
A5: Security misconfiguration

A5: Security Misconfiguration

 Web applications must rely on a secure

foundation…
 Everywhere from the OS up through the application

server

 Throughout its entire lifetime (from development to

production)
 Especially in the age of agile development, deployment and

operations (DevOps)

Hardened OS

Web Server

App Server

Framework

Security Misconfiguration Illustrated

App Configuration

Custom Code

A
c
c
o
u
n
ts

F
in

a
n
c
e

A
d
m

in
is

tr
a
ti
o
n

T
ra

n
s
a
c
ti
o
n
s

C
o
m

m
u
n
ic

a
ti
o
n

K
n
o
w

le
d
g
e
 M

g
m

t

E
-C

o
m

m
e
rc

e

B
u
s
.
F

u
n
c
ti
o
n
s

Test Servers

QA Servers

Source Control

Development

Database

Examples

 Not properly reducing privileges of services
 Not disabling all unnecessary functionality in OS, web

framework, web application
 Not hardening the configuration of vulnerable

frameworks (PHP)
 Not disabling eval(), passthru(), or system()
 Not removing unused modules/plugins and minimizing dynamic

extensions
 Not hiding errors from site visitors (display_errors)
 Not turning on safe_mode
 Not limiting or disallowing file uploads
 Not controlling POST size

 Not removing credentials in source code control
 Not changing default credentials (Mirai)
 Improperly configured networking

 Use of deprecated TLS/SSL protocols and encryption schemes
(Poodle)

 Not enabling HSTS (HTTP Strict Transport Security)

A5-Prevention

A5 - Prevention

 Secure configuration “hardening” guideline

covering entire platform and application

 Automate checks of application configuration

in development and deployment process

 Verify
 Scan to find any credentials improperly stored

 Remove credentials from code repositories via SQL Safe

Mode in PHP or .gitignore

HTTP’s Strict-Transport-Security:

 HTTP response header to force the use of
HTTPS
 Informs client to automatically redirect all HTTP requests

to HTTPS for domain
 Example

$ curl -I http://facebook.com | head -10

HTTP/1.1 301 Moved Permanently

Location: …

 Server set up to redirect HTTPS version (an improvement)
 Note, assumes response is not hijacked by adversary

 So, after redirection, use header to force client to use
HTTPS in the future (to avoid MITM)
$ curl -I https://www.facebook.com/ | head -10

Strict-Transport-Security: …

 Now, if client goes onto open WiFi, adversary can not perform
MITM as client browser automatically redirects
http://facebook.com to https://facebook.com

https://www.facebook.com/
http://facebook.com/
https://facebook.com/

HTTP’s Strict-Transport-Security:

 How can we avoid this initial request in the first place?
$ curl -I facebook.com

HTTP/1.1 301 Moved Permanently

Location: https://facebook.com/

 Hard-coded list of domains (HSTS preload list) shipped with

browser that are HTTPS only

 Check and add site to list
 https://hstspreload.org

https://facebook.com/
https://facebook.com/

HTTP’s Strict-Transport-Security:

 Configuration
 Within Apache,

 Set up redirection of unencrypted requests
<VirtualHost *:80>

 ServerName example.com

 Redirect permanent / https://example.com/

</VirtualHost>

 Set up Strict-Transport-Security header
<VirtualHost *:443>

 Header always set Strict-Transport-Security "max-

age=63072000; includeSubdomains;"

</VirtualHost>

 nginx server {} block
add_header Strict-Transport-Security "max-age=63072000;

includeSubdomains; ";

HTTPS and Rogue CAs

 Certificate Authorities (CAs) lynchpin of TLS

(https)
 Sign certificates of sites

 Browsers packaged with code that can validate

certificates signed by each CA (several hundred)

 Used by web browser to signal users that they can “trust”

web server

 Prevents hijacking secure connections via proxy
 Browser detects MITM

 Apply not only to web site, but also for all API calls

(Amazon Echo hijacking via Burp Suite)

HTTPS certificate pinning issue

 But…
 Any CA can generate a valid certificate for any web site

 What happens with rogue CAs (e.g. WoSign’s Github

certs, Symantec test certs)?
 Removing WoSign from browsers

 Certificate pinning
 Associate a site’s certificate to a specific CA
 Initial attempt HTTP Public-Key Pins failed

 Use TLS/SSL transparency logs to identify rogue

certificates

Prevalence of usage

A9: Using Known Vulnerable

Components

80% Libraries But library use

is growing at

a staggering

rate

The amount of custom code

in an application hasn’t changed

very much in the past 10 years.

Transformation

80%

Libraries But library use

is growing at a

staggering rate

20% Custom

Code

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

Everyone Uses Vulnerable

Libraries 29 MILLION

vulnerable

downloads in

2011

Libraries 31

Library

Versions

1,261

Organizations 61,807

Downloads 113,939,358

Vulnerable
Download

26%
Safe

Download

74%

https://www.aspectsecurity.com/news/press/the-unfortunate-reality-of-insecure-libraries

A9: Using Known Vulnerable Components

 Ubiquitous problem
 Often identified and exploited with automated tools

 Virtually every application has them unless development

teams focus on ensuring their components/libraries are

up to date
 Wherever they are located...(e.g. VMs and Containers (i.e.

Docker))

 Developers often don’t know all the components they are

using and when they were last updated

 Typical Impact
 Full range of weaknesses is possible, including the rest of

the OWASP Top 10

Example: jQuery

 Ubiquitous client-side Javascript library

 Often included once upon page creation, but

not often updated when patches happen

Example: ImageTragick (2016)

 Bug in ubiquitous image processing library
 Used in many photo and image web sites

 Sometimes statically compiled into other code

 Extremely difficult to update universally

Example: Tesla (2016)

Example: Tesla (2016)

Example: Tesla (2016)

Example: gSOAP (2017)

 Bug allowing remote code execution found

 Library for processing XML (that many use, but

don’t know that they use)
 Used in countless IoT products *already deployed*
 Axis surveillance cameras

 1 million+ downloads
 Code and vulnerability often cloned from prior version of software

 Code and vulnerability copied by vendor from generation to

generation

 Code often embedded in firmware that can never (or will never) be

updated

A9 - Prevention

 Automated periodic check for out-of-date

libraries
 Nightly build

 Never buy a product that can’t be updated

 Proactive upgrading
 Upgrade those with security issues quickly

 Vulnerability scanning
 Static analysis for vulnerable source code

 Scanning for known CVEs (vulnerabilities)

 nessus, metasploit

OWASP Dependency Check
Run DependencyCheck during every build
(and do a build once a month even if nothing changed)

Java-Maven Versions Plugin

Output from the Maven Versions Plugin – Automated Analysis of Libraries’ Status
against Central repository

Most out of Date! Details Developer Needs

This can automatically be run EVERY TIME software is built!!

Homework

 Security Misconfiguration (see last class’s

handout)

Final project

 From web site
 https://www.pentesterlab.com/exercises?only=free

 General description and difficulty labeled
 Range from easy levels that include walkthroughs to hard levels

without guidance

 Sign-up your group today
 No more than 2 groups per level

 MediaSpace submission
 Most of you are now added to channel as contributors

 Use recordmydesktop or other software to create walkthroughs

https://www.pentesterlab.com/exercises?only=free
https://www.pentesterlab.com/exercises?only=free

Questions

 https://sayat.me/wu4f

https://sayat.me/wu4f

Extra

HTTP’s Public-Key-Pins:

 Public-Key-Pins-Report-Only:

 NOW DEPRECATED!
 HTTP response header to prevent certificate hijacking

 For implementing HTTP Public Key Pinning (HPKP)
 Allow website to resist impersonation by attackers using fraudulent

certificates
 Public-Key-Pins: enforce pin and disable request
 Public-Key-Pins-Report-Only: allow request, but report it

 Issue
 What if someone spoofs your DNS record, forces a victim to their

bogus site, and sets a public key pin on your domain?
 Your site is no longer reachable to victim

 What if someone hijacks your DNS server and forces everyone to set
a public key pin on your domain?
 Your site is no longer reachable to anyone who got the pin while site was

hijacked

 Now, sites want option to disable header!
 https://scotthelme.co.uk/im-giving-up-on-hpkp/

https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/

HTTP’s Public-Key-Pins:

 Public-Key-Pins-Report-Only:

 Now, sites want option to disable header!
 https://scotthelme.co.uk/im-giving-up-on-hpkp/

https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/

