
Web-based APIs

REST

REST

 Representational State Transfer

 Style of web software architecture that simplifies

application

 Not a standard, but a design pattern

REST

 Take all resources for web application (data, files,
functions)
 Identify each resource and action on resource via an HTTP

method and URL.
 Method selects action
 Send arguments via the HTTP request (e.g. in URL, URL

parameters, or payload)

Where

(URL)

What

(App-

defined)

How

(HTTP

method)

Resources

(Data, files,

functions)

REST toy example

 http://foo.com/bar/users

 Server foo.com

 Database bar

 Table users

 URL returns table users in database bar in a particular

format (XML, JSON)

 Common examples
 Twitter, Flickr, Amazon

http://foo.com/bar/users

REST and HTTP methods

 HTTP request methods indicate the desired action
 GET
 Requests a representation of the specified resource.
 Use for operations that have NO side-effects (safe

operations)
 Works with robots and crawlers.

 POST
 Submits data to be processed (e.g., from an HTML form)

to the identified resource. Data is included in the body of
the request.

 PUT
 Uploads a representation of the specified resource.

 DELETE
 Deletes the specified resource.

REST and security

 Each API call must ensure request is authenticated
and authorized
 Requires attention to many of the OWASP Top 10
 A4: Insecure Direct Object Access
 A7: Missing Function Level Access Control
 A2: Broken Authentication and Session Management
 A1: Injection

 Now in OWASP Top 10 for 2017 draft

JSON

JSON

 JavaScript Object Notation
 De-facto web object data format
 Subset of JavaScript
 Minimal, lightweight, text-based syntax
 Easy to parse and generate

 Prevalent in most web sites
 Prevalent in many web APIs, often as part of a REST

architecture
 Designed to enable stateful, real-time communication

between browser and web application
 Often used to allow web server to directly modify elements of a

page without refresh
 Initially AJAX (Asynchronous JavaScript and XML) where XML

exchanged (e.g. homework site)
 Now mostly ‘AJAJ’ where JSON exchanged instead

JSON objects

 Objects are unordered containers of key/value pairs
 Keys are strings

 Values are JSON values
 Wrapped in { }
 , separates key/value pairs

 : separates keys and values

 Parsed into local data structures as struct, record,

hashtable, or dictionary

JSON Values

 Strings
 Sequence of 0 or more Unicode characters wrapped in

double quotes

 Numbers
 Integer, Real, Scientific

 No octal or hex
 No NaN or Infinity (Uses null instead!)

 Booleans
 true, false

 null

 A value that isn't anything

 Objects

 Arrays

Arrays

 Ordered sequences of values wrapped in []
 , separates values

 JSON does not specify indexing.
 Array is parsed by web program language

 Implementation can start array indexing at 0 or 1.

["Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday"]

[

[0, -1, 0],

[1, 0, 0],

[0, 0, 1]

]

JSON example

{

 "firstName": "John",

 "lastName": "Smith",

 "address": {

 "streetAddress": "21 2nd Street",

 "city": "New York",

 "state": "NY",

 "postalCode": 10021

 },

 "phoneNumbers": [

 "212 555-1234",

 "646 555-4567"

]

 }

Name/Value Pairs

Number data type String Array

Child

properties

JSON example

 stockfigher.io stock order

 Twitter direct message
 https://dev.twitter.com/rest/reference/get/direct_messages

{

 'account' : 'SWB1886430',

 'venue' : 'ETKBEX',

 'symbol' : 'EJYW',

 'price' : 8100,

 'qty' : 100,

 'direction' : 'buy',

 'orderType' : 'limit‘

}

https://dev.twitter.com/rest/reference/get/direct_messages
https://dev.twitter.com/rest/reference/get/direct_messages

JSON in AJAX & JavaScript

 JSON often exchanged in JavaScript via

XMLHttpRequest
 Example: obtain as responseText, then parse it

responseText is '{ "name": "Jack B. Nimble", "at large":

true, "grade": "A", "format": { "type": "rect", "width":

1920, "height“: 1080, "interlace": false, "framerate": 24

} }';

jsonobject = JSON.parse(responseText);

document.write("The object
");

document.write("name: ", jsonobject.name, "
");

document.write("grade: ", jsonobject.grade, "
");

document.write("format: ", jsonobject.format, "
");

JSON and avoiding eval()

 JSON uses JavaScript syntax to specify objects in a
serialized manner

 Can either write a parser to pull out key:value pairs
from JSON string or simply “evaluate” JSON string via
eval

 Parse version
 jsonobject = JSON.parse(responseText);

 Eval version
 jsonobject = eval('(' + responseText + ')');

 Which one is safer?
 What if JSON object contained rogue JavaScript

code?
 Deserialization attacks
 Mixing code and data

JSON security

 Deserialization attacks
 Dependent upon trust
 On client, not an issue
 JSON data came from the same server that vended the page.
 eval of the data is no less secure than the original html (assuming

sent over HTTPS)

JSON security

 What about on the server (i.e. Node.js)?
 Is it OK to ever use eval to generate object from

client?
 No

 Can never trust the client
 The client cannot be trusted

 Server must validate everything the client tells it.

 Run-time evaluation of untrusted input extremely

dangerous!
 Always use a parser on server running JavaScript

(nodejs)
 JSON.parse(string) instead of eval.

eval is evil

 Avoid using it in your web applications
 PHP eval and deserialization issues (picoCTF, natas)

 Python eval issues (picoCTF)

 JavaScript eval issues (Pentestlab exercises,

deserialization)

Security of JSON vs. XML

JSON XML

Data Structure Data Structure

No validation system XSD

No namespaces Has namespaces (can use

multiples)

Parsing is just an eval

 Fast

 Security issues

Parsing requires XML document

parsing using things like XPath

In JavaScript you can work with

objects – runtime evaluation of

types

In JavaScript you can work with

strings – may require additional

parsing

Security: eval() means that if the

source is not trusted anything could

be put into it.

Libraries exist to make parsing

safe(r)

Security: XML is text/parsing – not

code execution.

JSON vs Javascript

 Double quotes for strings

 No functions intended to be allowed (text, no code

unless someone does an eval)

 No circular references (text, no references)

Questions

 https://sayat.me/wu4f

https://sayat.me/wu4f

