
2: Application Layer 1

Internet applications

2: Application Layer 2

Recall Internet architecture

Intelligence at end systems
 e.g., web server software communicates with browser

software
No need to write software for network-core devices

when deploying new applications
 Network-core devices do not run user applications or

tamper with packet payloads
 applications on end systems allows for rapid app

development, propagation

2: Application Layer 3

Application protocols
 Language spoken between a client application (i.e.

web browser) and a server application (i.e. a web
server)

 Describes how clients and servers communicate
with each other
 Types of messages (e.g., request & response)
 Syntax of messages
 Semantics of the fields
 Rules for processing

2: Application Layer 4

Application layer protocols

Types of application protocols
 Public-domain protocols

• defined in RFCs from IETF
• allows for interoperability
• e.g., HTTP, SMTP

 Proprietary protocols
• e.g., KaZaA, Skype

2: Application Layer 5

Understanding application requirements

Data loss
 some apps (e.g., audio) can

tolerate some loss
 other apps (e.g., file

transfer, telnet) require
100% reliable data
transfer

Timing
 some apps (e.g.,

Internet telephony,
interactive games)
require low delay to be
“effective”

Bandwidth
 some apps (e.g.,

multimedia) require
minimum amount of
bandwidth to be
“effective”

 other apps (“elastic
apps”) make use of
whatever bandwidth
they get

2: Application Layer 6

Transport service requirements of common apps

Application

file transfer
e-mail

Web documents
real-time audio/video

streaming audio/video

interactive games
instant messaging

Data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Bandwidth

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

2: Application Layer 7

Internet transport protocols services

TCP service:
 connection-oriented: setup

required between client and
server processes

 reliable transport between
sending and receiving process

 flow control: sender won’t
overwhelm receiver

 congestion control: throttle
sender when network
overloaded

 does not provide: timing,
minimum bandwidth
guarantees

UDP service:
 unreliable data transfer

between sending and
receiving process

 does not provide:
connection setup,
reliability, flow control,
congestion control, timing,
or bandwidth guarantee

2: Application Layer 8

Internet apps: application, transport protocols

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

Application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
proprietary
(e.g. RealNetworks)
proprietary
(e.g., Vonage,Dialpad)

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

typically UDP

2: Application Layer 9

Web/HTTP

2: Application Layer 1

Web and HTTP

First some jargon
 Web page consists of objects
 Object can be HTML file, JPEG image, Java

applet, audio file,…
 Each object is addressable by a URL
 Web page consists of base HTML-file which

includes several referenced objects
 Example URL:
 www.someschool.edu/someDept/pic.gif

host name path name

2: Application Layer 1

HTTP overview

 HTTP: hypertext transfer
protocol

 Web’s application layer
protocol

 client/server model
 HTTP 1.0: RFC 1945

 http://www.rfc-
editor.org/rfc/rfc1945.txt

 HTTP 1.1: RFC 2068
 http://www.rfc-

editor.org/rfc/rfc2068.txt

PC running
Explorer

Server
running

Apache Web
server

Mac running
Navigator

http://www.rfc-editor.org/rfc/rfc1945.txt
http://www.rfc-editor.org/rfc/rfc1945.txt
http://www.rfc-editor.org/rfc/rfc2068.txt
http://www.rfc-editor.org/rfc/rfc2068.txt

2: Application Layer 1

HTTP overview (continued)

Uses TCP:
 client initiates bi-directional TCP connection (via socket) to

server, port 80
 server accepts TCP connection from client
 HTTP messages (application-layer protocol messages) exchanged

between browser (HTTP client) and Web server (HTTP server)
 Messages encoded in text

 TCP connection closed

2: Application Layer 1

HTTP request message

 two types of HTTP messages: request, response
 HTTP request message:

 ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
 lines

Carriage return,
line feed

indicates end
of message http://www.someschool.edu/somedir/page.html

2: Application Layer 1

HTTP response message

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

2: Application Layer 1

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:
 Opens TCP connection to port 80

(default HTTP server port) at cis.poly.edu.
Anything typed in sent
to port 80 at cis.poly.edu

telnet cis.poly.edu 80

2. Type in a GET HTTP request:

GET /~ross/ HTTP/1.1
Host: cis.poly.edu

By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. Look at response message sent by HTTP server!

2: Application Layer 1

HTTP in action

Other examples
 http://www.thefengs.com/wuchang/work/courses/

cs347u/http.txt
 http://www.thefengs.com/wuchang/work/courses/

cs347u/http_post.txt

2: Application Layer 1

User-server state: cookies

HTTP initially “stateless”
 Didn’t remember users or prior requests

Many major Web sites need state
 Yahoo mail
 Amazon shopping cart

HTTP state management (cookies): RFC 2109
 http://www.rfc-editor.org/rfc/rfc2109.txt

http://www.pdx.edu/

2: Application Layer 1

User-server state: cookies

Four components:
1) cookie header line of HTTP response message
 Set-cookie:

2) cookie header line in HTTP request message
Cookie:

3) cookie file kept on user’s host, managed by
user’s browser

4) back-end database at Web site

2: Application Layer 1

Cookies: keeping “state” (cont.)
client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
usual http request msg Amazon server

creates ID
1678 for user create

 entry

usual http response
Set-cookie: 1678

ebay 8734
amazon 1678

usual http request msg
cookie: 1678 cookie-

spectific
action

access
ebay 8734
amazon 1678

backend
database

2: Application Layer 2

Cookies (continued)
What cookies can bring:
 authorization
 shopping carts
 Site preferences
 recommendations
 user session state

(Web e-mail)

Cookies and privacy:
 cookies permit sites to

learn a lot about you
 you may supply name

and e-mail to sites
 search engines use

redirection & cookies
to learn yet more

 advertising companies
obtain info across
sites

aside

2: Application Layer 2

E-mail

2: Application Layer 2

Electronic Mail

Three major components:
 user agents
 mail servers
 simple mail transfer

protocol: SMTP

User Agent
 a.k.a. “mail reader”
 composing, editing, reading

mail messages
 e.g., Eudora, Outlook, elm,

Mozilla Thunderbird
 outgoing, incoming messages

stored on server

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

2: Application Layer 2

Electronic Mail: mail servers
Mail Servers

 mailbox contains incoming
messages for user

 message queue of outgoing
(to be sent) mail messages

 e.g. sendmail, postfix,
Exchange

SMTP protocol
 Between mail servers to

send email messages
 Mail servers are both

clients and servers

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

2: Application Layer 2

Electronic Mail: SMTP [RFC 821]

 uses TCP to reliably transfer email message
from client to server, port 25
 User agent to sending server (sometimes)
 Sending server to receiving server (always)

 command/response interaction
 commands:
 response: status code and phrase

2: Application Layer 2

Sample SMTP interaction
 S: 220 hamburger.edu
 C: HELO crepes.fr
 S: 250 Hello crepes.fr, pleased to meet you
 C: MAIL FROM: <alice@crepes.fr>
 S: 250 alice@crepes.fr... Sender ok
 C: RCPT TO: <bob@hamburger.edu>
 S: 250 bob@hamburger.edu ... Recipient ok
 C: DATA
 S: 354 Enter mail, end with "." on a line by itself
 C: Do you like ketchup?
 C: How about pickles?
 C: .
 S: 250 Message accepted for delivery
 C: QUIT
 S: 221 hamburger.edu closing connection

Q: Client fills in the “From:” field. Is this a problem?

2: Application Layer 2

SMTP

Comparison with HTTP:
 HTTP: pull
 SMTP: push

• Some argue this should have been a pull as well due to
spam

 Both have ASCII command/response
interaction, status codes

2: Application Layer 2

Mail access protocols

 SMTP: delivery/storage to receiver’s server
 Mail access protocol: retrieval from server

 Direct (telnet or ssh followed by “mail”)
 POP: Post Office Protocol [RFC 1939]

• authorization (agent <-->server) and download
 IMAP: Internet Mail Access Protocol [RFC 1730]

• more features (more complex)
• manipulation of stored msgs on server

 HTTP: Hotmail , Yahoo! Mail, Horde/IMP, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP access
protocol

receiver’s mail
server

2: Application Layer 2

POP3 protocol
authorization phase
 client commands:

 user: declare username
 pass: password

 server responses
 +OK
 -ERR

transaction phase
 list: list message numbers
 retr: retrieve message by

number
 dele: delete
 quit

 C: list
 S: 1 498
 S: 2 912
 S: .
 C: retr 1
 S: <message 1 contents>
 S: .
 C: dele 1
 C: retr 2
 S: <message 1 contents>
 S: .
 C: dele 2
 C: quit
 S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on

2: Application Layer 2

DNS

2: Application Layer 3

Domain Name System (DNS)

Internet hosts, routers like to use fixed-
length addresses (numbers)
 IP address (32 bit) - used for addressing

datagrams
Humans like to use variable-length names

 www.cs.pdx.edu
 keywords

DNS, keywords, naming protocols
 Map names to numbers (IP addresses)

2: Application Layer 3

Original Name to Address Mapping

Flat namespace
 /etc/hosts.txt
 SRI kept main copy
 Downloaded regularly

Problems
 Count of hosts was increasing

• From machine per domain to machine per user
• Many more downloads of hosts.txt
• Many more updates of hosts.txt

2: Application Layer 3

DNS: Domain Name System (1984)

 Distributed database implemented as a hierarchy
of many name servers
 Goals

• Scalability
• Decentralized maintenance
• Fault-tolerance
• Global scope

– Names mean the same thing everywhere
 Why not centralize DNS?

• Not scalable, hard to maintain, single point of failure
 http://www.rfc-editor.org/rfc/rfc1034.txt
 http://www.rfc-editor.org/rfc/rfc1035.txt

2: Application Layer 3

DNS: Domain Name System (1984)

Application-layer protocol used by hosts
and name servers
 communicate to resolve names (address/name

translation)
 core Internet function, implemented as

application-layer protocol
• complexity at network’s “edge”
• compare to phone network

– naming (none supported)
– addressing (complex mechanism within network)

2: Application Layer 3

DNS hierarchical canonical name space

root

edu net org uk com ca

gwu ucb pdx bu mit

cs ece

www

2: Application Layer 3

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS servers yahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

Namespace maps closely to name servers

2: Application Layer 3

What is stored at these servers?
DNS: distributed db storing resource records (RR)

 Type=NS
 name is domain (e.g.

foo.com)
 value is hostname of

authoritative name
server for this domain

RR format: (name, value, type, ttl)

 Type=A
 name is hostname
 value is IP address

 Type=MX
 value is name of mailserver

associated with name

2: Application Layer 3

Main parts of DNS

 Client resolver
 Local DNS servers
 Root servers
 TLD servers
Authoritative servers

2: Application Layer 3

Client resolver

 Code on client to query DNS hierarchy
 gethostbyname()

2: Application Layer 3

Local Name Server

 Does not strictly belong to hierarchy
 Each ISP (residential ISP, company, university)

has one.
 Also called “default name server”
 Specified in /etc/resolv.conf or given by DHCP

 Host's DNS queries sent to local DNS server
 Acts as a proxy, forwards query into hierarchy.
 Typically answer queries about local zone directly
 Do a lookup of distant host names for local hosts

 Each local DNS server points to root servers
 Hard-coded IP addresses in all name server distributions
 Currently {a-m}.root-servers.net

2: Application Layer 4

Root name servers
 Contacted by local name server that can not resolve name
 Typically returns information on next level of hierarchy (TLD server) for

local name server to query
 13 root name servers worldwide for fault-tolerance

• http://www.root-servers.org

b USC-ISI Marina del Rey, CA
l ICANN Los Angeles, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA (and 17 other locations)

i Autonomica, Stockholm (plus 3
other locations)

k RIPE London (also Amsterdam,
Frankfurt)

m WIDE Tokyo

a Verisign, Dulles, VA
c Cogent, Herndon, VA (also Los Angeles)
d U Maryland College Park, MD
g US DoD Vienna, VA
h ARL Aberdeen, MD
j Verisign, (11 locations)

2: Application Layer 4

TLD Servers

 Top-level domain (TLD) servers: responsible
for com, org, net, edu, etc, and all top-level
country domains uk, fr, ca, jp.
 Network Solutions maintains servers for com TLD
 Educause for edu TLD
 Pass back information on next level of hierarchy

(e.g. authoritative servers)

2: Application Layer 4

Authoritative Servers

 Provides authoritative hostname to IP mappings
 Typically, one per organization
 Hand mappings out for organization’s servers (Web & mail).

 Store parts of the database
 Each part of a name is assigned to an authoritative server
 Server responds to all queries for name it is the authority
 Can be maintained by organization or service provider
 Example

• Authority for .edu is a root server
• Authority for pdx.edu is the “.edu” TLD server
• Authority for www.pdx.edu is dns0.pdx.edu (131.252.120.128)

2: Application Layer 4

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS servers yahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

DNS in action

Client wants IP for www.amazon.com
 client queries local DNS server for www.amazon.com
 local DNS server queries a root server to find a com DNS

server
 local DNS server queries com DNS server to get amazon.com

DNS server
 local DNS server queries amazon.com DNS server to get IP

address for www.amazon.com
 local DNS server returns IP address to client

2: Application Layer 4

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

authoritative DNS server
dns.cs.umass.edu

8
6 7

TLD DNS server

DNS query example
 Host at cis.poly.edu

wants IP address for
gaia.cs.umass.edu

2: Application Layer 4

Typical Resolution
 Client does recursive request to local name server
 Local name server does iterative requests for name
 Steps for resolving A record of pdx.edu

 Application calls gethostbyname()
 Resolver contacts local name server (S1)
 S1 queries root server (S2) for (.edu)
 S2 returns NS record for .edu TLD (S3)
 S1 queries S3 for pdx.edu
 S3 returns NS record for pdx.edu (S4)
 S1 queries S4 for pdx.edu
 S4 returns A record for pdx.edu

• Can return multiple addresses -> what does this mean?

http://www.ircache.net/
http://www.cdn.com/www.foo.com/sports/ruth.gif
http://java.sun.com/j2se/1.5.0/docs/api/index.html

2: Application Layer 4

DNS: caching and updating records
 DNS responses cached throughout hierarchy

 Other queries may reuse some parts of lookup
• NS records for domains reused often (xxx.yahoo.com)

 Entries timeout after some time (soft state)
• TTL field controlled by authority
• Affects DNS-based load balancing

 TLD servers often cached in local name servers
• Thus, root name servers not often visited

 Negative responses also cached
• Don’t repeat past mistakes (misspellings)

 update/notify mechanisms
 RFC 2136
 http://www.ietf.org/

http://thefengs.com/wuchang/work/courses/cs347u/topics.txt

2: Application Layer 4

DNS Lookup Caching Example

Client
Local

DNS server

root & edu
DNS server

pdx.edu
DNS server

www.cs.pdx.edu?

cs.pdx.edu
DNS

server

2: Application Layer 4

Subsequent Lookup Example

Client
Local

DNS server

root & edu
DNS server

pdx.edu
DNS server

cs.pdx.edu
DNS

server

ftp.cs.pdx.edu

cs.pdx.edu NS entry cached

2: Application Layer 4

DNS tools

 dig and nslookup
 Can query specific DNS servers
 Can query different resource record types

cat /etc/resolv.conf # local DNS server

dig +norecurse www.thefengs.com. # do an iterative query to local DNS server

dig # List root servers

dig @192.5.5.241 +norecurse www.thefengs.com. # do an iterative query to IP addr of F root

dig @192.41.162.30 +norecurse www.thefengs.com. # do an iterative query to IP addr of L TLD

dig @216.21.236.249 +norecurse www.thefengs.com. # do an iterative query to IP addr of NS at register.com

dig +norecurse www.thefengs.com. # do an iterative query again to local DNS server

 # NOTHING was cached at local DNS server!

dig +recurse www.thefengs.com. # now do a recursive query through local DNS server

dig +norecurse www.thefengs.com. # now you get a cached result

 # Negative results also cached

dig +norecurse www.jjkkllmmnnoopp.com. # returns pointer to root name servers

dig +recurse www.jjkkllmmnnoopp.com. # returns status: NXDOMAIN

dig +norecurse www.jjkkllmmnnoopp.com. # returns status: NXDOMAIN

http://www.thefengs.com/wuchang/work/courses/cs594/http.txt
http://www.thefengs.com/wuchang/work/courses/cs594/http_post.txt
http://www.cs.pdx.edu/
http://www.squid-cache.org/
http://www.thefengs.com/
http://www.networkuptopia.com/
http://www.amazon.com/
http://www.amazon.com/
http://www.amazon.com/

2: Application Layer 5

Creating your own site
 Example: just created startup “Network Utopia”
 Register name networkuptopia.com at a registrar

(e.g., Network Solutions)
 Give registrar names and IP addresses of your authoritative

name server
 Registrar inserts two RRs into the com TLD server:
(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

 Set up authoritative server (212.212.212.1)
 Install DNS server (BIND)
 Enter A record for www.networkuptopia.com
 Enter MX record for networkutopia.com

http://thefengs.com/wuchang/work/courses/cs594/select_example

2: Application Layer 5

DNS protocol, messages
DNS protocol : query and reply messages, both with

same message format

msg header
 identification: 16 bit #

for query, reply to query
uses same #

 flags:
 query or reply
 recursion desired
 recursion available
 reply is authoritative

2: Application Layer 5

DNS protocol, messages

Name, type fields
 for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

2: Application Layer 5

DNS issues

UDP used for queries
 Need reliability -> Why not TCP?
 No rate control

Centralized caching per site not required
Vulnerability of 13 static root servers

 Attacks on root servers have occurred
 Jon Postel and his mobility “experiment”

Spoofing identity
 Adversary on the same network returning a

bogus answer

	Internet applications
	Recall Internet architecture
	Application protocols
	Application layer protocols
	Understanding application requirements
	Transport service requirements of common apps
	Internet transport protocols services
	Internet apps: application, transport protocols
	Web/HTTP
	Web and HTTP
	HTTP overview
	HTTP overview (continued)
	HTTP request message
	HTTP response message
	Trying out HTTP (client side) for yourself
	HTTP in action
	User-server state: cookies
	User-server state: cookies
	Cookies: keeping “state” (cont.)
	Cookies (continued)
	E-mail
	Electronic Mail
	Electronic Mail: mail servers
	Electronic Mail: SMTP [RFC 821]
	Sample SMTP interaction
	SMTP
	Mail access protocols
	POP3 protocol
	DNS
	Domain Name System (DNS)
	Original Name to Address Mapping
	DNS: Domain Name System (1984)
	DNS: Domain Name System (1984)
	DNS hierarchical canonical name space
	Namespace maps closely to name servers
	What is stored at these servers?
	Main parts of DNS
	Client resolver
	Local Name Server
	Root name servers
	TLD Servers
	Authoritative Servers
	DNS in action
	DNS query example
	Typical Resolution
	DNS: caching and updating records
	DNS Lookup Caching Example
	Subsequent Lookup Example
	DNS tools
	Creating your own site
	DNS protocol, messages
	DNS protocol, messages
	DNS issues

