
CS 410/510:

Web Basics

Basics

 Web Clients

 HTTP

 Web Servers

PC running
Firefox

Web Server

Mac running
Chrome

Basic Terminology | HTML | JavaScript

Web Clients

Terminology

 Web page consists of objects
 Each object is addressable by a URL

 Web page is (at minimum) an HTML file with several

referenced objects.

www.someschool.edu/someDept/pic.gif

host name path name

Web clients

 Retrieve and render content (e.g. HTML, images)

 Retreive and execute JavaScript

 Examples
 Web browser (Chrome, Firefox, Safari)

 Command-line tool (curl,wget)

 Program (Python requests)

HTML, JavaScript

 Javascript - Executable code

for client to run
 In all browsers

 HTML - Hypertext

Markup Language

Mixing code and data!

Importance of Javascript to web

security

 Ubiquitous
 jQuery = popular Javascript library

 Many exploits delivered via rogue Javascript

Problem is worsening

 Surface area of attack increasing due to complexity

 Not ideal for dynamically-typed languages like

Javascript
 Motivates Typescript, Flow, and AtScript

Viewing HTML/JavaScript

 Developer tools
 (Ctrl-Shift-I) on both Chrome and Firefox

 Right click => Inspect Element

 In Elements
 Ability to directly edit HTML elements in page

 In Console
 Console output (console.log messages)

 Access to JavaScript engine in page’s context

(alert(document.cookie))

 In Network
 Access to page’s network requests

 In Application
 Access to page’s storage/cookies

Headers | Requests/Responses | Cookies

HTTP

HTTP

 Hypertext Transport Protocol
 Language spoken between client

and server

 Standard message format for

headers to implement caching,

authentication, session

management, localization, etc.

HTTP

 Client initiates bi-directional

connection to server on port 80

 Server accepts TCP connection

from client

 HTTP messages (application-

layer protocol messages)

exchanged between client/server
 Messages encoded in text

HTTP Headers – Request (client)

 Two types of HTTP messages: request, response

 HTTP request message:

ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1

Host: www.someschool.edu

User-agent: Mozilla/4.0

Connection: close

Accept-language:fr

(extra carriage return, line feed)

request line

(GET, POST,

HEAD commands)

header

 lines

Carriage return,

line feed

indicates end

of message

http://www.someschool.edu/somedir/page.html

HTTP Headers – Response (server)

HTTP/1.1 200 OK

Connection: close

Date: Thu, 06 Aug 1998 12:00:15 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Mon, 22 Jun 1998 …...

Content-Length: 6821

Content-Type: text/html

<html>

<head>

<title>

…

status line
(protocol

status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

HTTP status codes

 Returned in first line of response
 200 OK: the request was processed successfully.

 302 Found: used to redirect users, for example when they logout, to

send them back to the login page.

 401 Unauthorized: when the resource's access is restricted.

 404 Not found: the resource requested by the client was not found.

 500 Internal Server Error: an error occurred during the processing of

the request.

HTTP/1.1 200 OK

Date: Thu, 06 Aug 1998 12:00:15 GMT

Server: Apache/1.3.0 (Unix)

…

HTTP Headers in action

 Demo
 $ nc thefengs.com 80

 Opens TCP connection to port 80
 Anything typed in is sent to port 80 at thefengs.com

 Type in a GET HTTP request:
GET / HTTP/1.1

Host: thefengs.com

 Type this in and hit RETURN twice. You sent this minimal, but

complete request to HTTP server.

 View the response message sent from server.

HTTP headers for class

 Authentication
 Basic authentication
 Apache “.htaccess” file specifying users and passwords
 NOT secure (only included for natas levels)

 HTTP response header used to trigger web browser prompt
 WWW-authenticate:

 HTTP request header used to send credentials (base64-
encoded)
 Authorization:

 e.g. Authorization: basic YWRtaW46YWRtaW4K
pucca % echo YWRtaW46YWRtaW4K| base64 -d
admin:admin

 Referring page
 HTTP request header used to send page the request

originated from
 Used for tracking
 Referer:
 Load Developer Tools
 Access Prezi from https://crypto.cyberpdx.org/
 View Network request in

https://crypto.cyberpdx.org/

HTTP Headers – Cookies

 HTTP is initially “stateless”
 Does not remember prior requests or users

 Many websites require and need state
 Yahoo Mail (saves user information and who the user is)
 Amazon Shopping Cart (saves items selected and

purchased)

Four Major Components:
1. HTTP response Header Set-cookie: header
2. HTTP request Cookie: header
3. Cookie stored on client/user’s host (managed by web

browser)
4. Cookie stored in back-end database on website (e.g.

MySQL)

HTTP Headers – Cookies

client
server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
Cookie: 1678 cookie-

specific

action

access

ebay 8734
usual http request msg

Amazon server

creates ID

1678 for user create
 entry

usual http response
Set-cookie: 1678

ebay 8734

amazon 1678

usual http request msg
Cookie: 1678 cookie-

spectific

action

access
ebay 8734

amazon 1678

backend

database

HTTP Cookie attributes

 Specify expiry time
 Limit window of vulnerability against cookie theft and CSRF

 Specify scope of cookie
 Domain = which sub-domains cookie is valid in

 Path = which directory paths in domain cookie is valid in

 Specify security concerns
 Secure = only send over HTTPS connections to avoid cookie

theft

 HttpOnly = only send within HTTP requests (restricts access

via document.cookie in JavaScript to eliminate XSS cookie

stealing)

Set-Cookie: value[; expires=date][; domain=domain][;

path=path][; secure][; HttpOnly]

Set-Cookie: SSID=Ap4P…GTEq; domain=foo.com; path=/; secure; HttpOnly

Sessions in cookies

 Web application frameworks typically assign identity

via an opaque session within cookie
 PHPSESSID=13Kn5Z6Uo4pH (PHP)

 JSESSIONID=W7DPUBgh7KTM (Java server pages)

Issues with cookies

 Cookie tampering
 Adversary subverts insecure cookie format to obtain

elevated privileges (natas, webpentestlab)
 Forges entire cookie to gain privileges

 Solution: avoid encoding authorization level in cookie

 Tampers with cookie given

 Solution: use cryptographic hash to sign cookie

Authentication with HTTP and Forms

 Via GET (not recommended)

 Shows up in history, referer, &

network

<html>

 [...]

 <body>

 <form action="/login.php" method=“GET">

 Username: <input type="text" name="username">

 Password: <input type="password" name="password">

 <input type="submit" value="Submit">

 </form>

 </body>

</html>

GET /login.php?username=admin&password=admin HTTP/1.1

Host: vulnerable

User-Agent: Mozilla Firefox

Authentication with HTTP and Forms

 Via POST

 Shows up in network

<html>

 [...]

 <body>

 <form action="/login.php" method=“POST">

 Username: <input type="text" name="username">

 Password: <input type="password" name="password">

 <input type="submit" value="Submit">

 </form>

 </body>

</html>
POST /login.php HTTP/1.1

Host: vulnerable

User-Agent: Mozilla Firefox

Content-Length: 35

username=admin&password=admin

Examples

 https://www.w3schools.com/TagS/att_form_method.as

p

 To see the POST
 Remove target=“_blank”

 Load developer tools

 Make request

 Highlight early part of timeline

https://www.w3schools.com/TagS/att_form_method.asp
https://www.w3schools.com/TagS/att_form_method.asp

Encoding

 Data encoding required between client and server
 Special HTTP characters in URL or form data

 Special HTML characters in web page content

(HTML/CSS)

URL encoding for HTTP

 HTTP special characters
 Request lines and fields delimited by newline, return, and

space (\r\n).
 URL path and parameter list separated by ‘?’
 URL parameters separated by ‘&’
 A parameter name and the corresponding value

separated by ‘=‘

 How can an application use these special characters in
form data and URLs?

 URL-encoding
 ‘%’ followed by hex ASCII code
 %20 = space when not used in parameters
 https://oregonctf.org/x + y/
 https://www.w3schools.com/TagS/att_form_method.asp
 Special characters in form data encoded in GET

https://www.w3schools.com/TagS/att_form_method.asp

HTML-encoding for web content

 Similarly, in HTML, how can special characters used in

HTML such as ‘<‘ and ‘>’ be included without triggering

its semantic meaning?
 Often critical in preventing cross-site scripting

vulnerabilities

 HTML-encoding
 > >

 < <

 & &

 " "e;

 ‘ ' (Decimal ASCII code 39)

 = = (Hex ASCII code 3d)

Double encoding and decoding

 Filters that are used to sanitize user input, must take

into account encoding

 Where does the decoding happen and can you ensure

it only happens once?

 Often a source of bugs
 Code to filter out ‘=‘ must correctly decode

 Bugs introduced with multiple decodings
 natas

 Consider ‘=‘
 URL-encoded once: %3d

 URL-encoded twice: %253d

HTTPS

 Provides server authentication, integrity, and secrecy

to client for web requests over network (more later)

Web Server Directories | Web App

Frameworks

Web Server

Web server

 Mostly Apache and nginx, but some others IIS

 All files, objects, and resources are stored here

(HTML, JPG, txt files, video, audio, …)

 No typical directory structure

 BUT there will be DocumentRoot directory for hosted

environment. Some examples:
/www/your-domain/html

/home/httpd/

/www/another-domain/html/cgi-bin/

Apache/nginx – Directory Behavior

 How do files map to URLs?
 http://www.chi-ni.com/

 Configuration files for sites in
 /etc/{nginx,apache2}/sites-available

 DocumentRoot points to location of site in file system

 Without a file specified, server looks for index.html,

index.htm, index.php, or gives dir listing (if allowed)
 http://www.chi-ni.com/

 http://www.chi-ni.com/Themes

http://www.chi-ni.com/
http://www.chi-ni.com/
http://www.chi-ni.com/
http://www.chi-ni.com/
http://www.chi-ni.com/
http://www.chi-ni.com/
http://www.chi-ni.com/Themes
http://www.chi-ni.com/Themes
http://www.chi-ni.com/Themes

Nginx – Directory Behavior

 Examples

 Find the file http://oregonctf.org/x + y/index.html

 Which URL hits this file?
/var/www/html/oregonctf/ctf-

practice/picoctf/2017/SecretTeamToken.txt

http://oregonctf.org/whereami/youarehere.html

Web applications

 Apache not sufficient to build stateful web applications

 Rich web apps require a collection of multiple software

components
 Programming language/template framework

 Persistent storage

Web programming languages

 Dynamic content requires a programming language to

generate

 Example languages (frameworks and app. servers)
 PHP

 natas, picoCTF, Web for Pentester #1

 Java (Tomcat, Struts)

 cs410 CTF

 Ruby (Rails)

 Web for Pentester #2

 Python (Django, Flask)

 cs201.oregonctf.org

 JavaScript (Node.js, Express, Angular)

 Full-stack course

 C# (ASP.NET)

 Go

Web programming languages

 Choosing a language and framework
 Many languages make it *easy* to produce vulnerable

code

 One version of a popular language

 Which language?
https://3v4l.org/tT4l8

 Many web applications are open-source with

vulnerabilities exposed for all to see

 Exercises use mostly PHP and Javascript

var_dump('0010e2' == '1e3');

var_dump('0x1234Ab' == '1193131');

var_dump('0xABCdef' == ' 0xABCdef');

bool(true)

bool(false)

bool(false)

Results vary based on version of PHP

https://3v4l.org/tT4l8

PHP & Server – PHP Overview

 What is PHP?
 Perl Hypertext Preprocessor

 Server-side scripting language designed for web

development

 One of the first web programming languages

 Developed quickly with the beginner in mind
 Attempts to automatically “correct” perceived programming errors

such as type mismatches

 Laden with security issues
 Multitude of versions to address them

 Not recommended

PHP

 PHP designed to keep running
 “When faced with either doing something nonsensical or

aborting with an error, it will do something nonsensical.”
 Automatic type conversion/coercion rather than error
 Complex, unpredictable, weak typing
 False converted to 0
 123 == "123foo“
 "123" != "123foo“

 Type-juggling errors in PHP (natas)

 Unpredictable behavior of APIs
 Based on php.ini and compile-time settings

https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-

design/
http://phpsadness.com/sad/47
https://www.reddit.com/r/lolphp/

https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/
https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/
https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/
https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/
https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/
https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/
https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/
https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/
https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/
https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/
https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/
https://eev.ee/blog/2012/04/09/php-a-fractal-of-bad-design/
http://phpsadness.com/sad/47
https://www.reddit.com/r/lolphp/
https://www.reddit.com/r/lolphp/

PHP & Server – PHP Syntax

 Needed for natas
 Delimiters:
<?php CODE ?>
<?= CODE ?>

 Comments:
//
/* */ (multi-line)

 Variables:
$variable = “Hello World”

 Functions:
function hello($target='World')

{

 echo "Hello “ . $target . “!\n";

}

hello();

Javascript

 Allows single language to run both on client and server

 Developer efficiency in language learning

 Most popular programming language

 But….also has quirks in its type coercion
 https://www.destroyallsoftware.com/talks/wat

 https://www.destroyallsoftware.com/talks/the-birth-and-

death-of-javascript (0-9:20)

https://www.destroyallsoftware.com/talks/wat
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript
https://www.destroyallsoftware.com/talks/the-birth-and-death-of-javascript

Persistent storage

 Per-user web application state
 Relational databases PostgreSQL, MySQL, SQLite,

Oracle, MS SQL

 NoSQL (non-SQL): simple files, MongoDB, CouchDB, etc
 Common in big data and real-time web applications that do not

require transactional consistency

 Directories like openLDAP or Active Directory

 Often a target of attacks

Questions

 https://sayat.me/wu4f

https://sayat.me/wu4f

Extra

Web ecosystems

 Specify the programming language and framework as

well as the storage technology

 Initially “LAMP”
 Persistent storage = MySQL

 Programming language = PHP

 Diverse instances
 OpenStack, Docker, Amazon EC2

Multi-part forms

<form action=“/upload/example1.php" method="post" enctype="multipart/form-data">

 <p><input type="file" name=“image">

 <p><input type="file" name=“send">

 <p><button type="submit">Submit</button>

</form>

POST /upload/example1.php HTTP/1.1

Host: vulnerable

Content-Length: 305

User-Agent: Mozilla/5.0 [...] AppleWebKit

Content-Type: multipart/form-data; boundary=----WebKitFormBoundaryfLW6oGspQZKVxZjA

------WebKitFormBoundaryfLW6oGspQZKVxZjA

Content-Disposition: form-data; name="image"; filename="myfile.html"

Content-Type: text/html

My file

------WebKitFormBoundaryfLW6oGspQZKVxZjA

Content-Disposition: form-data; name="send"

Send file

------WebKitFormBoundaryfLW6oGspQZKVxZjA--

Multi-part forms

 Content-type header:
Content-Type: multipart/form-data; boundary=----

WebKitFormBoundaryfLW6oGspQZKVxZjA.

 Long random string used to delimit parts

 String repeated for every part of the multipart information.

 The last part contains the string followed by --.

