
A6: Sensitive Data Exposure

A6 – Sensitive Data Exposure

 Sensitive data stored or transmitted insecurely
 Failure to protect all sensitive data
 Usernames, passwords, password hashes, credit-card information,

identity info

 Session IDs, cookies

 Failure to protect all places sensitive data gets stored
 Databases, files, directories, log files, backups, etc.

 Failure to protect all transmissions of sensitive data
 Web, backend databases, business partners, internal

communications

Example: Artifacts in source code

 Developers leaving secrets or tests in code
 API keys inside git repositories

 Comments by developers giving hints to hidden

functionality (within HTML or code).

Example: Insecure Storage

Custom Code

A
c

c
o

u
n

ts

F
in

a
n

c
e

A
d

m
in

is
tr

a
ti

o
n

T
ra

n
s

a
c
ti

o
n

s

C
o

m
m

u
n

ic
a

ti
o

n

K
n

o
w

le
d

g
e

M

g
m

t
E

-C
o

m
m

e
rc

e

B
u

s
. F

u
n

c
ti

o
n

s
 1

Victim enters credit

card number in form

2 Error handler logs CC

details because

merchant gateway is

unavailable

4 Malicious insider

steals credit card

numbers

Log files

3 Logs are accessible to

all members of IT staff

for debugging purposes

Example: Insecure Transport

Custom Code

Employees

Business Partners
External Victim

Backend Systems

External Attacker

1

External

attacker steals

credentials and

data off

network

2

Internal attacker

steals credentials

and data from

internal network

Internal Attacker
Target 2013 breach, $252 million

http://www.swbic.org/products/clipart/images/computeruser.jpg
http://www.swbic.org/products/clipart/images/computeruser.jpg

Example: Poor use of cryptography

 Weak algorithms (Base64, MD5, AES-ECB Mode,

RC4/SSL 3.0)

 Poorly used algorithms
 Pseudo-random number generators (PRNGs) with

predictable seeds

 Unsalted cryptographic hashes

 Examples
 Guessable two-factor PIN codes

 Guessable password resets (e.g. generated passwords,

reset links)

A6 – Prevention

Verify architecture

 Ensure threat model accounts for possible attacks

 Encrypt everything
 Encryption at rest
 All sensitive data

 All the places that data is stored

 Encryption in flight
 All times that data is communicated

 Cloud providers
 Default encryption at rest on most

 Backend communication calls all encrypted

 But, front-end is your responsibility (i.e. https)

Use algorithms appropriately

 Use standard strong algorithms

 Verify
 All keys, certificates, and passwords are securely

generated, distributed, stored, and protected

 Effective plan for key change are in place

 Audit code the utilizes encryption code for common flaws
 (e.g. unsalted password hashes, uninitialized data)

Enable transport security

 Enable TLS for all connections
 HSTS (HTTP Strict Transport Security)

 HSTS Chrome preload list
http://src.chromium.org/viewvc/chrome/trunk/src/net/http/

transport_security_state_static.json

 Employ certificate and public key pinning
 Key continuity to prevent rogue CA from redirecting your

traffic

 WoSign 8/2016

 Use the mechanisms correctly
 Disable old SSL algorithms (Poodle)

http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat

_Sheet

http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

Labs and homework

 Toy examples that don’t require topics in CS 485/585

to perform
 For more, take CS 485/585

 Do the Matasano crypto challenges http://cryptopals.com

http://cryptopals.com/

Lab Ruby walkthrough

 Break improper use of pseudo-random number

generators to generate default passwords
 Code uses Ruby to generate password

 Seeds the random number generator with a constant
 Random.new(seed)

 Initial passwords are generated deterministically based

on calls to the RNG

 One generated password and the order in which it was

generated is known
 Attack

 Brute-force all seeds until a generated password matches your

known password

 Reveals the seed

 Use position of known passwords to deduce password of first

(admin) user

Lab Ruby example

 Code to generate random usernames

 Find the seeds that produce “vwywbw” or “jozfbe” as

random_name for the following code

s = Random.new(seed)

random_name = 6.times.map{('a'..'z').to_a[s.rand(('a'..'z').to_a.size)]}.join

Repeat 6 times
Create an array

out of lowercase

letters

Generate random

index into array

of lowercase

characters

Generate size of

character array

to select from

Join chars to

form username

of length 6

Lab Ruby walkthrough

 Find the seeds that produce “vwywbw” or “jozfbe” as the

first username
 Invoke program as

ruby InsecureCryptoStorage1.rb

s = Random.new(seed)

 # Use PRNG to generate username

 # 6.times -> Generate 6 random characters

 # ('a'..'z').to_a -> Create array of lowercase letters

 # [s.rand(('a'..'z').to_a.size] -> Index letter array with random number between 0,25

 random_name = 6.times.map{('a'..'z').to_a[s.rand(('a'..'z').to_a.size)]}.join

 print "Trying seed: ", seed, "\n"

 if (random_name == 'vwywbw') || (random_name == 'jozfbe')

 print "Found ",random_name," as first userid for seed: ",seed,"\n“

 print "MD5 hash of ",random_name," is ",Digest::MD5.hexdigest(random_name),"\n"

 seed=seed+1

 else

 seed=seed+1

 end

end

Other helpful Ruby constructs

 Bounded ‘do’ loops

10.times do |i|

 puts i

end

Before starting, do these two loops have the same output?

10.times do |i|

 s = Random.new(0)

 i.times{s.rand(100)}

 print i," ",s.rand(100),"\n"

end

s = Random.new(0)

10.times do |i|

 print i," ",s.rand(100),"\n"

end

Homework

 Insecure Cryptographic Storage Lesson
 echo –n Ym…GluZ0Zyb21Zb3U= | base64 -d

 Insecure Cryptographic Storage Challenge #1
 Reverse-engineer a simple rotation cipher

 Insecure Cryptographic Storage Challenge #2
 Reverse-engineer a multi-alphabetic substitution cipher

(Vigenere)

 Use nodejs or Browser engine to execute JavaScript

Questions

 https://sayat.me/wu4f

https://sayat.me/wu4f

