
Transport Layer 3-1

Transport protocols

Transport Layer 3-2

Transport services and protocols
 provide logical communication

between app processes
running on different hosts

 transport protocols run in end
systems

 send side: breaks app
messages into segments,
passes to network layer

 rcv side: reassembles
segments into messages,
passes to app layer

 more than one transport
protocol available to apps

 Internet: TCP and UDP

application
transport
network
data link
physical

application
transport
network
data link
physical

logical end-end transport

Transport Layer 3-3

Transport Layer Functions
 Demux to upper layer

 Delivering data to correct application process
 Connection setup

 Providing a connection abstraction over a connectionless
substrate

 Delivery semantics
 Reliable or unreliable
 Ordered or unordered
 Unicast, multicast, anycast

 Security
 Flow control

 Prevent overflow of receiver buffers
 Congestion control

 Prevent overflow of network buffers
 Avoid packet loss and packet delay

Transport Layer 3-4

UDP: User Datagram Protocol [RFC 768]

 Bare bone transport protocol
 Connectionless

 No handshaking between
sender and receiver

 Delivery semantics
 Unordered, unreliable
 Unicast mostly (multicast no

longer supported)
 No support for security, flow

control or congestion control

Why is there a UDP?
 no connection

establishment (which can
add delay)

 simple: minimal state at
sender, receiver

 small segment header
 can send at a fixed rate (no

congestion control)

Transport Layer 3-5

UDP: more
 often used for streaming

multimedia apps
 loss tolerant
 rate sensitive

 other UDP uses
 DNS
 SNMP

source port # dest port #

32 bits

Application
data

(message)

UDP segment format

length checksum
Length, in

bytes of UDP
segment,
including

header

Transport Layer 3-6

TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581

 full duplex:
 bi-directional data flow in

same connection
 MSS: maximum segment

size
 pipelined:

 Support high bandwidth
 flow and congestion

controlled:
 control the size of pipe
 sender will not overwhelm

receiver or network

 point-to-point:
 one sender, one receiver

 connection-oriented:
 3-way handshake to initialize

sender/receiver
 connection integrity

 reliable, in-order byte
stream:

 Error detection, correction
 Retransmission
 Duplicate detection

s o c k e t
d o o r

T C P
s e n d b u f f e r

T C P
r e c e i v e b u f f e r

s o c k e t
d o o r

s e g m e n t

a p p l i c a t i o n
w r i t e s d a t a

a p p l i c a t i o n
r e a d s d a t a

Transport Layer 3-7

TCP segment structure

source port # dest port #

32 bits

application
data

(variable length)

sequence number
acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

Options (variable length)

URG: urgent data
(generally not used)

ACK: ACK #
valid

PSH: push data now
(generally not used)

RST, SYN, FIN:
connection estab
(setup, teardown

commands)

bytes
rcvr willing
to accept

counting
by bytes
of data
(not segments!)

Internet
checksum

(as in UDP)

Transport Layer 3-8

TCP

 TCP creates a reliable data transfer
service on top of IP’s unreliable service via
 Checksum
 Sequence numbers
 Acknowledgments
 Retransmissions
 Rate limits on sender

Transport Layer 3-9

Segment integrity via checksum
 Checksum included in header by sender

 Generated by treating data in the packet as
numbers and adding them all up

 Receiver checks checksum
 Performs same operation as sender and checks

checksum field
 Corruption detected when no match

Transport Layer 3-
10

Sequence numbers

 Data in each packet is labeled with a
“unique” number
 Establishes ordering amongst packets
 Allows receiver to identify which packets have

been received and which have not
 Initialized during connection setup (i.e. 3-way

handshake)

Transport Layer 3-
11

Sequence numbers
 3-way handshake with initial sequence

number selection

A B

SYN + Seq A

SYN+ACK-A + Seq B

ACK-B

Transport Layer 3-
12

Sequence Numbers

 Why is selecting a random initial
sequence number important?

 Predictable ISNs allow adversary
to blindly “spoof” connections from
“trusted” hosts

• Hijack TCP connections
• Reset existing TCP connections
• Create new connections as someone

else
– Attack popularized by K. Mitnick
– X trusts Y
– Logins from Y are accepted without

credential check
– Predictable ISN of X allows Evil Ed

to impersonate Y and access X
without credential check

Ed

Y

X

.rhosts
 Y

Transport Layer 3-
13

Acknowledgements

 TCP receiver sends an acknowledgement
back to sender for the data it receives
 Lets sender know to “move on”
 Lets sender know that network has the capacity

to deliver its packets

Transport Layer 3-
14

Retransmissions

 Via timeout events
 TCP uses single retransmission timer
 Sender sends segment and sets a timer

• Send 1
• Wait for Ack 2
• No Ack 2 and timer expires
• Send 1 again

 Timer is based on measured round-trip times and round-
trip time variations

 Via missing acknowledgements
 If receiver reports it has received packets 1, 3, 4, and 5,

sender automatically resends 2 before timeout

Transport Layer 3-
15

Rate limits on sender: Flow control

 Receiver has a finite buffer
 App process may be slow reading it
 Flow control to make sure sender won't overflow it
 Match the send rate to the receiving app’s drain rate

 Rcvr advertises spare room in buffer by including value of
RcvWindow in each segment/ACK

 Also known as the “advertised” window
 Sender limits unACKed data to RcvWindow to avoid overflow

Transport Layer 3-
16

Rate limits on sender: Congestion Control

Congestion:
 informally: “too many sources sending too much data too fast

for network to handle”
 different from flow control!
 manifestations:

 lost packets (buffer overflow at routers)
 long delays (queueing in router buffers)

Transport Layer 3-
17

Congestion collapse scenario

“Cost” of congestion:
 when packet dropped, any “upstream transmission

capacity used for that packet was wasted!

H
o
s
t
A

H
o
s
t
B


o

u

t

Transport Layer 3-
18

Congestion Collapse

 Increase in network load results in decrease of
useful work

 Spurious retransmissions of packets still in flight
 Undelivered packets

• Packets consume resources and are dropped elsewhere in
network

• Packets that are delayed on long queues

Transport Layer 3-
19

Congestion control approaches
 End-host vs. network controlled

 End-host: Hosts trusted to adjust rate based on
detected congestion

 Network controlled: Hosts untrusted, instead have network
adjust rates at congestion points

 Implicit vs. explicit network feedback
 Implicit: infer congestion from packet loss or delay
 Explicit: signalled from network

 Given what you know of Internet design, which one is used on
the Internet?

Transport Layer 3-
20

TCP Congestion Control

 Mainly end-host, window-based congestion
control
 Only place to really prevent collapse is at end-

host
 Reduce sender window when congestion is

perceived
 Increase sender window otherwise (probe for

bandwidth)

Transport Layer 3-
21

TCP congestion control basics

 Keep a congestion window, (cwnd)
 Denotes how much network is able to absorb

• “Size of the pipe”
• Make cwnd as large as possible without loss
• TCP “probes” for usable bandwidth continuously

– increase cwnd until loss (congestion)
– decrease cwnd upon loss ,then begin probing (increasing) again

 Recall receiver’s advertised window (rcv_wnd)
 Sender’s maximum window

 min(rcv_wnd,cwnd)

Transport Layer 3-
22

TCP slow start

 When connection begins, increase rate exponentially fast
until first loss event
 cwnd = 1 for 1st RTT
 cwnd = 2 for 2nd RTT
 cwnd = 4 for 3rd RTT

 When connection begins, cwnd = 1 MSS
 Example: MSS = 500 bytes & RTT = 200 msec
 initial rate = 20 kbps

 Available bandwidth may be much larger than MSS/RTT
 desirable to quickly ramp up to respectable rate

Transport Layer 3-
23

TCP congestion avoidance

Q: When should the exponential increase stop?
 If loss occurs when cwnd = W

 Network can handle 0.5W ~ W segments
 Cut cwnd in half, grow window more slowly
 Grow cwnd by 1 every round-trip time
 Results in additive increase

Transport Layer 3-
24

TCP throughput

1

2

4

RTTRTT RTT

W
W+1

2W

Congestion avoidance

Fast Retransmit/Recovery
Slow-start

Transport Layer 3-
25

Fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

 Does TCP’s congestion control algorithm promote
fairness between flows?

TCP connection 1

bottleneck
router

capacity R

TCP
connection 2

Goals revisited: TCP Fairness

Transport Layer 3-
26

Why is TCP fair?
Additive increase gives slope of 1, as throughout increases equally
Multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

Co
nn

ec
ti

on
 2

 t
hr

ou
gh

pu
t

congestion avoidance: additive increase
loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

Transport Layer 3-
27

Caveats to “fairness”
Fairness and UDP
 Multimedia apps often use UDP

 pump audio/video at constant rate, tolerate packet loss
 negatively impacts TCP flows

Fairness and parallel TCP connections
 Application opening multiple TCP connections between

2 hosts
 Common in Web browsers
 Link of rate R supporting 9 connections;

• new app asks for 1 TCP, gets rate R/10
• new app asks for 11 TCPs, gets R/2 !

Transport Layer 3-
28

Advanced transport topics

 Long fat pipes
 Example: 1500 byte segments, 100ms RTT, want

10 Gbps throughput
 BW*Delay = 10Gbs * 0.1s = 1Gbit

• In packets, W=83,333
• In bytes, 1Gbit/8 = 125MB

 Problem #1: 16-bit advertised window field (in
bytes)

• Maximum of 64KB !!
• Solution: TCP window scaling option

– Scaling factor on advertised window specifies # of bits to
shift to the left

– Scaling factor exchanged during connection setup

Transport Layer 3-
29

Advanced transport topics

 Long fat pipes
 Problem #2: 32-bit sequence/ack number

wraparound
• Recall maximum window must be less than ½ seq. no.

space
• 10Mbs: 57 min., 100Mbs: 6 min., 622Mbs: 55 sec. <

MSL!
• Use timestamp option to disambiguate
• TCP sequence number wraparound (TCP PAWS)

Transport Layer 3-
30

Advanced transport topics

 Long fat pipes
 Problem #3: TCP Sawtooth for large W

• For sawtooth W to 2W
• Packets xferred in sawtooth

– W + (W+1) + (W+2) …. + 2W = (3W/2) * (W+1) = 1.5W(W+1)
– For W=83,333

» Packets xferred in sawtooth between losses = 10.4 billion
» Loss rate = 1 packet loss per sawtooth L = 10-10 Wow➜

• Sawtooth length = W*RTT
– For W=83,333 and RTT=100ms, sawtooth length over 2 hours
– Average connection throughput ¾ of capacity

• Solution: new versions of TCP for high-speed
– HS-TCP, FAST TCP, etc.

Transport Layer 3-
31

Advanced transport topics

 Short transfers slow
 Flows timeout on loss if cwnd < 3

• Change dupack threshold for small cwnd
 3-4 packet flows (most HTTP transfers) need 2-3 round-

trips to complete
• Use larger initial cwnd (IETF approved initial cwnd = 3 or 4)

Transport Layer 3-
32

Advanced transport topics

 Security
 Layer underneath application layer and above transport

layer (See Chapter 8)
 SSL, TLS
 Provides TCP/IP connection the following….

• Data encryption
• Server authentication
• Message integrity
• Optional client authentication

 Original implementation: Secure Sockets Layer (SSL)
• Netscape (circa 1994)
• http://www.openssl.org/ for more information
• Submitted to W3 and IETF

 New version: Transport Layer Security (TLS)
• http://www.ietf.org/html.charters/tls-charter.html

Transport Layer 3-
33

Extra slides

Transport Layer 3-
34

Advanced transport topics

 Better congestion control algorithms
 TCP increases rate until loss
 TCP Vegas: avoid losses by backing off sending rate when

delays increase
 Non-TCP traffic

 Multimedia applications do not work well over TCP’s
sawtooth

 TCP-friendly rate control (TFRC)
 Derive smooth, stable equilibrium rate via equations

based on loss rate

Transport Layer 3-
35

Advanced transport topics

 Explicit network congestion signalling
 TCP uses implicit information to fix sender’s

rate
• Packet loss reduces rate
• Successful packet transmissions increase rate

 ATM
• Explicitly signal rate from network elements

 TCP with ECN
• Add bit in IP header to signal congestion (hybrid

between TCP approach and ATM approach)
• Actively detect and signal congestion beforehand at

routers

Transport Layer 3-
36

Advanced transport topics

 Non-responsive, aggressive applications
 Applications written to take advantage of

network resources (multiple TCP connections)
 Network-level enforcement, end-host

enforcement of fairness
 Wireless networks

 TCP infers loss on wireless links as congestion
and backs off

 Add link-layer retransmission and explicit loss
notification (to squelch RTO)

	Transport protocols
	Transport services and protocols
	Transport Layer Functions
	UDP: User Datagram Protocol [RFC 768]
	UDP: more
	TCP: Overview RFCs: 793, 1122, 1323, 2018, 2581
	TCP segment structure
	TCP
	Segment integrity via checksum
	Sequence numbers
	Slide 11
	Sequence Numbers
	Acknowledgements
	Retransmissions
	Rate limits on sender: Flow control
	Rate limits on sender: Congestion Control
	Slide 17
	Congestion Collapse
	Congestion control approaches
	TCP Congestion Control
	TCP congestion control basics
	TCP slow start
	TCP congestion avoidance
	TCP throughput
	Goals revisited: TCP Fairness
	Why is TCP fair?
	Caveats to “fairness”
	Advanced transport topics
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Extra slides
	Slide 34
	Slide 35
	Slide 36

