
A5: Security misconfiguration

A5: Security Misconfiguration

 Web applications must rely on a secure

foundation…
 Everywhere from the OS up through the application

server

 Throughout its entire lifetime (from development to

production)
 Especially in the age of agile development, deployment and

operations (DevOps)

Hardened OS

Web Server

App Server

Framework

Security Misconfiguration Illustrated

App Configuration

Custom Code

A
c
c
o
u
n
ts

F
in

a
n
c
e

A
d
m

in
is

tr
a
ti
o
n

T
ra

n
s
a
c
ti
o
n
s

C
o
m

m
u
n
ic

a
ti
o
n

K
n
o
w

le
d
g
e
 M

g
m

t

E
-C

o
m

m
e
rc

e

B
u
s
.
F

u
n
c
ti
o
n
s

Test Servers

QA Servers

Source Control

Development

Database

Examples

 Not properly reducing privileges of services
 Not disabling all unnecessary functionality in OS, web

framework, web application
 Not hardening the configuration of vulnerable

frameworks (PHP)
 Not disabling eval(), passthru(), or system()
 Not removing unused modules/plugins and minimizing dynamic

extensions
 Not hiding errors from site visitors (display_errors)
 Not turning on safe_mode
 Not limiting or disallowing file uploads
 Not controlling POST size

 Not removing credentials in source code control
 Not changing default credentials (Mirai)
 Improperly configured networking

 Use of deprecated TLS/SSL protocols and encryption schemes
(Poodle)

 Not enabling HSTS (HTTP Strict Transport Security)

A5-Prevention

A5 - Prevention

 Secure configuration “hardening” guideline

covering entire platform and application

 Automate checks of application configuration

in development and deployment process

 Verify
 Scan to find any credentials improperly stored

 Remove credentials from code repositories via SQL Safe

Mode in PHP or .gitignore

HTTP’s Strict-Transport-Security:

 HTTP response header to force the use of
HTTPS
 Informs client to automatically redirect all HTTP requests

to HTTPS for domain
 Example

$ curl -I http://facebook.com | head -10

HTTP/1.1 301 Moved Permanently

Location: …

 Server set up to redirect HTTPS version (an improvement)
 Note, assumes response is not hijacked by adversary

 So, after redirection, use header to force client to use
HTTPS in the future (to avoid MITM)
$ curl -I https://www.facebook.com/ | head -10

Strict-Transport-Security: …

 Now, if client goes onto open WiFi, adversary can not perform
MITM as client browser automatically redirects
http://facebook.com to https://facebook.com

https://www.facebook.com/
http://facebook.com/
https://facebook.com/

HTTP’s Strict-Transport-Security:

 How can we avoid this initial request in the first place?
$ curl -I facebook.com

HTTP/1.1 301 Moved Permanently

Location: https://facebook.com/

 Hard-coded list of domains (HSTS preload list) shipped with

browser that are HTTPS only

 Check and add site to list
 https://hstspreload.org

https://facebook.com/
https://facebook.com/

HTTP’s Strict-Transport-Security:

 Configuration
 Within Apache,

 Set up redirection of unencrypted requests
<VirtualHost *:80>

 ServerName example.com

 Redirect permanent / https://example.com/

</VirtualHost>

 Set up Strict-Transport-Security header
<VirtualHost *:443>

 Header always set Strict-Transport-Security "max-

age=63072000; includeSubdomains;"

</VirtualHost>

 nginx server {} block
add_header Strict-Transport-Security "max-age=63072000;

includeSubdomains; ";

HTTPS and Rogue CAs

 Certificate Authorities (CAs) lynchpin of TLS

(https)
 Sign certificates of sites

 Browsers packaged with code that can validate

certificates signed by each CA (several hundred)

 Used by web browser to signal users that they can “trust”

web server

 Prevents hijacking secure connections via proxy
 Browser detects MITM

 Apply not only to web site, but also for all API calls

(Amazon Echo hijacking via Burp Suite)

HTTPS certificate pinning issue

 But…
 Any CA can generate a valid certificate for any web site

 What happens with rogue CAs (e.g. WoSign’s Github

certs, Symantec test certs)?
 Removing WoSign from browsers

 Certificate pinning
 Associate a site’s certificate to a specific CA
 Initial attempt HTTP Public-Key Pins failed

 Use TLS/SSL transparency logs to identify rogue

certificates

Prevalence of usage

A9: Using Known Vulnerable

Components

80% Libraries But library use

is growing at

a staggering

rate

The amount of custom code

in an application hasn’t changed

very much in the past 10 years.

Transformation

80%

Libraries But library use

is growing at a

staggering rate

20% Custom

Code

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

Everyone Uses Vulnerable

Libraries 29 MILLION

vulnerable

downloads in

2011

Libraries 31

Library

Versions

1,261

Organizations 61,807

Downloads 113,939,358

Vulnerable
Download

26%
Safe

Download

74%

https://www.aspectsecurity.com/news/press/the-unfortunate-reality-of-insecure-libraries

A9: Using Known Vulnerable Components

 Ubiquitous problem
 Often identified and exploited with automated tools

 Virtually every application has them unless development

teams focus on ensuring their components/libraries are

up to date
 Wherever they are located...(e.g. VMs and Containers (i.e.

Docker))

 Developers often don’t know all the components they are

using and when they were last updated

 Typical Impact
 Full range of weaknesses is possible, including the rest of

the OWASP Top 10

Example: jQuery

 Ubiquitous client-side Javascript library

 Often included once upon page creation, but

not often updated when patches happen

Example: ImageTragick (2016)

 Bug in ubiquitous image processing library
 Used in many photo and image web sites

 Sometimes statically compiled into other code

 Extremely difficult to update universally

Example: Tesla (2016)

Example: Tesla (2016)

Example: Tesla (2016)

Example: gSOAP (2017)

 Bug allowing remote code execution found

 Library for processing XML (that many use, but

don’t know that they use)
 Used in countless IoT products *already deployed*
 Axis surveillance cameras

 1 million+ downloads
 Code and vulnerability often cloned from prior version of software

 Code and vulnerability copied by vendor from generation to

generation

 Code often embedded in firmware that can never (or will never) be

updated

A9 - Prevention

 Automated periodic check for out-of-date

libraries
 Nightly build

 Never buy a product that can’t be updated

 Proactive upgrading
 Upgrade those with security issues quickly

 Vulnerability scanning
 Static analysis for vulnerable source code

 Scanning for known CVEs (vulnerabilities)

 nessus, metasploit

OWASP Dependency Check
Run DependencyCheck during every build
(and do a build once a month even if nothing changed)

Java-Maven Versions Plugin

Output from the Maven Versions Plugin – Automated Analysis of Libraries’ Status
against Central repository

Most out of Date! Details Developer Needs

This can automatically be run EVERY TIME software is built!!

Homework

 Security Misconfiguration (see last class’s

handout)

Final project

 From web site
 https://www.pentesterlab.com/exercises?only=free

 General description and difficulty labeled
 Range from easy levels that include walkthroughs to hard levels

without guidance

 Sign-up your group today
 No more than 2 groups per level

 MediaSpace submission
 Most of you are now added to channel as contributors

 Use recordmydesktop or other software to create walkthroughs

https://www.pentesterlab.com/exercises?only=free
https://www.pentesterlab.com/exercises?only=free

Questions

 https://sayat.me/wu4f

https://sayat.me/wu4f

Extra

HTTP’s Public-Key-Pins:

 Public-Key-Pins-Report-Only:

 NOW DEPRECATED!
 HTTP response header to prevent certificate hijacking

 For implementing HTTP Public Key Pinning (HPKP)
 Allow website to resist impersonation by attackers using fraudulent

certificates
 Public-Key-Pins: enforce pin and disable request
 Public-Key-Pins-Report-Only: allow request, but report it

 Issue
 What if someone spoofs your DNS record, forces a victim to their

bogus site, and sets a public key pin on your domain?
 Your site is no longer reachable to victim

 What if someone hijacks your DNS server and forces everyone to set
a public key pin on your domain?
 Your site is no longer reachable to anyone who got the pin while site was

hijacked

 Now, sites want option to disable header!
 https://scotthelme.co.uk/im-giving-up-on-hpkp/

https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/

HTTP’s Public-Key-Pins:

 Public-Key-Pins-Report-Only:

 Now, sites want option to disable header!
 https://scotthelme.co.uk/im-giving-up-on-hpkp/

https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/
https://scotthelme.co.uk/im-giving-up-on-hpkp/

