
Web-based APIs

REST

REST

 Representational State Transfer

 Style of web software architecture that simplifies

application

 Not a standard, but a design pattern

REST

 Take all resources for web application (data, files,
functions)
 Identify each resource and action on resource via an HTTP

method and URL.
 Method selects action
 Send arguments via the HTTP request (e.g. in URL, URL

parameters, or payload)

Where

(URL)

What

(App-

defined)

How

(HTTP

method)

Resources

(Data, files,

functions)

REST toy example

 http://foo.com/bar/users

 Server foo.com

 Database bar

 Table users

 URL returns table users in database bar in a particular

format (XML, JSON)

 Common examples
 Twitter, Flickr, Amazon

http://foo.com/bar/users

REST and HTTP methods

 HTTP request methods indicate the desired action
 GET
 Requests a representation of the specified resource.
 Use for operations that have NO side-effects (safe

operations)
 Works with robots and crawlers.

 POST
 Submits data to be processed (e.g., from an HTML form)

to the identified resource. Data is included in the body of
the request.

 PUT
 Uploads a representation of the specified resource.

 DELETE
 Deletes the specified resource.

REST and security

 Each API call must ensure request is authenticated
and authorized
 Requires attention to many of the OWASP Top 10
 A4: Insecure Direct Object Access
 A7: Missing Function Level Access Control
 A2: Broken Authentication and Session Management
 A1: Injection

 Now in OWASP Top 10 for 2017 draft

JSON

JSON

 JavaScript Object Notation
 De-facto web object data format
 Subset of JavaScript
 Minimal, lightweight, text-based syntax
 Easy to parse and generate

 Prevalent in most web sites
 Prevalent in many web APIs, often as part of a REST

architecture
 Designed to enable stateful, real-time communication

between browser and web application
 Often used to allow web server to directly modify elements of a

page without refresh
 Initially AJAX (Asynchronous JavaScript and XML) where XML

exchanged (e.g. homework site)
 Now mostly ‘AJAJ’ where JSON exchanged instead

JSON objects

 Objects are unordered containers of key/value pairs
 Keys are strings

 Values are JSON values
 Wrapped in { }
 , separates key/value pairs

 : separates keys and values

 Parsed into local data structures as struct, record,

hashtable, or dictionary

JSON Values

 Strings
 Sequence of 0 or more Unicode characters wrapped in

double quotes

 Numbers
 Integer, Real, Scientific

 No octal or hex
 No NaN or Infinity (Uses null instead!)

 Booleans
 true, false

 null

 A value that isn't anything

 Objects

 Arrays

Arrays

 Ordered sequences of values wrapped in []
 , separates values

 JSON does not specify indexing.
 Array is parsed by web program language

 Implementation can start array indexing at 0 or 1.

["Sunday", "Monday", "Tuesday", "Wednesday",

"Thursday", "Friday", "Saturday"]

[

[0, -1, 0],

[1, 0, 0],

[0, 0, 1]

]

JSON example

{

 "firstName": "John",

 "lastName": "Smith",

 "address": {

 "streetAddress": "21 2nd Street",

 "city": "New York",

 "state": "NY",

 "postalCode": 10021

 },

 "phoneNumbers": [

 "212 555-1234",

 "646 555-4567"

]

 }

Name/Value Pairs

Number data type String Array

Child

properties

JSON example

 stockfigher.io stock order

 Twitter direct message
 https://dev.twitter.com/rest/reference/get/direct_messages

{

 'account' : 'SWB1886430',

 'venue' : 'ETKBEX',

 'symbol' : 'EJYW',

 'price' : 8100,

 'qty' : 100,

 'direction' : 'buy',

 'orderType' : 'limit‘

}

https://dev.twitter.com/rest/reference/get/direct_messages
https://dev.twitter.com/rest/reference/get/direct_messages

JSON in AJAX & JavaScript

 JSON often exchanged in JavaScript via

XMLHttpRequest
 Example: obtain as responseText, then parse it

responseText is '{ "name": "Jack B. Nimble", "at large":

true, "grade": "A", "format": { "type": "rect", "width":

1920, "height“: 1080, "interlace": false, "framerate": 24

} }';

jsonobject = JSON.parse(responseText);

document.write("The object
");

document.write("name: ", jsonobject.name, "
");

document.write("grade: ", jsonobject.grade, "
");

document.write("format: ", jsonobject.format, "
");

JSON and avoiding eval()

 JSON uses JavaScript syntax to specify objects in a
serialized manner

 Can either write a parser to pull out key:value pairs
from JSON string or simply “evaluate” JSON string via
eval

 Parse version
 jsonobject = JSON.parse(responseText);

 Eval version
 jsonobject = eval('(' + responseText + ')');

 Which one is safer?
 What if JSON object contained rogue JavaScript

code?
 Deserialization attacks
 Mixing code and data

JSON security

 Deserialization attacks
 Dependent upon trust
 On client, not an issue
 JSON data came from the same server that vended the page.
 eval of the data is no less secure than the original html (assuming

sent over HTTPS)

JSON security

 What about on the server (i.e. Node.js)?
 Is it OK to ever use eval to generate object from

client?
 No

 Can never trust the client
 The client cannot be trusted

 Server must validate everything the client tells it.

 Run-time evaluation of untrusted input extremely

dangerous!
 Always use a parser on server running JavaScript

(nodejs)
 JSON.parse(string) instead of eval.

eval is evil

 Avoid using it in your web applications
 PHP eval and deserialization issues (picoCTF, natas)

 Python eval issues (picoCTF)

 JavaScript eval issues (Pentestlab exercises,

deserialization)

Security of JSON vs. XML

JSON XML

Data Structure Data Structure

No validation system XSD

No namespaces Has namespaces (can use

multiples)

Parsing is just an eval

 Fast

 Security issues

Parsing requires XML document

parsing using things like XPath

In JavaScript you can work with

objects – runtime evaluation of

types

In JavaScript you can work with

strings – may require additional

parsing

Security: eval() means that if the

source is not trusted anything could

be put into it.

Libraries exist to make parsing

safe(r)

Security: XML is text/parsing – not

code execution.

JSON vs Javascript

 Double quotes for strings

 No functions intended to be allowed (text, no code

unless someone does an eval)

 No circular references (text, no references)

Questions

 https://sayat.me/wu4f

https://sayat.me/wu4f

