
A8: Cross-site Request Forgery

(CSRF)

A8: Cross-site Request Forgery (CSRF)

 XSS
 Trick browser to execute code without user knowledge

 CSRF
 Trick browser to access sensitive pages without user

knowledge

CSRF Vulnerability Pattern

 Problem
 Web browsers automatically include most credentials

with each request
 Session cookie

 Basic authentication header

 Even for requests caused by a form, script, or image from

another site

 Sites relying solely on automatic credentials are

vulnerable!

CSRF Illustrated

3

2

Attacker finds function on

vulnerable site he wants

victim to hit while

authenticated

1

While logged into site with CSRF vulnerability

Vulnerable site sees

legitimate request

from victim and

performs the action

requested

 tag loaded by

browser

Custom Code

A
c
c
o

u
n

ts

F
in

a
n

c
e

A
d

m
in

is
tr

a
ti

o
n

T
ra

n
s
a
c
ti

o
n

s

C
o

m
m

u
n

ic
a
ti

o
n

K

n
o

w
le

d
g

e

M
g

m
t

E
-C

o
m

m
e
rc

e

B
u

s
.
F

u
n

c
ti

o
n

s

Hidden tag

points to function on

vulnerable site

Site with CSRF

vulnerability

Victim views attacker site

Sends GET request with

user credentials to site

Sets a trap via a website or e-mail

Example

 Trick user with account at bank.cxx to visit your rogue

page
 <html><body>

 <img

src=https://www.bank.cxx/transfer_funds?amount=1000&to_account=12345678 />

 </body></html>

 If user previously logged into www.bank.cxx, transfer

occurs unbeknownst to user

http://www.bank.cxx/

Common CSRF activities

 Initiate transactions (transfer funds, logout user,

close account)

 Access sensitive data

 Change account details

A8 - Prevention

 http://www.owasp.org/index.php/CSRF_Prevention_Ch

eat_Sheet

http://www.owasp.org/index.php/CSRF_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/CSRF_Prevention_Cheat_Sheet

Secret tokens

 Add a secret token to origin page of ALL sensitive requests
 Attacker can’t spoof the request unless there’s an XSS hole in

origin page of client that leaks secret.
 Tokens should be cryptographically secure (random hash or

number)
 Examples
 Add secret token into all forms and links
 Like setting a cookie on client page itself
 Hidden Field
<input name="token" value="687965fdfaew87agrde" type="hidden"/>

 Ensure token never exposed via referer header or in the clear
 Example: Should not appear in a GET-based form submission:
/accounts?token=687965fdfaew87agrde …

 Have a unique token for each function
 Use a hash of function name, session id, and a secret to generate

 Attacker unable to get victim to send validating secret token

Server methods

 Only use HTTP GET for “safe methods”
 Methods that have no persistent side effects on server

 Rely upon HTTP POST requests with tokens for actions

with persistent side-effects

 Require secondary authentication for sensitive

functions (e.g., eTrade)

 Expire authorization cookie quickly if session is idle

Homework

 See handout

Questions

 https://sayat.me/wu4f

https://sayat.me/wu4f

