
But first…

Authentication, Authorization, Sessions

A2: Broken Authentication and

Session Management

Authentication
 Determining user identity

 Multiple ways
 What you know (password)

 What you have (phone, RSA SecureID, Yubikey)

 Who you are (fingerprint, eye scan)

 Where you are (GPS, IP address)

Authorization
 Ensure users only perform actions in their privilege level or role

(A4/A7)
 Policy to set which users are allowed which actions on which

objects

 Users
 User, external web application, internal web application, database

 Actions
 Read, Write, Execute, Append, Create, Delete

 Objects
 Resource (network, operating system, files, web application,

database, etc.)
 Policy
 Discretionary Access Control (object owner decides)
 Mandatory Access Control (system/administrator decides)

 Stronger limits on activity
 Role-Based Access Control (system decides based on user role)

Session management

 Embodiment of user’s authentication and authorization for

duration of the user’s interaction with service

 Sessions used to maintain authentication and

authorization state over stateless HTTP

 Done via multiple mechanisms sent on each request
 HTTP cookies

 URL parameters (not recommended)

 JavaScript web tokens

 HTML5 session storage

 Hidden Form fields

A2 – Broken Authentication and Session

Management

Example: Guessable credentials

 Common passwords and weak passwords allowed

Example: Common credentials

 Default passwords or security credentials left

unchanged

 Allows easy, brute-force attacks by an adversary

 Example lists
 http://www.defaultpassword.com/

 https://wiki.skullsecurity.org/Passwords

 Metasploit’s Mirai lists, Dyn IoT attack (10/2016)

 Repository of passwords dumped from vulnerable sites

that stored them in the clear
apt-get install seclists

ls /usr/share/seclists

http://www.defaultpassword.com/
https://wiki.skullsecurity.org/Passwords

Example: Guessable resets

 Guessable password reset questions
 Information publicly available or easily inferred

 Anonymous hack of Sarah Palin’s Yahoo account 2008
 ZIP, birthdate, where she met spouse

 Guessable “Change My Password” links

Example: Vulnerable authentication

processes

 No rate-limits on authentication attempts and failures
 Via web front-end and web API

 Side-channel attacks
 Username checked before password instead of

simultaneously

 Non-time-constant string comparison vulnerability

(Program #2)

Example: Password storage problems

 Passwords stored in the clear instead of hashed
 Single security compromise gives up all user credentials

 Credential reuse across sites makes problem worse

 Password hashes used, but stored without a “salt”
 Salt is random data hashed with password

 Attacker can employ precomputed dictionary attack via

rainbow tables

 Rainbow table lookup https://crackstation.net

https://crackstation.net/

Example: Password storage problems

 Salt added to prevent rainbow table lookup

 But, cryptographic hashes used instead of password

hashes
 Cryptographic hashes intended to be *fast*

 But, if one has salt and hash, a brute-force dictionary

attack is *still* fast against weak passwords

Example: Session IDs carried in URLs

Custom Code

A
c
c
o

u
n

ts

F
in

a
n

c
e

A
d

m
in

is
tr

a
ti

o
n

T
ra

n
s
a
c
ti

o
n

s

C
o

m
m

u
n

ic
a
ti

o
n

K

n
o

w
le

d
g

e

M
g

m
t

E
-C

o
m

m
e
rc

e

B
u

s
.
F

u
n

c
ti

o
n

s
 1 User sends credentials

2 Site uses URL rewriting

(i.e., put session in URL)

3 User clicks on a link to

http://www.hacker.com in a forum

www.boi.com?JSESSIONID=9FA1DB9EA...

4

Hacker checks referrer logs on

www.hacker.com

and finds user’s JSESSIONID
5 Hacker uses JSESSIONID

and takes over victim’s

account

http://www.hacker.com/
http://www.hacker.com/

Example: Exposed tokens and

cookies
 Cookies sent over HTTP

 Dump via Burp, Wireshark, or browser tools

 Session hijacking, request forgery

Example: Vulnerable tokens and

cookies
 Repeated or unchanging session tokens
 Persistent access if captured

 Predictable generation of session tokens
 Blind hijacking of authorized sessions

 Unsigned session tokens
 Forging authorized sessions (JavaScript Web Token)

Example: Vulnerable tokens and

cookies

 Insecure management of session information at server
 User sessions stored in server insecurely

 PHP active sessions directory
cat /var/lib/php5/sess_o8d7lr4p16d9gec7ofkdbnhm93

pentesterlab|s:12:"pentesterlab";

 Global session management in web frameworks
 Vulnerable to side-channel attacks for co-located apps (natas)

Example: Case sensitivity mismatch

 Database and web application handle case differently

 Creating a user with an existing username

 Allow access to “admin” account via “Admin” or

“ADMIN”

A2 – Prevention

Authentication Cheat Sheet

https://www.owasp.org/index.php/Authentication_Cheat_Sheet

Password Storage Cheat Sheet

https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet

Forgot Password Cheat Sheet

https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet

Session Management Cheat Sheet

https://www.owasp.org/index.php/Session_Management_Cheat_She

et

https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

Verify authentication architecture

 Use session management provided by your framework

 Ensure SSL/TLS protects all credential transmission
 Form data, HTTP Auth, etc.

 Limit exposure of credentials (e.g. do not send

repeatedly)

 Ensure secure storage of credentials at end points

Password management best practices

 Remove unnecessary accounts and default credentials

 Enforce strong password policies
 Ensure capital+lower-case letters, numbers, symbols

used

 No username in password

 No dictionary words in password

 Enforce minimum length > 8 characters

 No obvious substitutions (e.g. zero for o)

 No common passwords

 Ban credentials that have been compromised and

dumped
 https://haveibeenpwned.com/

 Recommend password managers to users

https://haveibeenpwned.com/

Password storage

 Employ hash stretching and a password hashing algorithm

when storing passwords
 Use hashes that are extremely slow to compute

 Attacker obtaining hashes can’t perform an efficient, offline

dictionary attack to obtain weak passwords of users

 One mechanism: use a salt and iterate through a password

hash algorithm multiple times
 scrypt or bcrypt (iteration = 100ms)

 PBKDF2([salt] + [password], c=140,000);

 https://krebsonsecurity.com/2012/06/how-companies-can-beef-

up-password-security

https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security

Multi-factor authentication

 Employ out-of-band token
 Two-factor auth via Google Authenticator, Duo

 Yubikey authentication

 Mobile messaging app

 But avoid SMS (SS7)

Multi-factor authentication

 Biometric authentication

 Use IP address and geographic location information

 Multiple, good identity questions
 https://www.owasp.org/index.php/Choosing_and_Using_

Security_Questions_Cheat_Sheet

 Enforce lockout policy on multiple failures

 Employ security seals in authentication
 To train users to detect phishing attacks

https://www.owasp.org/index.php/Choosing_and_Using_Security_Questions_Cheat_Sheet
https://www.owasp.org/index.php/Choosing_and_Using_Security_Questions_Cheat_Sheet

Authorization best practices

 Centralize authorization mechanism

 Minimize custom authorization code

 Authorize every request at the server

 Fail closed
 Unexpected input causes connection termination (see

PHP issues)

 Operate with Least Privilege
 Separate user and administrator accounts

 Run web server as a regular user

 Keep accounts unique
 No account sharing

Session management architecture

 Keep as much information on server as possible
 Rely upon an opaque session ID that contains no semantic

content
 Never trust client or network
 Avoid insecure client-side authorization tokens
 Encrypt and digitally sign anything sent to client for storage

that needs to come back unmodified (while keeping key to
yourself)

 Remove session information from URL (and thus, browsing
history)

 Timeout sessions
 Ensure session ID expiration
 Verify that logoff actually destroys the session (OWASP’s

WebScarab)
 Ensure all session information transmitted via SSL/TLS and

only via HTTPS
 e.g. secure flag and HTTP-only flag on cookies

Labs, homework, and program

 See handout
 Session #2
 For AJAX responses, in Chrome
 Developer Tools:Network:XHR:<req>:Response

 Session #4
 In python3

username = "%04d" % i

 Session #6
 Cookie value is set both by the server (via Set-cookie:), as well

as by the JavaScript code the client executes.
// Answer Controller

document.cookie="ac=ZG9Ob3RSZXR1cm5BbnN3ZXJz";

 When solving via a Python script, JavaScript is not executed.
As a result, an additional cookie parameter must be added
manually to avoid the “INVALID CONTROL SET” error.
cookies={'ac':'ZG9Ob3RSZXR1cm5BbnN3ZXJz'}

Questions

 https://sayat.me/wu4f

https://sayat.me/wu4f

Extra

Example: Poor CAPTCHAs
 Logic flaws

 if params[:captcha] and params[:captcha] !=

session[:captcha]

 # ERROR: CAPTCHA is invalid redirect

end

CAPTCHA is valid

If no captcha is provided, the script does not fail

safely

 CAPTCHA answer easily guessable
 Single-digit sum

 Repeated answers

 OCR tools

 Improper rate-limits for incorrect guesses

