e
A9: Using Known Vulnerable Components

e Ubiquitous problem
e Often identified and exploited with automated tools
e Virtually every application has them unless development
teams focus on ensuring their components/libraries are

up to date
Wherever they are located...(e.g. VMs and Containers (i.e.
Docker))

e Developers often don’t know all the components they are
using and when they were last updated

e Typical Impact
e Full range of weaknesses is possible, including the rest of
the OWASP Top 10

e
Example: |Query

e Ubiquitous client-side Javascript library
e Often included once upon page creation, but
not often updated when patches happen

T0% == jQuery (all)
jQuery (vulnerable)

60%

50%

40%

30%

20%

10%

0%
2006 2008 2010 2012 2014 2016

\ jQuery usage and vulnerability statistics

e
Example: ImageTragick (2016)

e Bug In ubiquitous image processing library
e Used in many photo and image web sites
e Sometimes statically compiled into other code
e Extremely difficult to update universally

e

Example: Tesla (2016)

Software

Hackers hijack Tesla Model S from
afar, while the cars are moving

Chinese researchers control brakes, lights and

mirrors with wireless attack

By Darren Pauli 20 Sep 2016 at 04:20

(\ mumuum‘scu-\,, »

Demonstrate the Unauthorized Xmas Show
“as¥ _ Demonstrate the Unauthorized Amas ShOw

62(J SHARE V¥

e
Example: Tesla (2016)

BROWSER HACKING

Since the User Agent of Tesla web browser is "Mozilla/5.0 (X11; Linux) AppleWebKit/534.34

(KHTML, like Gecko) QtCarBrowser Safari/534.34", it can be deduced that the version of

QtWebkit is around 2.2.x.[In such old version, there are many vulnerabilities in QtWebkit.|Our exploit

utilizes two vulnerabilities to achieve arbitrary code execution.

The second vulnerability 1s CVE-2011-3928 founded by KeenTeam, which could be used for leaking
memory. The POC 1s simple.

<script>if (window.addEventListener) ({
window.addEventListener('load', func, false);

}

function func|()

{
e = document.getElementById('tl');

document. importNode (e, true) ;
}
</script>
<table id="tl1l">
<td>
<xht:input>

Table 5 POC of CVE-2011-3928

4 N
Example: Tesla (2016)

free-fall-hacking-tesla-from-wireless-to-can-bus 4 /16

| It seems that the Linux kernel version of CID is very old) there is nearly no exploiting mitigations on Linux
kernel 2.6.36.

Figure 1 CID Linux Kernel Version

Linux 2 6 36

Linux 2.6.36 released 20 October, 2010 .|

Summary: Linux 2 6.36 includes support for the Tilera architecture, a new filesystem notification
interface called fanotify, a redesign of workqueues optimized for concurrency, CIFS local caching,
support for Intel Intelligent Power Sharing in 13/5 systems, integration of the kernel debugger and KMS,

several new drivers and small improvements.

4 L A
Example: gSOAP (2017) . .

e Bug allowing remote code execution found
e Library for processing XML (that many use, but

don’t know that they use)

e Used in countless loT products *already deployed*
AXis surveillance cameras

e 1 million+ downloads
Code and vulnerability often cloned from prior version of software
Code and vulnerability copied by vendor from generation to
generation
Code often embedded in firmware that can never (or will never) be
updated

Lior Div, co-founder and CEO at Cybereason, said a review of the code built into these

devices shows the manufacturer does not appear to have made security a priority, and that

people using these devices should simply toss them in the trash.

‘i‘There is no firmware update mechanism built into these cameras,

so there’s no way to patch

them,” Div said. [“The version of Linux running on these devices was in some cases 14 years

old,| and the other code libraries on the devices are just as ancient. These devices are so

hopelessly broken from a security perspective that it's hard to really understand what’s going

on in the minds of people putting them together.”

e

A9 - Prevention

e Automated periodic check for out-of-date
libraries
 Nightly build
* Never buy a product that can’t be updated
e Proactive upgrading
e Upgrade those with security issues quickly

* Vulnerability scanning
e Static analysis for vulnerable source code
e Scanning for known CVEs (vulnerabilities)
* Nnessus, metasploit

e

CVE

-

CVE-2011-2730
CVE-2011-2894
CVE-2012-5784
CVE-2011-2731

CVE-2007-6058
CVE-2007-6058
CVE-2012-5055
CVE-2011-2732
CVE-2013-0248

Page Discussion

OWASP Dependency Check

CWE

CWE-16 Configuration

CWE-264 Permissions, Privileges, and Access Controls
CWE-20 Impraper Input Validation

CWE-362 Concurrent Execution using Shared Resource with Improper Synchraonization
('Race Condition')

CWE-399 Resource Management Errars

CWE-399 Resource Management Errars

CWE-200 Infarmation Exposure

CWE-94 Improper Control of Generation of Code ('Code Injection’)

CWE-264 Permissions, Privileges, and Access Controls

Severity (CV33)"
High (7.5)
Medium (6.8)
Medium (5.8)
Medium (5.1)

Medium (5.0
Medium (5.0)
Medium (5.0)
Medium (4.3)
Low (3.3)

OWASP Dependency Check
Run DependencyCheck during every build

(and do a build once a month even if nothing changed)

Dependency
spring-security-core-3.0.5.RELEASE jar
spring-security-core-3.0.5.RELEASE jar
axis-1.2 jar®

spring-security-core-3.0.5.RELEASE jar

mail-1.4.2 jar

mailapi-1.4.2 jar
spring-security-core-3.0.5.RELEASE jar
spring-security-core-3.0.5.RELEASE jar

commaons-fileupload-1.2.1.jar

/

[L-bﬁ»&-bﬁ»ﬁ»b-b&-&-bﬁ»ﬁ» = J

-

Java-Maven Versions Plugin

Dependencies

com.fasterxml.jackson.core

com.fasterxml.jackson.core
com.fasterxml.jackson.core
com.google.guava
com.ibm.icu
com.theoryinpractise
commons-codec
commons-logging

Joda-time

net.sf.ehcache
org.apache.httpcomponents
org.apache.httpcomponents
org.apache.httpcomponents
org.jdom

org.slfd

Most out of Date!

This can automatically be run EVERY TIME software is built!!

jackson-
annotations

Jackson-core
jackson-databind
quava

icudj

halbuilder
commons-codec
commons-logging
Joda-time
ehcache-core
httpclient
httpclient-cache
httpcore

jdom

slf41-api

against Central repository

Output from the Maven Versions Plugin — Automated Analysis of Libraries’ Status

o

2.0.4 compile jar 2.0.5
2.0.4 compile jar 2.0.5
2.0.4 compile jar 2.0.5
11.0 compile jar 11.0.1
49.1 compile jar

1.0.4 compile jar 1.0.5
1.3 compile jar

1.1.1 compile jar

2.0 compile jar

2.5.1 compile jar 2.5.2
4.1.2 compile jar 4.1.3
4.1.2 compile jar 4.1.3
4.1.2 compile jar 4.1.3
1.1 compile jar 1.1.2
1.7.2 provided jar

2.1.0

2.1.0
2.1.0
12.0-rcl

1.4

2.1
2.6.0
4.2
4.2
4.2

~

12.0
50.1

2.0.0

Details Developer Needs

/

e

Homework

e Security Misconfiguration (see last class’s
handout)

an .
Final project

e From web site

e General description and difficulty labeled
Range from easy levels that include walkthroughs to hard levels
without guidance

e Sign-up your group today
No more than 2 groups per level

* MediaSpace submission

Most of you are now added to channel as contributors
Use recordmydesktop or other software to create walkthroughs

https://www.pentesterlab.com/exercises?only=free
https://www.pentesterlab.com/exercises?only=free

e

Questions
e hitps://sayat.me/wu4f

https://sayat.me/wu4f

EXtra

e
HTTP’s Public-Key-Pins:

Public-Key-Pins-Report-Only:

e NOW DEPRECATED!

e HTTP response header to prevent certificate hijacking
e For implementing HTTP Public Key Pinning (HPKP)
» Allow website to resist impersonation by attackers using fraudulent
certificates
e Public-Key-Pins: enforce pin and disable request
e Public-Key-Pins-Report-0Only: allow request, but report it

e |ssue
e What if someone spoofs your DNS record, forces a victim to their
bogus site, and sets a public key pin on your domain?
Your site is no longer reachable to victim
e What if someone hijacks your DNS server and forces everyone to set
a public key pin on your domain?
Your site is no longer reachable to anyone who got the pin while site was
hijacked

e Now, sites want option to disable header!

-

https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/

/

HTTP’s Public-Key-Pins:
Public-Key-Pins-Report-Only:

 Now, sites want option to disable header!

e hitps://scotthelme.co.uk/im-qiving-up-on-hpkp/
HPKP Suicide

Sadly there is a term far this and all it involves is a site making a potentially simple

error. You enable HPKP, tell the browser which keys you will always use and then
you lose those keys. They could be accidentally deleted, stolen in a hack or
whatever, it doesn't matter. If you pin yourself to a set of keys and then no longer
have the ahility to use them, you're in big trouble! The most notable site I've come
across that's done this is Smashing Magazine and they wrote about it in their article
Be Afraid Of HTTP Public Key Pinning (HPKP).

RansomPKP

This is another side effect of HPKP and it's a way to use it to cause harm. In a
breach scenario an attacker would gain control of your site via a server compromise
or a domain hijack and then enable these headers on your behalf. When your
visitors go to your site they pick up the malicious HPKP header set by the bad guys.
At some point you then fix the problem and take back control of your site except
now, none of the browsers will connect because of the HPKP policy they picked up
from the bad guys. | have more details on this in my blog on Using security features
to do bad things.

https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/

