A2: Broken Authentication and

Session Management

But first...
Authentication, Authorization, Sessions

e

Authentication

e Determining user identity
e Multiple ways
e What you know (password)
 What you have (phone, RSA SecurelD, Yubikey)
 Who you are (fingerprint, eye scan)
e Where you are (GPS, IP address)

-

Authorization

e Ensure users only perform actions in their privilege level or role
(A4/AT)

e Policy to set which users are allowed which actions on which
objects Guard

User J Protected

Subject resource
Principal (Object)

e Users
User, external web application, internal web application, database
e Actions
Read, Write, Execute, Append, Create, Delete
e Objects
Resource (network, operating system, files, web application,
database, etc.)
e Policy
Discretionary Access Control (object owner decides)
Mandatory Access Control (system/administrator decides)
Stronger limits on activity
Role-Based Access Control (system decides based on user role)

/

4 .
Session management

e Embodiment of user’s authentication and authorization for
duration of the user’s interaction with service

e Sessions used to maintain authentication and
authorization state over stateless HTTP

e Done via multiple mechanisms sent on each request
e HTTP cookies
e URL parameters (not recommended)
e JavaScript web tokens
e HTML5 session storage
e Hidden Form fields

e

A2 — Broken Authentication and Session
Management

e

Example: Guessable credentials

e Common passwords and weak passwords allowed

RANK PASSWORD Fgml“zﬂnﬁ . - . B
1 123456 Unchanged 14 111111 1A
2 password Unchanged 15 10az2wsX @
3 12345678 1 16 dragon 7 N
4 qwerty 1A 17 master 2 A
5 12345 2N 18 monkey 6\
6 123456789 Unchanged 19 letmein 6 \J
7 football 3 A 20 login @
8 1234 D | 21 princess @
9 1234567 2 A 22 qwertyuiop @
10 baseball 2 N 23 solo @
11 welcome @ 24 password @
12 1234567890 @ 25 starwars @

4 .
Example: Common credentials

e Default passwords or security credentials left
unchanged

* Allows easy, brute-force attacks by an adversary

o Example lists

e Metasploit’'s Mirai lists, Dyn IoT attack (10/2016)
e Repository of passwords dumped from vulnerable sites

that stored them in the clear
apt—-get 1nstall seclists

ls /usr/share/seclists

http://www.defaultpassword.com/
https://wiki.skullsecurity.org/Passwords

e
Example: Guessable resets

* Guessable password reset questions
e Information publicly available or easily inferred

 Anonymous hack of Sarah Palin’s Yahoo account 2008
ZIP, birthdate, where she met spouse

e Guessable “Change My Password” links

4 . .
Example: Vulnerable authentication

processes

e No rate-limits on authentication attempts and failures
* Via web front-end and web API

e Side-channel attacks
e Username checked before password instead of

simultaneously
e Non-time-constant string comparison vulnerability

(Program #2)

e

Example: Password storage problems

e Passwords stored in the clear instead of hashed
e Single security compromise gives up all user credentials
e Credential reuse across sites makes problem worse

alpha:Alfred Phangiso:Alfie99
bravo:David Bravo:aprilVII2004
charlie:Charles Windsor:password
duck:Philip Ducklin:password
echo:Eric Cleese:norwegianBlue

e Password hashes used, but stored without a “salt”
e Salt is random data hashed with password
e Attacker can employ precomputed dictionary attack via
rainbow tables
e Rainbow table lookup

alpha:Alfred Phangiso:D5D459FFDFCE. .7DCF36519198
bravo:David Bravo:4620FOE4F362..9C88A6B3BDOY
charlie:Charles Windsor:5E884898DA28..EF721D1542D8
duck:Philip Ducklin:5E884898DA28..EF721D1542D8
echo:Eric Cleese:89E1D86C63BS8. .6DOCCT7424EDC

™~

https://crackstation.net/

4 N
Example: Password storage problems

e Salt added to prevent rainbow table lookup
fusername:realname:Salt:hash

alpha:Alfred Phangiso:
bravo:David Bravo:
charlie:Charles Windsor:
duck:Philip Ducklin:
echo:Eric Cleese:

e But, cryptographic hashes used instead of password

hashes

e Cryptographic hashes intended to be *fast*

e But, if one has salt and hash, a brute-force dictionary
attack is *still* fast against weak passwords

e

Example: Session IDs carried in URLS

&)
N

™~

@ User sends credentials

www.boi.com?JSESSIONID=9FA1DB9EA...

How to Hijack a Session

session belangig o semeone et

uuuuuuuuuuu

“Password:

Hacker uses JSESSIONID
and takes over victim’s
account

Site uses URL rewriting

Custom Code

(2)

@ User clicks on alink to

hitp://www.hacker.com in a forum
Hacker checks referrer logs on

www.hacker.com

http://www.hacker.com/
http://www.hacker.com/

e
Example: Exposed tokens and

cookies

e Cookies sent over HTTP
e Dump via Burp, Wireshark, or browser tools
e Session hijacking, request forgery

aenn Mozilla Firefox =
(Untitled)

(S Google 'i'
Firesheep [l

C Stop Capturing _)

e
Example: Vulnerable tokens and

cookies

e Repeated or unchanging session tokens
e Persistent access if captured
* Predictable generation of session tokens
e Blind hijacking of authorized sessions
e Unsigned session tokens
e Forging authorized sessions (JavaScript Web Token)

Example: Vulnerable tokens and
cookies

e Insecure management of session information at server
e User sessions stored in server insecurely

e PHP active sessions directory
cat /var/lib/php5/sess 08d71r4pl6d9gec7ofkdbnhm93
pentesterlab|s:12:"pentesterlab";

e Global session management in web frameworks
Vulnerable to side-channel attacks for co-located apps (natas)

4 . . N
Example: Case sensitivity mismatch

e Database and web application handle case differently
e Creating a user with an existing username
e Allow access to “admin™ account via “Admin” or

“ADMIN”

a .
A2 — Prevention

Authentication Cheat Sheet
https:/lwww.owasp.org/index.php/Authentication Cheat Sheet

Password Storage Cheat Sheet
https://www.owasp.org/index.php/Password Storage Cheat Sheet

Forgot Password Cheat Sheet
https://www.owasp.org/index.php/Forgot Password Cheat Sheet

Session Management Cheat Sheet
https:/lwww.owasp.org/index.php/Session Management Cheat She
et

https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet
https://www.owasp.org/index.php/Forgot_Password_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet
https://www.owasp.org/index.php/Session_Management_Cheat_Sheet

e

Verify authentication architecture

» Use session management provided by your framework

e Ensure SSL/TLS protects all credential transmission
e Form data, HTTP Auth, etc.

e Limit exposure of credentials (e.g. do not send
repeatedly)

e Ensure secure storage of credentials at end points

4 . N
Password management best practices

e Remove unnecessary accounts and default credentials

e Enforce strong password policies
e Ensure capital+lower-case letters, numbers, symbols
used
e NO username in password
e No dictionary words in password
e Enforce minimum length > 8 characters
e No obvious substitutions (e.g. zero for 0)
e NOo common passwords

e Ban credentials that have been compromised and
dumped

e Recommend password managers to users

- /

https://haveibeenpwned.com/

e
Password storage

 Employ hash stretching and a password hashing algorithm
when storing passwords
e Use hashes that are extremely slow to compute
e Attacker obtaining hashes can’t perform an efficient, offline
dictionary attack to obtain weak passwords of users
e One mechanism: use a salt and iterate through a password

hash algorithm multiple times

e scrypt or bcrypt (iteration = 100ms)

e PBKDF2([salt] + [password], c=140,000);

e https://krebsonsecurity.com/2012/06/how-companies-can-beef-
up-password-security

#username:realname: iterations: salt: hash

alpha:Alfred Phangiso:
bravo:David Bravo: 8
charlie:Charles Windsor:
duck:Philip Ducklin:
\\\ echo:Eric Cleese:

https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security
https://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security

a . . .
Multi-factor authentication

e Employ out-of-band token
e Two-factor auth via Google Authenticator, Duo
e Yubikey authentication
e Mobile messaging app

e But avoid SMS (SS7)
naked security ., sopros 05 may 2017 o,

Bank accounts raided after crooks exploit

huge flaw in mobile networks

The Signalling System No. 7 (S57) telephony signaling protocol used to establish interoperability
across some 800+ service providers worldwide, is deeply vulnerable to interception by hackers,
criminals, and corrupt insiders. We've known this for years. Now, in Germany, someone's used that
vulnerability to raid consumers’ aonline bank accounts.

Meanwhile, per The Register, the attackers “purchased access to a rogue telecommunications
provider and set up a redirect for the victim's mobile phone number to a handset controlled by the
attackers”. Now, they could wait until late at night, log into the victims' online accounts, and start
money transfers. As part of their SMS-based two-factor authentication (2FA) systems, the banks
would dutifully send one-time mobile transaction authentication number (M TAN) numbers to their

customers. These would be hijacked by the criminals, who now had the second authentication factor

they needed to complete the thefts.

a . . .
Multi-factor authentication

e Biometric authentication
e Use IP address and geographic location information
e Multiple, good identity questions

» Enforce lockout policy on multiple failures

 Employ security seals in authentication
e To train users to detect phishing attacks

https://www.owasp.org/index.php/Choosing_and_Using_Security_Questions_Cheat_Sheet
https://www.owasp.org/index.php/Choosing_and_Using_Security_Questions_Cheat_Sheet

Authorization best practices

e Centralize authorization mechanism
e Minimize custom authorization code
e Authorize every request at the server
e Fail closed

e Unexpected input causes connection termination (see
PHP issues)

e Operate with Least Privilege
e Separate user and administrator accounts
e Run web server as a regular user

e Keep accounts unique
e No account sharing

e

Session management architecture

» Keep as much information on server as possible
e Rely upon an opaque session ID that contains no semantic
content
* Never trust client or network
e Avoid insecure client-side authorization tokens
e Encrypt and digitally sign anything sent to client for storage
that needs to come back unmaodified (while keeping key to
yourself)
e Remove session information from URL (and thus, browsing
history)
e Timeout sessions
e Ensure session ID expiration
 Verify that logoff actually destroys the session (OWASP’s
WebScarab)
e Ensure all session information transmitted via SSL/TLS and
only via HTTPS
e e.g. secure flag and HTTP-only flag on cookies

e
Labs, homework, and program

e See handout

e Session #2
e For AJAX responses, in Chrome
Developer Tools:Network:XHR:<reg>:Response
e Session #4
e In python3

username = "%044d" % 1

e Session #6
e Cookie value is set both by the server (via Set-cookie:), as well
as by the JavaScript code the client executes.

// Answer Controller
document.cookie="ac=2G90b3RSZXR1cm5BbnN3zXJz";

e When solving via a Python script, JavaScript is not executed.
As a result, an additional cookie parameter must be added
manually to avoid the “INVALID CONTROL SET” error.

cookies={"ac':'ZG90b3RSZXR1cmbBbnN3zXJz"'}

4 .
Questions

e https://sayat.me/wu4f

https://sayat.me/wu4f

Extra

e
E(()glc nnle le: Poor CAPTCHAS

1f params|[:captcha] and params|[:captcha] !=
session|[:captcha]l
ERROR: CAPTCHA is invalid redirect
end
CAPTCHA is valid

If no captcha is provided, the script does not fail
safely

e CAPTCHA answer easily guessable
e Single-digit sum

* Repeated answers

e OCR tools

e Improper rate-limits for incorrect guesses

