
A6: Sensitive Data Exposure

A6 – Sensitive Data Exposure

 Sensitive data stored or transmitted insecurely
 Failure to protect all sensitive data
 Usernames, passwords, password hashes, credit-card information,

identity info

 Session IDs, cookies

 Failure to protect all places sensitive data gets stored
 Databases, files, directories, log files, backups, etc.

 Failure to protect all transmissions of sensitive data
 Web, backend databases, business partners, internal

communications

Example: Artifacts in source code

 Developers leaving secrets or tests in code
 API keys inside git repositories

 Comments by developers giving hints to hidden

functionality (within HTML or code).

Example: Insecure Storage

Custom Code

A
c

c
o

u
n

ts

F
in

a
n

c
e

A
d

m
in

is
tr

a
ti

o
n

T
ra

n
s

a
c
ti

o
n

s

C
o

m
m

u
n

ic
a

ti
o

n

K
n

o
w

le
d

g
e

M

g
m

t
E

-C
o

m
m

e
rc

e

B
u

s
. F

u
n

c
ti

o
n

s
 1

Victim enters credit

card number in form

2 Error handler logs CC

details because

merchant gateway is

unavailable

4 Malicious insider

steals credit card

numbers

Log files

3 Logs are accessible to

all members of IT staff

for debugging purposes

Example: Insecure Transport

Custom Code

Employees

Business Partners
External Victim

Backend Systems

External Attacker

1

External

attacker steals

credentials and

data off

network

2

Internal attacker

steals credentials

and data from

internal network

Internal Attacker
Target 2013 breach, $252 million

http://www.swbic.org/products/clipart/images/computeruser.jpg
http://www.swbic.org/products/clipart/images/computeruser.jpg

Example: Poor use of cryptography

 Weak algorithms (Base64, MD5, AES-ECB Mode,

RC4/SSL 3.0)

 Poorly used algorithms
 Pseudo-random number generators (PRNGs) with

predictable seeds

 Unsalted cryptographic hashes

 Examples
 Guessable two-factor PIN codes

 Guessable password resets (e.g. generated passwords,

reset links)

A6 – Prevention

Verify architecture

 Ensure threat model accounts for possible attacks

 Encrypt everything
 Encryption at rest
 All sensitive data

 All the places that data is stored

 Encryption in flight
 All times that data is communicated

 Cloud providers
 Default encryption at rest on most

 Backend communication calls all encrypted

 But, front-end is your responsibility (i.e. https)

Use algorithms appropriately

 Use standard strong algorithms

 Verify
 All keys, certificates, and passwords are securely

generated, distributed, stored, and protected

 Effective plan for key change are in place

 Audit code the utilizes encryption code for common flaws
 (e.g. unsalted password hashes, uninitialized data)

Enable transport security

 Enable TLS for all connections
 HSTS (HTTP Strict Transport Security)

 HSTS Chrome preload list
http://src.chromium.org/viewvc/chrome/trunk/src/net/http/

transport_security_state_static.json

 Employ certificate and public key pinning
 Key continuity to prevent rogue CA from redirecting your

traffic

 WoSign 8/2016

 Use the mechanisms correctly
 Disable old SSL algorithms (Poodle)

http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat

_Sheet

http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet
http://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet

Labs and homework

 Toy examples that don’t require topics in CS 485/585

to perform
 For more, take CS 485/585

 Do the Matasano crypto challenges http://cryptopals.com

http://cryptopals.com/

Lab Ruby walkthrough

 Break improper use of pseudo-random number

generators to generate default passwords
 Code uses Ruby to generate password

 Seeds the random number generator with a constant
 Random.new(seed)

 Initial passwords are generated deterministically based

on calls to the RNG

 One generated password and the order in which it was

generated is known
 Attack

 Brute-force all seeds until a generated password matches your

known password

 Reveals the seed

 Use position of known passwords to deduce password of first

(admin) user

Lab Ruby example

 Code to generate random usernames

 Find the seeds that produce “vwywbw” or “jozfbe” as

random_name for the following code

s = Random.new(seed)

random_name = 6.times.map{('a'..'z').to_a[s.rand(('a'..'z').to_a.size)]}.join

Repeat 6 times
Create an array

out of lowercase

letters

Generate random

index into array

of lowercase

characters

Generate size of

character array

to select from

Join chars to

form username

of length 6

Lab Ruby walkthrough

 Find the seeds that produce “vwywbw” or “jozfbe” as the

first username
 Invoke program as

ruby InsecureCryptoStorage1.rb

s = Random.new(seed)

 # Use PRNG to generate username

 # 6.times -> Generate 6 random characters

 # ('a'..'z').to_a -> Create array of lowercase letters

 # [s.rand(('a'..'z').to_a.size] -> Index letter array with random number between 0,25

 random_name = 6.times.map{('a'..'z').to_a[s.rand(('a'..'z').to_a.size)]}.join

 print "Trying seed: ", seed, "\n"

 if (random_name == 'vwywbw') || (random_name == 'jozfbe')

 print "Found ",random_name," as first userid for seed: ",seed,"\n“

 print "MD5 hash of ",random_name," is ",Digest::MD5.hexdigest(random_name),"\n"

 seed=seed+1

 else

 seed=seed+1

 end

end

Other helpful Ruby constructs

 Bounded ‘do’ loops

10.times do |i|

 puts i

end

Before starting, do these two loops have the same output?

10.times do |i|

 s = Random.new(0)

 i.times{s.rand(100)}

 print i," ",s.rand(100),"\n"

end

s = Random.new(0)

10.times do |i|

 print i," ",s.rand(100),"\n"

end

Homework

 Insecure Cryptographic Storage Lesson
 echo –n Ym…GluZ0Zyb21Zb3U= | base64 -d

 Insecure Cryptographic Storage Challenge #1
 Reverse-engineer a simple rotation cipher

 Insecure Cryptographic Storage Challenge #2
 Reverse-engineer a multi-alphabetic substitution cipher

(Vigenere)

 Use nodejs or Browser engine to execute JavaScript

Questions

 https://sayat.me/wu4f

https://sayat.me/wu4f

