
A10: Unvalidated Redirects and Forwards

Axx: Unsolicited Framing

A10: Unvalidated Redirects

 Web application redirects are very common
 Redirect request to a URL-supplied destination

 User accesses page requiring auth

 Redirected to login page with URL of origin page as parameter

 After login, redirected back to URL of origin page

 What if someone screen-scraped Yahoo, found an unvalidated

redirect on one of its properties, and phished you with this link in

a page/email?
https://r.yahoo.com/?.src=ym&.intl=us&.lang=en-US&.done=https%3a//login.yahoo.com.cxx

redirect to this URL after login

A10: Unvalidated Redirects

 If not validated, request bounces off of a site that is

legitimate and sends victim to a site run by the

adversary for phishing or automated malware

download
 Victim sees something that has the right domain, ends up at a site

that looks like it (but controlled by adversary)

 Podesta perhaps?

 What attack in the last lecture is this similar to?

Unvalidated Redirect Illustrated

3

2

Attacker sends attack to victim via email or
webpage

From: Internal Revenue Service

Subject: Your Unclaimed Tax

Refund

Our records show you have an

unclaimed federal tax refund.

Please click here to initiate your

claim.

1

Application redirects
victim to attacker’s
site

Request sent to

vulnerable site, including

attacker’s destination site

as parameter. Redirect

sends victim to attacker

site

Custom Code

A
c
c
o

u
n

ts

F
in

a
n

c
e

A
d

m
in

is
tr

a
ti

o
n

T
ra

n
s

a
c
ti

o
n

s

C
o

m
m

u
n

ic
a
ti

o
n

K
n

o
w

le
d

g
e

 M
g

m
t

E
-C

o
m

m
e
rc

e

B
u

s
.
F

u
n

c
ti

o
n

s

4
Evil site installs malware
on victim, or phish’s for
private information

Victim clicks link containing unvalidated
parameter

Evil Site

https://www.irs.gov/taxrefund/claim.jsp?year=
2006& … &dest=www.evilsite.com

http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&
http://www.irs.gov/taxrefund/claim.jsp?year=2006&

A10: Unvalidated Redirects

 Java

 PHP

response.sendRedirect(request.getParameter("url"));

$redirect_url = $_GET['url'];

header("Location: " . $redirect_url);

.NET redirect example

public ActionResult LogOn(LogOnModel model, string returnUrl) {

 if (ModelState.IsValid) {

 if (MembershipService.ValidateUser(model.UserName, model.Password)) {

 FormsService.SignIn(model.UserName, model.RememberMe);

 if (!String.IsNullOrEmpty(returnUrl)) {

 return Redirect(returnUrl);

 }

 else {

 return RedirectToAction("Index", "Home");

 }

 }

 else {

 ModelState.AddModelError("", “Incorrect user name or password.");

 }

 } // If we got this far, something failed, redisplay form

 return View(model);

}

A10: Unvalidated Forwards

 Forwards similar to redirects, but remain in

same web application
 Transfer in .NET

 Internally send the request to a new page in the same

application
 If access to target page not validated, attacker may be able to use

unvalidated forward to bypass authentication or authorization

checks

Unvalidated Forward Illustrated

2

Attacker sees link in vulnerable, but accessible page that calls the forward

Forwarding code assumes “dest” set via page and has no malicious values 1

Application
authorizes request,
which continues to
the forward

3 Forwarding pathway fails to
validate destination page.
Attacker sets target to a page of
his/her choosing (potentially an
unauthorized page), bypassing
access control

 public void doPost(HttpServletRequest request,
HttpServletResponse response) {

 try {
 String target = request.getParameter("dest"));

 ...
 request.getRequestDispatcher(target

).forward(request, response);
}
catch (...

Filter

 public void sensitiveMethod(
HttpServletRequest request,
HttpServletResponse response) {

 try {
 // Do sensitive stuff here.
 ...

}
catch (...

JSP forward example

 Redirect within site via internal fwd parameter

public class ForwardServlet extends HttpServlet

{

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 String query = request.getQueryString();

 if (query.contains("fwd"))

 {

 String fwd = request.getParameter("fwd");

 try

 {

 request.getRequestDispatcher(fwd).forward(request, response);

 }

 catch (ServletException e)

 {

 e.printStackTrace();

 }

 }

 }

}

A10 – Prevention

 Avoid using redirects and forwards
 If used, don’t include user input in defining the target URL

 If you ‘must’ include user input, then, validate each

parameter to ensure its valid and authorized access

 Whitelist redirect locations to ensure it goes to

an authorized external site

 Force redirects first to a page notifying user of

redirect and have them click to confirm

 Authorize via access controller before

forwarding
 Ensure all users who can access the original page are

ALL authorized to access the target page when used

OWASP resources

 OWASP’s Guide to Building Secure Web

Applications
 https://www.owasp.org/index.php/Guide

 Cheat sheets
 https://www.owasp.org/index.php/Cheat_Sheets

 Application Security Verification Standard
 https://www.owasp.org/index.php/ASVS

 OWASP’s ESAPI tools
 https://www.owasp.org/index.php/ESAPI

https://www.owasp.org/index.php/Guide
https://www.owasp.org/index.php/Cheat_Sheets
https://www.owasp.org/index.php/ASVS
http://www.owasp.org/index.php/ESAPI

Axx: Unsolicited Framing, UI Redress

(Clickjacking)
 Users visit a malicious website
 Malicious site contains an <iframe> that loads a

legitimate site in a transparent manner

 Malicious site puts up an enticing button for user to click

 User clicks on what appears to be button, but button in

transparent frame clicked instead

Axx: Clickjacking prevention

 HTTP header X-Frame-Options
 Sites can tell browsers never to load their content in an
<iframe>

 X-Frame-Options: DENY

 Sites can tell browsers to only allow <iframe> from

same site
 X-Frame-Options: SAMEORIGIN

 Sites can tell browsers to only allow <iframe> from

specific site
 X-Frame-Options: ALLOW-FROM https://example.com/

Axx: Clickjacking prevention

  Initial approach
 HTTP header X-Frame-Options:
 Note: ‘X’ means experimental and temporary
 Sites can tell browsers never to load their content in an
<iframe>

 X-Frame-Options: DENY
 Sites can tell browsers to only allow <iframe> from same site
 X-Frame-Options: SAMEORIGIN

 Sites can tell browsers to only allow <iframe> from specific
site
 X-Frame-Options: ALLOW-FROM https://example.com/

 Current approach
 Content-Security-Policy header
 frame-ancestors directive

https://example.com/

Labs and homework

 See previous handout

Questions

 https://sayat.me/wu4f

https://sayat.me/wu4f

Clickjacking example

mashimaro <~> 8:52PM % telnet google.com 80
Trying 2607:f8b0:400a:800::200e...
Connected to google.com.
Escape character is '^]'.
GET / HTTP/1.1
Host: google.com

HTTP/1.1 301 Moved Permanently
Location: http://www.google.com/
Content-Type: text/html; charset=UTF-8
Date: Mon, 06 Nov 2017 04:52:22 GMT
Expires: Wed, 06 Dec 2017 04:52:22 GMT
Cache-Control: public, max-age=2592000
Server: gws
Content-Length: 219
X-XSS-Protection: 1; mode=block
X-Frame-Options: SAMEORIGIN

<HTML><HEAD><meta http-equiv="content-type" content="text/html;charset=utf-8">
<TITLE>301 Moved</TITLE></HEAD><BODY>
<H1>301 Moved</H1>
The document has moved
here.
</BODY></HTML>

