
Portland State University CS 410/510 Blockchain Development & Security

Bitcoin

Portland State University CS 410/510 Blockchain Development & Security

Precursor #1: Ledgers

Portland State University CS 410/510 Blockchain Development & Security

Ledgers

 At the beginning of written history (~3000 BC, Mesapotamia)
 Believed to be used to record barley transactions, and payments

 Reduces errors to make system more trustworthy

 Recorded on papyrus scrolls or clay

Portland State University CS 410/510 Blockchain Development & Security

Double-entry book-keeping

 Managing accounts so that any debit has an equal and offsetting credit amount.
 Pacioli, da Vinci circa 1494 as monetary systems begin to take hold in Europe
 Ensures integrity of ledger and keeps it from an invalid state

 Parts
 Original records (transactions)
 Classification (organized per account and placed into a single ledger)
 Summary (profit and loss)

 Modern example
 A company's balance sheet

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

But…

 Ledger is centralized

 Implicit trust in the person managing it

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

 Enron, Arthur Andersen 2001

 Lehman Brothers 2008

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

Centralized book-keeping and trust

 If developed nations can't get it right, how can anyone else?

 Even if book-keeper is trustworthy, what if the ledger is hacked or

deleted?
 Adversaries or disgruntled insiders tampering with the ledger

 Motivates the need for a ledger that is…
 Shared (for transparency)

 Replicated and managed in a decentralized manner (for availability)

 Authenticated, append-only, and tamper-resistant (for integrity)

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

Precursor #2: Currencies

Portland State University CS 410/510 Blockchain Development & Security

Currency

 Direct settlement via untraceable exchange of money for

goods/services

 ~3,000 B.C. in Egypt
 Revolves around precious metals (e.g. gold) and agricultural products

(barley)

 Adopted by many ancient civilizations (e.g. Greek)

 In the US, gold/silver made into legal tender via Mint and Coinage

Act of 1792
 Establishes fixed price between gold and US dollar

 US Mint buys and sells gold and silver at a value of 15:1

 In 1862, unable to pay debts using gold/silver, US adopts paper

money as legal tender
 Establishes a "fiat" currency for the first time in the US

 e.g. not convertible on demand at a fixed rate

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

 In 1900, gold standard established and paper dollars issued to

represent US gold reserves

 Extended internationally with Bretton Woods Agreements (1944)
 WW II wreaks havoc on gold standard

 Create gold exchange standard where price of gold fixed to the US

dollar ($35 for ounce of gold)

 Helps make US a global superpower

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

Issues with currencies

 Gold standard provides stability in monetary supply via scarcity of

gold
 But perhaps not flexibility to react to problematic economic situations

since supply of currency unchanged (John Maynard Keynes)

 Nixon 1971
 Drops gold standard in financial fallout of Vietnam war

 Government can now control supply of currency to manipulate value

 Many believe this was problematic

 Contributed to double-digit inflationary period in late 1970s

Portland State University CS 410/510 Introduction to Blockchain

Portland State University CS 410/510 Blockchain Development & Security

Digicash (1982)

 Secure, anonymous digital cash proposed by David Chaum
 Want the benefits of on-line transactions without the drawback of

transactions being traceable

 Credit card transactions provide a paper-trail

 Model
 Users obtain digital currency from bank

 Spend it in a manner not traceable by bank

 Done via blind signatures
 http://www.hit.bme.hu/~buttyan/courses/BMEVIHIM219/2009/Chaum.BlindS

igForPayment.1982.PDF

http://www.hit.bme.hu/~buttyan/courses/BMEVIHIM219/2009/Chaum.BlindSigForPayment.1982.PDF

Portland State University CS 410/510 Blockchain Development & Security

High-level operation

 Bank uses its private key s' to sign anything
 Anything signed is worth $1

 Payer with an account at the bank creates a single $1 note, blinds it,

gets it signed by the bank who debits payer $1

 Payer gets back blind and signed note, unblinds it, and provides it to

the payee.

 Payee (also with an account at the bank) sends note to bank who

validates its signature and updates the Payee's balance. Bank has no

idea that the note is from Payer

Portland State University CS 410/510 Blockchain Development & Security

Cryptographic primitives

 s' is the signing function of the bank (e.g. its private key)
 s is the inverse of s' such that s(s'(x)) = x

 Special commuting (blinding) function c the payer applies
 c'(s'(c(x))) = s'(x)

 Redundancy check r for ensuring x has been chosen with specific

properties..
 r is used to effectively check the integrity of c

 Checks for sufficient redundancy in x to make search for valid

signatures impractical in c

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

Digicash mechanism

 Payer randomly chooses x s.t. r(x) holds for c(x)
 Gives c(x) to the bank to sign
 Bank signs c(x) and returns s'(c(x)) to payer

 Debits payer's account $1
 Payer can not lose s'(c(x)) since it's a live $1 note!

 Payer computes c'(s'(c(x))) to yield s'(x)
 Payer checks that s'(x) is valid by applying bank's public key to get x

back via s(s'(x))
 Payer makes a payment to payee by providing s'(x)
 Payee forms r(s(s'(x)) and stops if false
 Payee forwards s'(x) to bank

 Note that the bank has never seen x before since it was given as c(x) so it
does not know the payer involved! (This is the magic)

 Bank forms r(s(s'(x)) and stops if false
 Bank checks note against a comprehensive list of cleared notes and stops if

it is a double-spend, otherwise adds note to list
 Bank adds $1 to payee

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

Hashcash (1997)

 Defense against email spam and DoS attacks developed by Adam Back
 Computational digital postage on e-mail messages

 Solution to a difficult proof-of-work puzzle used as postage
 Find any x where SHA(x || message) < Y

 Effectively the proof-of-work function used in Bitcoin

 Leverages pre-image resistance, avalanche effect of hash function

Portland State University CS 410/510 Blockchain Development & Security

Precursor #3: Decentralized

networks

Portland State University CS 410/510 Blockchain Development & Security

Napster (1999)

 P2P file sharing system developed by Shawn Fanning
 One of the first decentralized applications on the Internet where users

participate in system

 Central registry maintains metadata on peers and files they have

 Peers store actual copies of files

 But, centralization of registry makes "censorship" trivial

Portland State University CS 410/510 Blockchain Development & Security

Gnutella (2000)

 Alternative to centralized registry
 Peers form an overlay network and are largely equal to each other

 Queries broadcast throughout network (hop-limited)

 Can not be shut down
 Unless one does a wholesale block of its ports (which can be easily moved to 80)

 Both protocol and source code are open-source

Portland State University CS 410/510 Blockchain Development & Security

BitTorrent (2001)

 File-sharing application for large files written by Bram Cohen
 Creates a P2P network on-demand per file being distributed

 Nodes with entire copy of file called "seeds"
 Altruistically allow others to copy parts of file

 Nodes downloading a file allow others to download parts it already has
 Eliminates free-loading, creates much higher transfer rates

 Censorship-resistant
 Difficult to shut down all seeds once a torrent is established

 Results in MPAA going after search-engines for finding torrents instead of

individuals holding seeds (e.g. PirateBay)

Portland State University CS 410/510 Blockchain Development & Security

Blockchains and cryptocurrencies

Portland State University CS 410/510 Blockchain Development & Security

Goals

 Decentralized trust

 Tamper-resistant ledger of transactions
 (e.g. append-only, ordered log of authentic immutable transfers)

 Highly available and replicated

 Low overhead
 Computational resources

 Network bandwidth

 Transaction latency

 Transaction costs

 Anonymity (?)

Portland State University CS 410/510 Blockchain Development & Security

BitGold (1998)

 Proposal for first decentralized blockchain for digital currency by

Nick Szabo (never implemented)
 Mechanics

 Participant solves cryptographic puzzle to generate currency

 Solution is sent to a byzantine fault-tolerant registry for acceptance

 Registry assigns solution/currency to the public-key of solver

 Accepted solution becomes part of the next puzzle (creating a chain)

 Majority of parties in registry must accept new solution before next puzzle can be

undertaken (limits inflation)

 System does not depend on a trusted central authority to generate currency

 Trivia: Szabo eventually coined the term "smart contract"

Portland State University CS 410/510 Blockchain Development & Security

RPOW (1999)

 Re-usable Proof-of-Work developed by Hal Finney similar to

BitGold, but implemented
 https://github.com/NakamotoInstitute/RPOW

 Mechanics
 Participant solves puzzle of a given difficulty and signs solution (referred to as a

token) with private key

 Publishes token to a server that registers it to public-key of participant

 Participant can then transfer token to another participant by signing a transfer order

to the recipient's public key

 Server then registers token to public-key of recipient

 Trusted third party prevents double-spending

 Trivia
 Finney the receiver of the first Bitcoin transaction from Satoshi

 Lived for 10 years in a town where a Dorian Satoshi Nakamoto lived.

 Died of ALS in 2014

https://github.com/NakamotoInstitute/RPOW

Portland State University CS 410/510 Blockchain Development & Security

Bitcoin (2009)

Portland State University CS 410/510 Blockchain Development & Security

Genesis block on Jan 3 2009 from Satoshi Nakamoto

(an alias)

• Public dataset available in GCP BigQuery

• ~$500,000 block reward 10/2020

https://www.blockchain.com/btc/tx/4a5e1e4baab89f3a32518a88c31bc87f618f76673e2cc77ab2127b7afdeda33b?show_adv=true

Portland State University CS 410/510 Blockchain Development & Security

Basic model

 Takes ideas from…
 Decentralized systems (no central

authority)

 BitGold (hash-chains)

 RPOW (ownership transfer via public-key

crypto)

 Builds a consistent, distributed, P2P

ledger of transactions

Portland State University CS 410/510 Blockchain Development & Security

Main innovations

 Add Nakamoto distributed consensus
 Consensus based on majority of participants accepting the longest chain

of blocks

 Constructing chain requires CPU resources

 Add restriction on amount of currency
 Like gold standard

 Supply fixed via cryptographic properties

 Unlike fiat currency whose supply is controlled by central authority

Portland State University CS 410/510 Blockchain Development & Security

Nakamoto consensus and FLP/CAP

 "Consensus impossible in asynchronous network with deterministic

protocol"
 "Support eventual consistency in a mostly synchronous network with a

randomized protocol"

 Tight synchrony ensures strong consistency

 Upon partition, compromise consistency temporarily to support

availability. (CAP theorem)
 Partition causes the blockchain to fork

 Multiple chains created from forking point

 Reconciled on reconnection by invalidating shorter chains

 Longest-chain is always accepted by Bitcoin nodes

 Valid, accepted transactions on shorter chain become invalid (e.g. fall off the

ledger)

 Not acceptable for many financial institutions who would rather lose

availability rather than consistency in a partition (recall CAP theorem)

Portland State University CS 410/510 Blockchain Development & Security

1. Transaction model

 https://anders.com/blockchain/tokens

 Transactions recorded, but not balances
 Must replay transaction log to determine if a user can spend $ in a

transactions

 Notion of Unspent transaction outputs (UTXOs)

Portland State University CS 410/510 Blockchain Development & Security

https://anders.com/blockchain/tokens

Portland State University CS 410/510 Blockchain Development & Security

Mechanics

 Wallets with public-key as an address
 Don't hold "Bitcoin" as in other digital cash systems, but rather

corresponding private key to sign transactions

 Have access to unspent currencies for corresponding public-key

addresses indicated in Bitcoin ledger

Portland State University CS 410/510 Blockchain Development & Security

 New transactions created by wallet, signed by private key and

sent into network for execution

 All nodes use wallet addresses (e.g. public-key of sender) to verify

signature on transaction

 Creating a transaction
 Private key and public key of sender

 Public key of recipient

 Use to sign transaction (Send X amount from to)

 Broadcast to full nodes for inclusion in ledger

 Full nodes use to validate transaction as a candidate to be included

in next block
 Must validate via UTXOs before accepting (e.g. unspent transaction outputs

where is the recipient address)

SS

R

S S R

S

S

S

S

Portland State University CS 410/510 Blockchain Development & Security

 B uses private key to sign transaction to C
 Indicates public key from which UTXOs are transferred from

 Indicates public key for C where UTXOs are to be transferred to

 All nodes verify B's signature on transaction

 Examine ledger for prior UTXO sent to B to validate B has access

 If so, add to transaction pool for inclusion

Portland State University CS 410/510 Blockchain Development & Security

Bitcoin public/private keys

 BIP39-HD Wallets (Bitcoin Improvement Plan) standard
 Library of 2048 short words

 24 words randomly selected to generate private key

 2048^24 = 2^264 to brute-force

 Words hashed to create root private key

 ECDSA produces public key

 Public key is your address

Portland State University CS 410/510 Blockchain Development & Security

2. Transaction processing

 Transactions sent to a "Mempool" within full-nodes

 Miners examine Mempool to select transactions for candidate

block and validate each

 Construct proposed block and begins solving the proof-of-work

puzzle

Portland State University CS 410/510 Blockchain Development & Security

 Mempool can grow large and has a 2 week timeout

(blockchain.info)
 Transactions eventually time out and are dropped if not included in a

block within 2 weeks

 Not ideal for financial transactions!

https://www.blockchain.com/charts/mempool-

count?timespan=60days

 How are transactions selected? (next)

https://www.blockchain.com/charts/mempool-count?timespan=60days

Portland State University CS 410/510 Blockchain Development & Security

3. Miner incentives: Fees

 Miner gets all transaction fees in block (specified as unallocated

UTXOs in transaction)
 Users include fees in a "bid" to get included in the next block

 Wallet uses algorithm to guess optimal transaction fee before submitting

 Fees automatically assigned to miner address upon successful mined

block

 Example

Portland State University CS 410/510 Blockchain Development & Security

 Leads to spikes in fees when demand is high
 https://www.blockchain.com/charts/transaction-fees?timespan=2years

Portland State University CS 410/510 Blockchain Development & Security

https://www.blockchain.com/charts/transaction-fees?timespan=2years

Portland State University CS 410/510 Blockchain Development & Security

Miner incentives: Coinbase

 Miner gets block reward as first transaction in block (called the

Coinbase transaction for the BTC)
 Reward initially 50 BTC (shown in output for Block #0 earlier)

 Halved every 210,000 blocks (~4 years) to cap supply

 Runs out after 2147 (must rely on transaction fees afterwards)

Portland State University CS 410/510 Blockchain Development & Security

Portland State University CS 410/510 Blockchain Development & Security

 See https://www.blockchain.com/explorer

Portland State University CS 410/510 Blockchain Development & Security

https://www.blockchain.com/explorer

Portland State University CS 410/510 Blockchain Development & Security

Demo

 No coinbase to determine Block #1 transactions valid!
 https://anders.com/blockchain/tokens

 Coinbase given to miner who successfully mines Block #1 (anders)
 https://anders.com/blockchain/coinbase

 Initially anders, who then kicks off transactions

 Later sophia

Portland State University CS 410/510 Blockchain Development & Security

https://anders.com/blockchain/tokens
https://anders.com/blockchain/coinbase

Portland State University CS 410/510 Blockchain Development & Security

3. Mining details

 Miners (often organized as a
pool) solve a PoW puzzle based
on
 Hash of prior block
 Hash of proposed block

containing transactions selected
 Finds the nonce that results in a

partial hash collision with
difficulty specified
algorithmically

 As soon as a miner solves the
puzzle for a proposed block, it is
broadcast
 All full nodes validate block and

its solution
 Immediately accept it and move

onto next block

Portland State University CS 410/510 Blockchain Development & Security

Mining details

 Blocks with invalid transactions or bad hashes rejected (along with
reward)
 Miners responsible for verifying transactions before solving puzzle
 Blocks must obey rules of the game (protocol)

 Longest chain wins
 Can only profit by mining off of latest block!
 Orphan blocks fall off chain (as do their coinbase!)
 No one wants to mine a block that falls off the chain, so miners always

mine on longest chain

Portland State University CS 410/510 Blockchain Development & Security

 Leads to the notion of "confirmations" and "block depth"
 Number of blocks that have reconfirmed your block as part of chain

 Versus block height (# of blocks from genesis block)

 Typically must wait 3-4 confirmations to ensure no orphans

 40 minute transaction delay!

Portland State University CS 410/510 Blockchain Development & Security

4. Design for decentralization

 Designed so anyone can participate (like BitTorrent/Gnutella)
 1 block (1 MB) every 10 minutes

 Reason #1: Size of full-node grows linearly
 Currently around 300GB and can be stored on a Raspberry Pi!

 https://www.blockchain.com/charts/blocks-size

https://www.blockchain.com/charts/blocks-size

Portland State University CS 410/510 Blockchain Development & Security

 But, limits transaction rate
 https://www.blockchain.com/charts/n-transactions?timespan=5years (per-day)

 Currently supports ~7 transactions per second

 Compare to Visa network of 2k transactions per second average and 50k

transactions per second peak

https://www.blockchain.com/charts/n-transactions?timespan=5years

Portland State University CS 410/510 Blockchain Development & Security

 Reason #2: Control rate that blocks are added to maintain consistency
 Propagation time for replicating blocks << Creation time between new blocks

 Solves double-spending problem by parameterizing proof-of-work difficulty to ~10-

minutes (Paremeter reset every 2 weeks based on averaging)

 Implemented via rule in software

 https://www.blockchain.com/charts/difficulty?timespan=all

What happened in 11/2018?

https://www.blockchain.com/charts/difficulty?timespan=all

Portland State University CS 410/510 Blockchain Development & Security

 Cryptocurrency winter sees profitability plummet

Portland State University CS 410/510 Blockchain Development & Security

 Mining profitability chart (late 2018)
 https://research.tradeblock.com/wp-

content/uploads/2018/12/20181206-Hash_Rate-Mining_Cost-1.png

https://research.tradeblock.com/wp-content/uploads/2018/12/20181206-Hash_Rate-Mining_Cost-1.png

Portland State University CS 410/510 Blockchain Development & Security

5. Security

 Authentication done via public-key cryptography with no trust

required between peers
 Accounts can not be disabled

 User must now be responsible for securing his/her private key
 Do you trust yourself to do this?

Portland State University CS 410/510 Blockchain Development & Security

 Pseudo-anonymous: can trace addresses by transactions through

blockchain
 Subsequent systems attempt to improve anonymity (Zcash)

 Many used for illegal activity (e.g. 90% of ZCash usage)

 Resists Sybil attack
 Adversary launching multiple identities to corrupt consensus protocol

 Ability to add blocks to blockchain determined by capacity to solve

Proof-of-Work puzzles

 Must own majority of CPU resources to subvert (51% attack..more

later)

Portland State University CS 410/510 Blockchain Development & Security

6. Scalability

 Current implementation difficult to use for small transactions

 Proposed alternatives
 Litecoin (2011)

 Code fork of Bitcoin

 Uses scrypt – sequential memory-hard puzzle (makes ASIC mining difficult)

 Block time = 2.5 min

 Block reward = 50 LTC halving every 4 years

 Block size = 1MB

 Bitcoin Cash (2017)
 Hard fork of Bitcoin

 Block size increased to 4MB and beyond to support lower transaction costs and

faster transactions

 No longer require that full-nodes run on embedded devices

 Eventually forked again…

Portland State University CS 410/510 Blockchain Development & Security

Side chains and transaction aggregation

 Transaction throughput small on Bitcoin (7 per second)

 Lightning network (2018) https://lightning.network/
 Layer a transaction aggregation system on top of blockchain to reduce

number of transactions (Layer 2 solutions)

 Like opening up a tab at a bar, opening tab and settlement at end are the

only things recorded

 Or create a side blockchain, then sync its blockhashes to main chain

(sharding)
 Create secondary payment network where transactions and balances

summarized and committed to Bitcoin blockchain periodically

 Reduces load on Bitcoin network, allows for higher transaction

throughput

 Hierarchical blockchains being proposed to scale transaction throughput

Portland State University CS 410/510 Blockchain Development & Security

https://lightning.network/

Portland State University CS 410/510 Blockchain Development & Security

Hyperledger

Portland State University CS 410/510 Blockchain Development & Security

Hyperledger

 Open-source implementations of permissioned blockchains (where
participants are trusted)
 Curated like Apache project
 Typically for the enterprise

 Allows enterprises to *see* code they rely upon
 Different projects for different styles of deployments

 Focused on adherence to regulatory compliance
 Not possible with Bitcoin or Ethereum

 Commonly used projects and their consensus protocols
 https://www.hyperledger.org/wp-

content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf
 Fabric (IBM)

 Kafka + other consensus protocols
 Iroha (Soramitsu/Hitachi)

 Sumeragi
 Indy (Sovrin)

 RBFT
 Sawtooth (Intel)

 PoET

https://www.hyperledger.org/wp-content/uploads/2017/08/Hyperledger_Arch_WG_Paper_1_Consensus.pdf

Portland State University CS 410/510 Blockchain Development & Security

Component layers

 Consensus
 Manage distributed agreement and ensuring correctness

 Smart contract (validation)
 Executing code and business logic

 Communication
 Message transport between nodes

 Data store
 Backend storage

 Cryptography
 Algorithms used for confidentiality, non-repudiation, authentication,

etc.

 API
 Access to blockchain

Portland State University CS 410/510 Blockchain Development & Security

Comparison to public blockchains

Bitcoin Ethereum
Hyperledger

Frameworks

Cryptocurrency

based
Yes Yes No

Permissioned No No Yes (in general)*

Pseudo-anonymous Yes No No

Auditable Yes Yes Yes

Immutable ledger Yes Yes Yes

Modularity No No Yes

Smart contracts No Yes Yes

Consensus protocol PoW PoW Various**

