
A8: Cross-site Request Forgery

(CSRF)

A8: Cross-site Request Forgery (CSRF)

 XSS
 Trick browser to execute code without user knowledge

 CSRF
 Trick browser to access sensitive pages without user

knowledge

CSRF Vulnerability Pattern

 Problem
 Web browsers automatically include most credentials

with each request
 Session cookie

 Basic authentication header

 Even for requests caused by a form, script, or image from

another site

 Sites relying solely on automatic credentials are

vulnerable!

CSRF Illustrated

3

2

Attacker finds function on

vulnerable site he wants

victim to hit while

authenticated

1

While logged into site with CSRF vulnerability

Vulnerable site sees

legitimate request

from victim and

performs the action

requested

 tag loaded by

browser

Custom Code

A
c
c
o

u
n

ts

F
in

a
n

c
e

A
d

m
in

is
tr

a
ti

o
n

T
ra

n
s
a
c
ti

o
n

s

C
o

m
m

u
n

ic
a
ti

o
n

K

n
o

w
le

d
g

e

M
g

m
t

E
-C

o
m

m
e
rc

e

B
u

s
.
F

u
n

c
ti

o
n

s

Hidden tag

points to function on

vulnerable site

Site with CSRF

vulnerability

Victim views attacker site

Sends GET request with

user credentials to site

Sets a trap via a website or e-mail

Example

 Trick user with account at bank.cxx to visit your rogue

page
 <html><body>

 <img

src=https://www.bank.cxx/transfer_funds?amount=1000&to_account=12345678 />

 </body></html>

 If user previously logged into www.bank.cxx, transfer

occurs unbeknownst to user

http://www.bank.cxx/

Common CSRF activities

 Initiate transactions (transfer funds, logout user,

close account)

 Access sensitive data

 Change account details

A8 - Prevention

 http://www.owasp.org/index.php/CSRF_Prevention_Ch

eat_Sheet

http://www.owasp.org/index.php/CSRF_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/CSRF_Prevention_Cheat_Sheet

Secret tokens

 Add a secret token to origin page of ALL sensitive requests
 Attacker can’t spoof the request unless there’s an XSS hole in

origin page of client that leaks secret.
 Tokens should be cryptographically secure (random hash or

number)
 Examples
 Add secret token into all forms and links
 Like setting a cookie on client page itself
 Hidden Field
<input name="token" value="687965fdfaew87agrde" type="hidden"/>

 Ensure token never exposed via referer header or in the clear
 Example: Should not appear in a GET-based form submission:
/accounts?token=687965fdfaew87agrde …

 Have a unique token for each function
 Use a hash of function name, session id, and a secret to generate

 Attacker unable to get victim to send validating secret token

Server methods

 Only use HTTP GET for “safe methods”
 Methods that have no persistent side effects on server

 Rely upon HTTP POST requests with tokens for actions

with persistent side-effects

 Require secondary authentication for sensitive

functions (e.g., eTrade)

 Expire authorization cookie quickly if session is idle

Homework

 See handout

Questions

 https://sayat.me/wu4f

https://sayat.me/wu4f

