
But first…

Authentication, Authorization, Sessions

A2: Broken Authentication and

Session Management

Authentication
 Determining user identity

 Multiple ways
 What you know (password)

 What you have (phone, RSA SecureID, Yubikey)

 Who you are (fingerprint, eye scan)

 Where you are (GPS, IP address)

Authorization
 Ensure users only perform actions in their privilege level or role

(A4/A7)
 Policy to set which users are allowed which actions on which

objects

 Users
 User, external web application, internal web application, database

 Actions
 Read, Write, Execute, Append, Create, Delete

 Objects
 Resource (network, operating system, files, web application,

database, etc.)
 Policy
 Discretionary Access Control (object owner decides)
 Mandatory Access Control (system/administrator decides)

 Stronger limits on activity
 Role-Based Access Control (system decides based on user role)

Session management

 Embodiment of user’s authentication and authorization for

duration of the user’s interaction with service

 Sessions used to maintain authentication and

authorization state over stateless HTTP

 Done via multiple mechanisms sent on each request
 HTTP cookies

 URL parameters (not recommended)

 JavaScript web tokens

 HTML5 session storage

 Hidden Form fields

A2 – Broken Authentication and Session

Management

Example: Guessable credentials

 Common passwords and weak passwords allowed

Example: Common credentials

 Default passwords or security credentials left

unchanged

 Allows easy, brute-force attacks by an adversary

 Example lists
 http://www.defaultpassword.com/

 https://wiki.skullsecurity.org/Passwords

 Metasploit’s Mirai lists, Dyn IoT attack (10/2016)

 Repository of passwords dumped from vulnerable sites

that stored them in the clear
apt-get install seclists

ls /usr/share/seclists

http://www.defaultpassword.com/
https://wiki.skullsecurity.org/Passwords

Example: Guessable resets

 Guessable password reset questions
 Information publicly available or easily inferred

 Anonymous hack of Sarah Palin’s Yahoo account 2008
 ZIP, birthdate, where she met spouse

 Guessable “Change My Password” links

Example: Vulnerable authentication

processes

 No rate-limits on authentication attempts and failures
 Via web front-end and web API

 Side-channel attacks
 Username checked before password instead of

simultaneously

 Non-time-constant string comparison vulnerability

(Program #2)

Example: Password storage problems

 Passwords stored in the clear instead of hashed
 Single security compromise gives up all user credentials

 Credential reuse across sites makes problem worse

 Password hashes used, but stored without a “salt”
 Salt is random data hashed with password

 Attacker can employ precomputed dictionary attack via

rainbow tables

 Rainbow table lookup https://crackstation.net

https://crackstation.net/

Example: Password storage problems

 Salt added to prevent rainbow table lookup

 But, cryptographic hashes used instead of password

hashes
 Cryptographic hashes intended to be *fast*

 But, if one has salt and hash, a brute-force dictionary

attack is *still* fast against weak passwords

Example: Session IDs carried in URLs

Custom Code

A
c
c
o

u
n

ts

F
in

a
n

c
e

A
d

m
in

is
tr

a
ti

o
n

T
ra

n
s
a
c
ti

o
n

s

C
o

m
m

u
n

ic
a
ti

o
n

K

n
o

w
le

d
g

e

M
g

m
t

E
-C

o
m

m
e
rc

e

B
u

s
.
F

u
n

c
ti

o
n

s
 1 User sends credentials

2 Site uses URL rewriting

(i.e., put session in URL)

3 User clicks on a link to

http://www.hacker.com in a forum

www.boi.com?JSESSIONID=9FA1DB9EA...

4

Hacker checks referrer logs on

www.hacker.com

and finds user’s JSESSIONID
5 Hacker uses JSESSIONID

and takes over victim’s

account

http://www.hacker.com/
http://www.hacker.com/

Example: Exposed tokens and

cookies
 Cookies sent over HTTP

 Dump via Burp, Wireshark, or browser tools

 Session hijacking, request forgery

Example: Vulnerable tokens and

cookies
 Repeated or unchanging session tokens
 Persistent access if captured

 Predictable generation of session tokens
 Blind hijacking of authorized sessions

 Unsigned session tokens
 Forging authorized sessions (JavaScript Web Token)

Example: Vulnerable tokens and

cookies

 Insecure management of session information at server
 User sessions stored in server insecurely

 PHP active sessions directory
cat /var/lib/php5/sess_o8d7lr4p16d9gec7ofkdbnhm93

pentesterlab|s:12:"pentesterlab";

 Global session management in web frameworks
 Vulnerable to side-channel attacks for co-located apps (natas)

Example: Case sensitivity mismatch

 Database and web application handle case differently

 Creating a user with an existing username

 Allow access to “admin” account via “Admin” or

“ADMIN”

A2 – Prevention

Authentication Cheat Sheet

https://www.owasp.org/index.php/Authentication_Cheat_Sheet

Password Storage Cheat Sheet

https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

Forgot Password Cheat Sheet

https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet

Session Management Cheat Sheet

https://www.owasp.org/index.php/Session_Management_Cheat_She

et

https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

Verify authentication architecture

 Use session management provided by your framework

 Ensure SSL/TLS protects all credential transmission
 Form data, HTTP Auth, etc.

 Limit exposure of credentials (e.g. do not send

repeatedly)

 Ensure secure storage of credentials at end points

Password management best practices

 Remove unnecessary accounts and default credentials

 Enforce strong password policies
 Ensure capital+lower-case letters, numbers, symbols

used

 No username in password

 No dictionary words in password

 Enforce minimum length > 8 characters

 No obvious substitutions (e.g. zero for o)

 No common passwords

 Ban credentials that have been compromised and

dumped
 https://haveibeenpwned.com/

 Recommend password managers to users

https://haveibeenpwned.com/

Password storage

 Employ hash stretching and a password hashing algorithm

when storing passwords
 Use hashes that are extremely slow to compute

 Attacker obtaining hashes can’t perform an efficient, offline

dictionary attack to obtain weak passwords of users

 One mechanism: use a salt and iterate through a password

hash algorithm multiple times
 scrypt or bcrypt (iteration = 100ms)

 PBKDF2([salt] + [password], c=140,000);

 https://krebsonsecurity.com/2012/06/how-companies-can-beef-

up-password-security

https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security

Multi-factor authentication

 Employ out-of-band token
 Two-factor auth via Google Authenticator, Duo

 Yubikey authentication

 Mobile messaging app

 But avoid SMS (SS7)

Multi-factor authentication

 Biometric authentication

 Use IP address and geographic location information

 Multiple, good identity questions
 https://www.owasp.org/index.php/Choosing_and_Using_

Security_Questions_Cheat_Sheet

 Enforce lockout policy on multiple failures

 Employ security seals in authentication
 To train users to detect phishing attacks

https://www.owasp.org/index.php/Choosing_and_Using_Security_Questions_Cheat_Sheet
https://www.owasp.org/index.php/Choosing_and_Using_Security_Questions_Cheat_Sheet

Authorization best practices

 Centralize authorization mechanism

 Minimize custom authorization code

 Authorize every request at the server

 Fail closed
 Unexpected input causes connection termination (see

PHP issues)

 Operate with Least Privilege
 Separate user and administrator accounts

 Run web server as a regular user

 Keep accounts unique
 No account sharing

Session management architecture

 Keep as much information on server as possible
 Rely upon an opaque session ID that contains no semantic

content
 Never trust client or network
 Avoid insecure client-side authorization tokens
 Encrypt and digitally sign anything sent to client for storage

that needs to come back unmodified (while keeping key to
yourself)

 Remove session information from URL (and thus, browsing
history)

 Timeout sessions
 Ensure session ID expiration
 Verify that logoff actually destroys the session (OWASP’s

WebScarab)
 Ensure all session information transmitted via SSL/TLS and

only via HTTPS
 e.g. secure flag and HTTP-only flag on cookies

Labs, homework, and program

 See handout
 Session #2
 For AJAX responses, in Chrome
 Developer Tools:Network:XHR:<req>:Response

 Session #4
 In python3

username = "%04d" % i

 Session #6
 Cookie value is set both by the server (via Set-cookie:), as well

as by the JavaScript code the client executes.
// Answer Controller

document.cookie="ac=ZG9Ob3RSZXR1cm5BbnN3ZXJz";

 When solving via a Python script, JavaScript is not executed.
As a result, an additional cookie parameter must be added
manually to avoid the “INVALID CONTROL SET” error.
cookies={'ac':'ZG9Ob3RSZXR1cm5BbnN3ZXJz'}

Questions

 https://sayat.me/wu4f

https://sayat.me/wu4f

Extra

Example: Poor CAPTCHAs
 Logic flaws

 if params[:captcha] and params[:captcha] !=

session[:captcha]

 # ERROR: CAPTCHA is invalid redirect

end

CAPTCHA is valid

If no captcha is provided, the script does not fail

safely

 CAPTCHA answer easily guessable
 Single-digit sum

 Repeated answers

 OCR tools

 Improper rate-limits for incorrect guesses

