
CS 410/510:

Web Basics

Basics

 Web Clients

 HTTP

 Web Servers

PC running
Firefox

Web Server

Mac running
Chrome

Basic Terminology | HTML | JavaScript

Web Clients

Terminology

 Web page consists of objects
 Each object is addressable by a URL

 Web page is (at minimum) an HTML file with several

referenced objects.

www.someschool.edu/someDept/pic.gif

host name path name

Web clients

 Retrieve and render content (e.g. HTML, images)

 Retreive and execute JavaScript

 Examples
 Web browser (Chrome, Firefox, Safari)

 Command-line tool (curl,wget)

 Program (Python requests)

HTML, JavaScript

 Javascript - Executable code

for client to run
 In all browsers

 HTML - Hypertext

Markup Language

Mixing code and data!

Importance of Javascript to web

security

 Ubiquitous
 jQuery = popular Javascript library

 Many exploits delivered via rogue Javascript

Problem is worsening

 Surface area of attack increasing due to complexity

 Not ideal for dynamically-typed languages like

Javascript
 Motivates Typescript, Flow, and AtScript

Viewing HTML/JavaScript

 Developer tools
 (Ctrl-Shift-I) on both Chrome and Firefox

 Right click => Inspect Element

 In Elements
 Ability to directly edit HTML elements in page

 In Console
 Console output (console.log messages)

 Access to JavaScript engine in page’s context

(alert(document.cookie))

 In Network
 Access to page’s network requests

 In Application
 Access to page’s storage/cookies

Headers | Requests/Responses | Cookies

HTTP

HTTP

 Hypertext Transport Protocol
 Language spoken between client

and server

 Standard message format for

headers to implement caching,

authentication, session

management, localization, etc.

HTTP

 Client initiates bi-directional

connection to server on port 80

 Server accepts TCP connection

from client

 HTTP messages (application-

layer protocol messages)

exchanged between client/server
 Messages encoded in text

HTTP Headers – Request (client)

 Two types of HTTP messages: request, response

 HTTP request message:

ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1

Host: www.someschool.edu

User-agent: Mozilla/4.0

Connection: close

Accept-language:fr

(extra carriage return, line feed)

request line

(GET, POST,

HEAD commands)

header

 lines

Carriage return,

line feed

indicates end

of message

http://www.someschool.edu/somedir/page.html

HTTP Headers – Response (server)

HTTP/1.1 200 OK

Connection: close

Date: Thu, 06 Aug 1998 12:00:15 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Mon, 22 Jun 1998 …...

Content-Length: 6821

Content-Type: text/html

<html>

<head>

<title>

…

status line
(protocol

status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

HTTP status codes

 Returned in first line of response
 200 OK: the request was processed successfully.

 302 Found: used to redirect users, for example when they logout, to

send them back to the login page.

 401 Unauthorized: when the resource's access is restricted.

 404 Not found: the resource requested by the client was not found.

 500 Internal Server Error: an error occurred during the processing of

the request.

HTTP/1.1 200 OK

Date: Thu, 06 Aug 1998 12:00:15 GMT

Server: Apache/1.3.0 (Unix)

…

HTTP Headers in action

 Demo
 $ nc thefengs.com 80

 Opens TCP connection to port 80
 Anything typed in is sent to port 80 at thefengs.com

 Type in a GET HTTP request:
GET / HTTP/1.1

Host: thefengs.com

 Type this in and hit RETURN twice. You sent this minimal, but

complete request to HTTP server.

 View the response message sent from server.

HTTP headers for class

 Authentication
 Basic authentication
 Apache “.htaccess” file specifying users and passwords
 NOT secure (only included for natas levels)

 HTTP response header used to trigger web browser prompt
 WWW-authenticate:

 HTTP request header used to send credentials (base64-
encoded)
 Authorization:

 e.g. Authorization: basic YWRtaW46YWRtaW4K
pucca % echo YWRtaW46YWRtaW4K| base64 -d
admin:admin

 Referring page
 HTTP request header used to send page the request

originated from
 Used for tracking
 Referer:
 Load Developer Tools
 Access Prezi from https://crypto.cyberpdx.org/
 View Network request in

https://crypto.cyberpdx.org/

HTTP Headers – Cookies

 HTTP is initially “stateless”
 Does not remember prior requests or users

 Many websites require and need state
 Yahoo Mail (saves user information and who the user is)
 Amazon Shopping Cart (saves items selected and

purchased)

Four Major Components:
1. HTTP response Header Set-cookie: header
2. HTTP request Cookie: header
3. Cookie stored on client/user’s host (managed by web

browser)
4. Cookie stored in back-end database on website (e.g.

MySQL)

HTTP Headers – Cookies

client
server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
Cookie: 1678 cookie-

specific

action

access

ebay 8734
usual http request msg

Amazon server

creates ID

1678 for user create
 entry

usual http response
Set-cookie: 1678

ebay 8734

amazon 1678

usual http request msg
Cookie: 1678 cookie-

spectific

action

access
ebay 8734

amazon 1678

backend

database

HTTP Cookie attributes

 Specify expiry time
 Limit window of vulnerability against cookie theft and CSRF

 Specify scope of cookie
 Domain = which sub-domains cookie is valid in

 Path = which directory paths in domain cookie is valid in

 Specify security concerns
 Secure = only send over HTTPS connections to avoid cookie

theft

 HttpOnly = only send within HTTP requests (restricts access

via document.cookie in JavaScript to eliminate XSS cookie

stealing)

Set-Cookie: value[; expires=date][; domain=domain][;

path=path][; secure][; HttpOnly]

Set-Cookie: SSID=Ap4P…GTEq; domain=foo.com; path=/; secure; HttpOnly

Sessions in cookies

 Web application frameworks typically assign identity

via an opaque session within cookie
 PHPSESSID=13Kn5Z6Uo4pH (PHP)

 JSESSIONID=W7DPUBgh7KTM (Java server pages)

Issues with cookies

 Cookie tampering
 Adversary subverts insecure cookie format to obtain

elevated privileges (natas, webpentestlab)
 Forges entire cookie to gain privileges

 Solution: avoid encoding authorization level in cookie

 Tampers with cookie given

 Solution: use cryptographic hash to sign cookie

Authentication with HTTP and Forms

 Via GET (not recommended)

 Shows up in history, referer, &

network

<html>

 [...]

 <body>

 <form action="/login.php" method=“GET">

 Username: <input type="text" name="username">

 Password: <input type="password" name="password">

 <input type="submit" value="Submit">

 </form>

 </body>

</html>

GET /login.php?username=admin&password=admin HTTP/1.1

Host: vulnerable

User-Agent: Mozilla Firefox

Authentication with HTTP and Forms

 Via POST

 Shows up in network

<html>

 [...]

 <body>

 <form action="/login.php" method=“POST">

 Username: <input type="text" name="username">

 Password: <input type="password" name="password">

 <input type="submit" value="Submit">

 </form>

 </body>

</html>
POST /login.php HTTP/1.1

Host: vulnerable

User-Agent: Mozilla Firefox

Content-Length: 35

username=admin&password=admin

Examples

 https://www.w3schools.com/TagS/att_form_method.as

p

 To see the POST
 Remove target=“_blank”

 Load developer tools

 Make request

 Highlight early part of timeline

https://www.w3schools.com/TagS/att_form_method.asp
https://www.w3schools.com/TagS/att_form_method.asp

Encoding

 Data encoding required between client and server
 Special HTTP characters in URL or form data

 Special HTML characters in web page content

(HTML/CSS)

URL encoding for HTTP

 HTTP special characters
 Request lines and fields delimited by newline, return, and

space (\r\n).
 URL path and parameter list separated by ‘?’
 URL parameters separated by ‘&’
 A parameter name and the corresponding value

separated by ‘=‘

 How can an application use these special characters in
form data and URLs?

 URL-encoding
 ‘%’ followed by hex ASCII code
 %20 = space when not used in parameters
 https://oregonctf.org/x + y/
 https://www.w3schools.com/TagS/att_form_method.asp
 Special characters in form data encoded in GET

https://www.w3schools.com/TagS/att_form_method.asp

HTML-encoding for web content

 Similarly, in HTML, how can special characters used in

HTML such as ‘<‘ and ‘>’ be included without triggering

its semantic meaning?
 Often critical in preventing cross-site scripting

vulnerabilities

 HTML-encoding
 > >

 < <

 & &

 " "e;

 ‘ ' (Decimal ASCII code 39)

 = = (Hex ASCII code 3d)

Double encoding and decoding

 Filters that are used to sanitize user input, must take

into account encoding

 Where does the decoding happen and can you ensure

it only happens once?

 Often a source of bugs
 Code to filter out ‘=‘ must correctly decode

 Bugs introduced with multiple decodings
 natas

 Consider ‘=‘
 URL-encoded once: %3d

 URL-encoded twice: %253d

HTTPS

 Provides server authentication, integrity, and secrecy

to client for web requests over network (more later)

Web Server Directories | Web App

Frameworks

Web Server

Web server

 Mostly Apache and nginx, but some others IIS

 All files, objects, and resources are stored here

(HTML, JPG, txt files, video, audio, …)

 No typical directory structure

 BUT there will be DocumentRoot directory for hosted

environment. Some examples:
/www/your-domain/html

/home/httpd/

/www/another-domain/html/cgi-bin/

Apache/nginx – Directory Behavior

 How do files map to URLs?
 http://www.chi-ni.com/

 Configuration files for sites in
 /etc/{nginx,apache2}/sites-available

 DocumentRoot points to location of site in file system

 Without a file specified, server looks for index.html,

index.htm, index.php, or gives dir listing (if allowed)
 http://www.chi-ni.com/

 http://www.chi-ni.com/Themes

http://www.chi-ni.com/
http://www.chi-ni.com/
http://www.chi-ni.com/
http://www.chi-ni.com/
http://www.chi-ni.com/
http://www.chi-ni.com/
http://www.chi-ni.com/Themes
http://www.chi-ni.com/Themes
http://www.chi-ni.com/Themes

Nginx – Directory Behavior

 Examples

 Find the file http://oregonctf.org/x + y/index.html

 Which URL hits this file?
/var/www/html/oregonctf/ctf-

practice/picoctf/2017/SecretTeamToken.txt

http://oregonctf.org/whereami/youarehere.html

Web applications

 Apache not sufficient to build stateful web applications

 Rich web apps require a collection of multiple software

components
 Programming language/template framework

 Persistent storage

Web programming languages

 Dynamic content requires a programming language to

generate

 Example languages (frameworks and app. servers)
 PHP

 natas, picoCTF, Web for Pentester #1

 Java (Tomcat, Struts)

 cs410 CTF

 Ruby (Rails)

 Web for Pentester #2

 Python (Django, Flask)

 cs201.oregonctf.org

 JavaScript (Node.js, Express, Angular)

 Full-stack course

 C# (ASP.NET)

 Go

Web programming languages

 Choosing a language and framework
 Many languages make it *easy* to produce vulnerable

code

 One version of a popular language

 Which language?
https://3v4l.org/tT4l8

 Many web applications are open-source with

vulnerabilities exposed for all to see

 Exercises use mostly PHP and Javascript

var_dump('0010e2' == '1e3');

var_dump('0x1234Ab' == '1193131');

var_dump('0xABCdef' == ' 0xABCdef');

bool(true)

bool(false)

bool(false)

Results vary based on version of PHP

https://3v4l.org/tT4l8

PHP & Server – PHP Overview

 What is PHP?
 Perl Hypertext Preprocessor

 Server-side scripting language designed for web

development

 One of the first web programming languages

 Developed quickly with the beginner in mind
 Attempts to automatically “correct” perceived programming errors

such as type mismatches

 Laden with security issues
 Multitude of versions to address them

 Not recommended

PHP

 PHP designed to keep running
 “When faced with either doing something nonsensical or

aborting with an error, it will do something nonsensical.”
 Automatic type conversion/coercion rather than error
 Complex, unpredictable, weak typing
 False converted to 0
 123 == "123foo“
 "123" != "123foo“

 Type-juggling errors in PHP (natas)

 Unpredictable behavior of APIs
 Based on php.ini and compile-time settings

https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-

design/
http://phpsadness.com/sad/47
https://www.reddit.com/r/lolphp/

https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/
https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/
https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/
https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/
https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/
https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/
https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/
https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/
https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/
https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/
https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/
https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/
http://phpsadness.com/sad/47
https://www.reddit.com/r/lolphp/
https://www.reddit.com/r/lolphp/

PHP & Server – PHP Syntax

 Needed for natas
 Delimiters:
<?php CODE ?>
<?= CODE ?>

 Comments:
//
/* */ (multi-line)

 Variables:
$variable = “Hello World”

 Functions:
function hello($target='World')

{

 echo "Hello “ . $target . “!\n";

}

hello();

Javascript

 Allows single language to run both on client and server

 Developer efficiency in language learning

 Most popular programming language

 But….also has quirks in its type coercion
 https://www.destroyallsoftware.com/talks/wat

 https://www.destroyallsoftware.com/talks/the-birth-and-

death-of-javascript (0-9:20)

https://www.destroyallsoftware.com/talks/wat
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript

Persistent storage

 Per-user web application state
 Relational databases PostgreSQL, MySQL, SQLite,

Oracle, MS SQL

 NoSQL (non-SQL): simple files, MongoDB, CouchDB, etc
 Common in big data and real-time web applications that do not

require transactional consistency

 Directories like openLDAP or Active Directory

 Often a target of attacks

Questions

 https://sayat.me/wu4f

https://sayat.me/wu4f

Extra

Web ecosystems

 Specify the programming language and framework as

well as the storage technology

 Initially “LAMP”
 Persistent storage = MySQL

 Programming language = PHP

 Diverse instances
 OpenStack, Docker, Amazon EC2

Multi-part forms

<form action=“/upload/example1.php" method="post" enctype="multipart/form-data">

 <p><input type="file" name=“image">

 <p><input type="file" name=“send">

 <p><button type="submit">Submit</button>

</form>

POST /upload/example1.php HTTP/1.1

Host: vulnerable

Content-Length: 305

User-Agent: Mozilla/5.0 [...] AppleWebKit

Content-Type: multipart/form-data; boundary=----WebKitFormBoundaryfLW6oGspQZKVxZjA

------WebKitFormBoundaryfLW6oGspQZKVxZjA

Content-Disposition: form-data; name="image"; filename="myfile.html"

Content-Type: text/html

My file

------WebKitFormBoundaryfLW6oGspQZKVxZjA

Content-Disposition: form-data; name="send"

Send file

------WebKitFormBoundaryfLW6oGspQZKVxZjA--

Multi-part forms

 Content-type header:
Content-Type: multipart/form-data; boundary=----

WebKitFormBoundaryfLW6oGspQZKVxZjA.

 Long random string used to delimit parts

 String repeated for every part of the multipart information.

 The last part contains the string followed by --.

