
A10: Unvalidated Redirects and Forwards

Axx: Unsolicited Framing

A10: Unvalidated Redirects

 Web application redirects are very common
 Redirect request to a URL-supplied destination

 User accesses page requiring auth

 Redirected to login page with URL of origin page as parameter

 After login, redirected back to URL of origin page

 What if someone screen-scraped Yahoo, found an unvalidated

redirect on one of its properties, and phished you with this link in

a page/email?
https://r.yahoo.com/?.src=ym&.intl=us&.lang=en-US&.done=https%3a//login.yahoo.com.cxx

redirect to this URL after login

A10: Unvalidated Redirects

 If not validated, request bounces off of a site that is

legitimate and sends victim to a site run by the

adversary for phishing or automated malware

download
 Victim sees something that has the right domain, ends up at a site

that looks like it (but controlled by adversary)

 Podesta perhaps?

 What attack in the last lecture is this similar to?

Unvalidated Redirect Illustrated

3

2

Attacker sends attack to victim via email or
webpage

From: Internal Revenue Service

Subject: Your Unclaimed Tax

Refund

Our records show you have an

unclaimed federal tax refund.

Please click here to initiate your

claim.

1

Application redirects
victim to attacker’s
site

Request sent to

vulnerable site, including

attacker’s destination site

as parameter. Redirect

sends victim to attacker

site

Custom Code

A
c
c
o

u
n

ts

F
in

a
n

c
e

A
d

m
in

is
tr

a
ti

o
n

T
ra

n
s

a
c
ti

o
n

s

C
o

m
m

u
n

ic
a
ti

o
n

K
n

o
w

le
d

g
e

 M
g

m
t

E
-C

o
m

m
e
rc

e

B
u

s
.
F

u
n

c
ti

o
n

s

4
Evil site installs malware
on victim, or phish’s for
private information

Victim clicks link containing unvalidated
parameter

Evil Site

https://www.irs.gov/taxrefund/claim.jsp?year=
2006& … &dest=www.evilsite.com

http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&

A10: Unvalidated Redirects

 Java

 PHP

response.sendRedirect(request.getParameter("url"));

$redirect_url = $_GET['url'];

header("Location: " . $redirect_url);

.NET redirect example

public ActionResult LogOn(LogOnModel model, string returnUrl) {

 if (ModelState.IsValid) {

 if (MembershipService.ValidateUser(model.UserName, model.Password)) {

 FormsService.SignIn(model.UserName, model.RememberMe);

 if (!String.IsNullOrEmpty(returnUrl)) {

 return Redirect(returnUrl);

 }

 else {

 return RedirectToAction("Index", "Home");

 }

 }

 else {

 ModelState.AddModelError("", “Incorrect user name or password.");

 }

 } // If we got this far, something failed, redisplay form

 return View(model);

}

A10: Unvalidated Forwards

 Forwards similar to redirects, but remain in

same web application
 Transfer in .NET

 Internally send the request to a new page in the same

application
 If access to target page not validated, attacker may be able to use

unvalidated forward to bypass authentication or authorization

checks

Unvalidated Forward Illustrated

2

Attacker sees link in vulnerable, but accessible page that calls the forward

Forwarding code assumes “dest” set via page and has no malicious values 1

Application
authorizes request,
which continues to
the forward

3 Forwarding pathway fails to
validate destination page.
Attacker sets target to a page of
his/her choosing (potentially an
unauthorized page), bypassing
access control

 public void doPost(HttpServletRequest request,
HttpServletResponse response) {

 try {
 String target = request.getParameter("dest"));

 ...
 request.getRequestDispatcher(target

).forward(request, response);
}
catch (...

Filter

 public void sensitiveMethod(
HttpServletRequest request,
HttpServletResponse response) {

 try {
 // Do sensitive stuff here.
 ...

}
catch (...

JSP forward example

 Redirect within site via internal fwd parameter

public class ForwardServlet extends HttpServlet

{

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 String query = request.getQueryString();

 if (query.contains("fwd"))

 {

 String fwd = request.getParameter("fwd");

 try

 {

 request.getRequestDispatcher(fwd).forward(request, response);

 }

 catch (ServletException e)

 {

 e.printStackTrace();

 }

 }

 }

}

A10 – Prevention

 Avoid using redirects and forwards
 If used, don’t include user input in defining the target URL

 If you ‘must’ include user input, then, validate each

parameter to ensure its valid and authorized access

 Whitelist redirect locations to ensure it goes to

an authorized external site

 Force redirects first to a page notifying user of

redirect and have them click to confirm

 Authorize via access controller before

forwarding
 Ensure all users who can access the original page are

ALL authorized to access the target page when used

OWASP resources

 OWASP’s Guide to Building Secure Web

Applications
 https://www.owasp.org/index.php/Guide

 Cheat sheets
 https://www.owasp.org/index.php/Cheat_Sheets

 Application Security Verification Standard
 https://www.owasp.org/index.php/ASVS

 OWASP’s ESAPI tools
 https://www.owasp.org/index.php/ESAPI

https://www.owasp.org/index.php/Guide
https://www.owasp.org/index.php/Cheat_Sheets
https://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ESAPI

Axx: Unsolicited Framing, UI Redress

(Clickjacking)
 Users visit a malicious website
 Malicious site contains an <iframe> that loads a

legitimate site in a transparent manner

 Malicious site puts up an enticing button for user to click

 User clicks on what appears to be button, but button in

transparent frame clicked instead

Axx: Clickjacking prevention

 HTTP header X-Frame-Options
 Sites can tell browsers never to load their content in an
<iframe>

 X-Frame-Options: DENY

 Sites can tell browsers to only allow <iframe> from

same site
 X-Frame-Options: SAMEORIGIN

 Sites can tell browsers to only allow <iframe> from

specific site
 X-Frame-Options: ALLOW-FROM https://example.com/

Axx: Clickjacking prevention

 Initial approach
 HTTP header X-Frame-Options:
 Note: ‘X’ means experimental and temporary
 Sites can tell browsers never to load their content in an
<iframe>

 X-Frame-Options: DENY
 Sites can tell browsers to only allow <iframe> from same site
 X-Frame-Options: SAMEORIGIN

 Sites can tell browsers to only allow <iframe> from specific
site
 X-Frame-Options: ALLOW-FROM https://example.com/

 Current approach
 Content-Security-Policy header
 frame-ancestors directive

https://example.com/

Labs and homework

 See previous handout

Questions

 https://sayat.me/wu4f

https://sayat.me/wu4f

Clickjacking example

mashimaro <~> 8:52PM % telnet google.com 80
Trying 2607:f8b0:400a:800::200e...
Connected to google.com.
Escape character is '^]'.
GET / HTTP/1.1
Host: google.com

HTTP/1.1 301 Moved Permanently
Location: http://www.google.com/
Content-Type: text/html; charset=UTF-8
Date: Mon, 06 Nov 2017 04:52:22 GMT
Expires: Wed, 06 Dec 2017 04:52:22 GMT
Cache-Control: public, max-age=2592000
Server: gws
Content-Length: 219
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN

<HTML><HEAD><meta http-equiv="content-type" content="text/html;charset=utf-8">
<TITLE>301 Moved</TITLE></HEAD><BODY>
<H1>301 Moved</H1>
The document has moved
here.
</BODY></HTML>

