A6:. Sensitive Data Exposure

/

A6 — Sensitive Data Exposure

e Sensitive data stored or transmitted insecurely

e Failure to protect all sensitive data
Usernames, passwords, password hashes, credit-card information,
identity info
Session IDs, cookies

e Failure to protect all places sensitive data gets stored
Databases, files, directories, log files, backups, etc.

e Failure to protect all transmissions of sensitive data
Web, backend databases, business partners, internal
communications

4 . .
Example: Artifacts Iin source code

» Developers leaving secrets or tests in code
e API| keys Inside git repositories
e Comments by developers giving hints to hidden
functionality (within HTML or code).

4 N
Example: Insecure Storage

Victim enters credit
card number in form

nowledge
am

O
IS
2
c
S
(S
(S
o
@)

Custom Code

Malicious insider

Stea|b5 credit card Error handler logs CC @
numpbers details because

merchant gateway is

gﬂavailable
Logs are accessible to @
all members of IT staff

for debugging purposes

e

External
attacker steals
credentials and
data off
network

External Attacker

N

Example: Insecure Transport

"
Y

Business Partners
n

Backend Systems

»Y

@ Employees

Internal attacker
steals credentials
and data from
Internal network

Internal Attacker
Target 2013 breach, $252 miIIion/

http://www.swbic.org/products/clipart/images/computeruser.jpg
http://www.swbic.org/products/clipart/images/computeruser.jpg

/Example: Poor use of cryptography

* Weak algorithms (Base64, MD5, AES-ECB Mode,

RC4/SSL 3.0)

e Poorly used algorithms
e Pseudo-random number generators (PRNGS) with
predictable seeds
e Unsalted cryptographic hashes
e Examples
e Guessable two-factor PIN codes
e Guessable password resets (e.g. generated passwords,
reset links)

e

A6 — Prevention

4 . .
Verify architecture

e Ensure threat model accounts for possible attacks

e Encrypt everything

e Encryption at rest
All sensitive data
All the places that data is stored

e Encryption in flight
All times that data iIs communicated

e Cloud providers
Default encryption at rest on most
Backend communication calls all encrypted
But, front-end is your responsibility (i.e. https)

/Use algorithms appropriately

e Use standard strong algorithms
e Verify
e All keys, certificates, and passwords are securely
generated, distributed, stored, and protected
e Effective plan for key change are in place

e Audit code the utilizes encryption code for common flaws
(e.g. unsalted password hashes, uninitialized data)

4 .
Enable transport security

e Enable TLS for all connections
e HSTS (HTTP Strict Transport Security)
e HSTS Chrome preload list

http://src.chromium.org/viewvc/chrome/trunk/src/net/http/
transport security state static.json

e Employ certificate and public key pinning
e Key continuity to prevent rogue CA from redirecting your
traffic
e WoSign 8/2016
e Use the mechanisms correctly
» Disable old SSL algorithms (Poodle)

http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

/Labs and homework

e Toy examples that don'’t require topics in CS 485/585

to perform
e For more, take CS 485/585
e Do the Matasano crypto challenges

http://cryptopals.com/

/Lab Ruby walkthrough

e Break improper use of pseudo-random number

generators to generate default passwords
e Code uses Ruby to generate password

e Seeds the random number generator with a constant
Random.new(seed)

e Initial passwords are generated deterministically based
on calls to the RNG
e One generated password and the order in which it was

generated is known
Attack
Brute-force all seeds until a generated password matches your
known password
Reveals the seed
Use position of known passwords to deduce password of first
(admin) user

/Lab Ruby example

e Code to generate random usernames
e Find the seeds that produce “vwywbw Or “jozfbe” as
random_name for the following code

s = Random.new (seed)
random name = 6.times.map{('a'..'z').to al[s.rand(('a'..'z").to a.size)]}.join

/ / /
Joinchars to

Repeat 6 times form username

Create an array _Gener_ate random of length 6
out of lowercase index into array
letters of lowercase

characters

Generate size of
character array
to select from

/Lab Ruby walkthrough

* Find the seeds that produce “vwywbw Or “jozfbe” as the

first username
e Invoke program as

ruby InsecureCryptoStoragel.rb

s = Random.new(seed)

Use PRNG to generate username

6.times -> Generate 6 random characters
('a'..'z'").to a -> Create array of lowercase letters
[s.rand(('a'..'z").to a.size] -> Index letter array with random number between 0,25
random name = 6.times.map{ ('a'..'z').to al[s.rand(('a'..'z').to a.size)]}.join
print "Trying seed: ", seed, "\n"
if (random name == 'vwywbw') || (random name == 'Jjozfbe')
print "Found ",random name," as first userid for seed: ",seed,"\n"

print "MD5 hash of ",random name," is ",Digest::MD5.hexdigest (random name),"\n"
seed=seed+l1
else
seed=seed+l1
end
end

/Other helpful Ruby constructs

* Bounded ‘do’ loops

10.times do |1
puts 1
end

Before starting, do these two loops have the same output?

s = Random.new (0) 10.times do |i|

10.times do |1 s = Random.new (0)
print 1i," ",s.rand(100),"\n" i.times{s.rand(100)}
end print 1i," ",s.rand(100),"\n"
end

/
Homework

» |nsecure Cryptographic Storage Lesson
e ccho —n Ym.Gluz0zZyb21Z2b3U= | baseod -d

* |Insecure Cryptographic Storage Challenge #1
e Reverse-engineer a simple rotation cipher
* Insecure Cryptographic Storage Challenge #2
e Reverse-engineer a multi-alphabetic substitution cipher
(Vigenere)
e Use node’js Or Browser engine to execute JavaScript

4 .
Questions

e hitps://sayat.me/wu4f

https://sayat.me/wu4f

