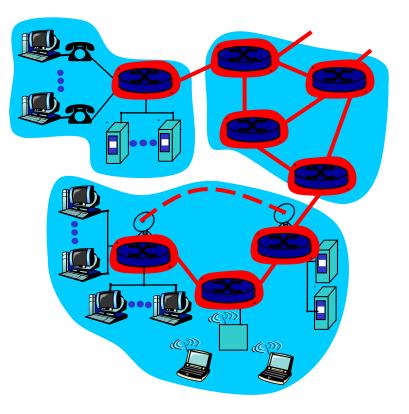
Internet architecture and history

Introduction 1-1

Why did the Internet win?

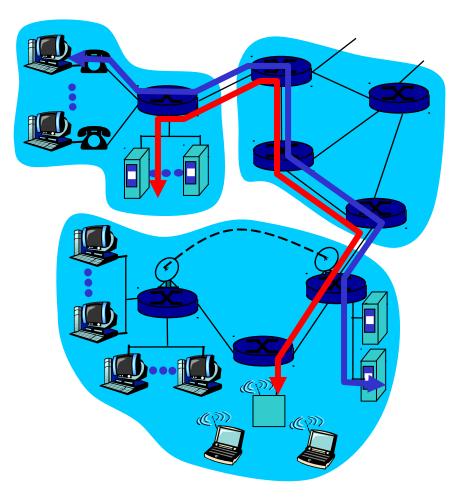
- Packet switching over circuit switching
- End-to-end principle and "Hourglass" design
- Layering of functionality
- Distributed design, decentralized control
- Superior organizational process


Packet switching versus Circuit switching

Analogy

- Zip cars vs. privately owned cars
- Zip cars (packet-switching)
 - * Many users share a single car
 - Large demand for cars causes users to delay usage
 - Car is more efficiently used
- Privately owned cars (circuit-switching)
 - * Single user
 - * Guaranteed access for user
 - Car is not used as efficiently

Packet vs. circuit switching


- mesh of interconnected routers
- the fundamental question: how is data transferred through net?

Circuit Switching

End-end resources reserved for "call"

- network resources (e.g., bandwidth) divided into "pieces"
 - link bandwidth, switch capacity
 - pieces allocated to calls
 - resource piece *idle* if not used by owning call
 - dedicated resources: no sharing
- circuit-like (guaranteed) performance
- call setup and admission control required

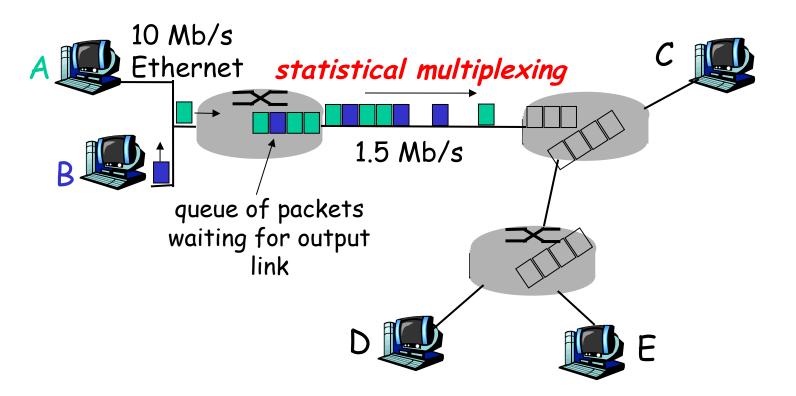
Introduction 1-5

Case study: Circuit Switching

1890-current: Phone network

- Fixed bit rate
- Mostly voice
- Not fault-tolerant
- Components extremely reliable
- Global application-level knowledge throughout network
- Admission control at local switching station (dial-tone)

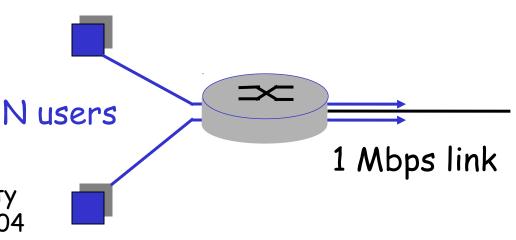
Packet Switching


- each end-end data stream divided into *packets*
- user A, B packets share network resources
- each packet uses full link bandwidth
- resources used as needed

congestion:

- aggregate resource demand can exceed amount available
- packets queue, wait for link use
- store and forward: packets move one hop at a time

Packet Switching: Statistical Multiplexing



Sequence of A & B packets does not have fixed pattern, shared on demand **>** statistical multiplexing.

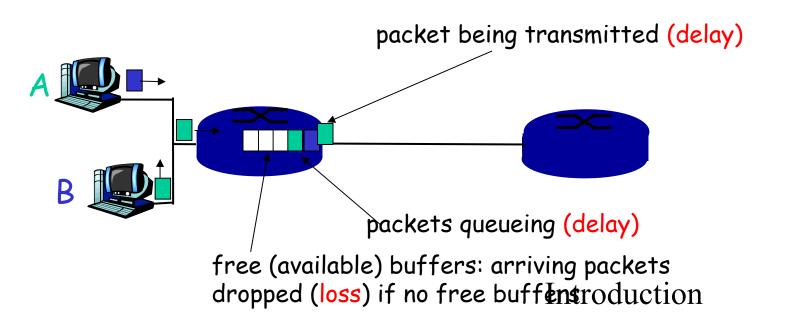
Packet switching versus circuit switching

Packet switching allows more users to use network

- N users over 1 Mb/s link
- each user:
 - 100 kb/s when "active"
 - active 10% of time
- circuit-switching:
 - 10 users
- packet switching:
 - with 35 users, probability
 > 10 active less than .0004
 - Allows more users to use network
 - "Statistical multiplexing gain"

Packet switching versus circuit switching

Is packet switching a "slam dunk winner?"


- Great for bursty data
 - resource sharing
 - simpler, no call setup
- Bad for applications with hard resource requirements
 - Excessive congestion: packet delay and loss
 - Need protocols to deal with packet loss/congestion
 - Applications must be written to handle congestion

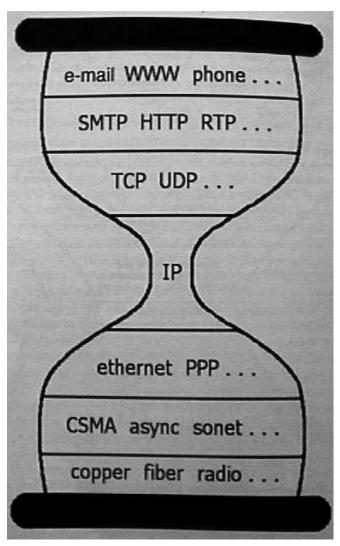
Problems with packet switching

Packet loss and queuing delay

packets queue in router buffers

- packet arrival rate exceeds output link capacity
- packets queue, wait for turn
- packet arrives to full queue, it is dropped (aka lost)
 - lost packet may be retransmitted by previous node, by source end system, or not retransmitted at all

Case study: Packet Switching


1970/80s-current: Internet network

- Variable bit rate
- * Mostly data
- Fault-tolerant
- Components not extremely reliable (versus phone components)
- * Distributed control and management

Why did the Internet win?

- Packet switching over circuit switching
- End-to-end principle and "Hourglass" design
- Layering of functionality
- Distributed design, decentralized control
- Superior organizational process

End-to-end principle and Hourglass design

Keep it simple, stupid!

 One, very simple protocol to run it all

End-to-end principle

Where to put the functionality?

In the network? At the edges?

- End-to-end functions best handled by end-to-end protocols
 - Network provides basic service: data transport
 - Intelligence and applications located in or close to devices at the edge
- Leads to innovation at the edges
 - Phone network: dumb edge devices, intelligent network
 - Internet: dumb network, intelligent edge devices

End-to-end principle leads to "Hourglass" design of protocols

- Only one protocol at the Internet level
 - Minimal required elements at narrowest point
- IP Internet Protocol
 - * RFC 791 and 1812
 - Unreliable datagram service
 - Addressing and connectionless connectivity
 - Like the post office of old!

Simplicity allowed fast deployment of multivendor, multi-provider public network

- Ease of implementation
- Limited hardware requirements (important in 1970s)
 - Is it relevant now with today's semiconductor speeds?
- Rapid development leads to eventual economies of scale
- Designed independently of hardware
 - No link-layer specific functions
 - Hardware addresses decoupled from IP addresses
 - IP header contains no data/physical link specific information (e.g. wired LAN, WiFi, 3G, etc.)
 - Allows IP to run over any fabric

- Waist expands at transport layer
 - Network layer = host to host communication
 - Transport layer = application to application communication
- Two dominant services layered above IP
- TCP Transmission Control Protocol
 - Connection-oriented service
 - * RFC 793
- UDP User Datagram Protocol
 - Connectionless service
 - * RFC 768

TCP - Transmission Control Protocol

- Reliable, in-order data transfer
 - Acknowledgements and retransmissions of lost data
- Flow control
 - Sender won't overwhelm receiver
- Congestion control
 - Senders won't overwhelm network
- UDP User Datagram Protocol
 - Unreliable data transfer
 - * No flow control
 - No congestion control

□ What uses TCP?

- HTTP (Web), SMTP (E-mail transmission), IMAP, POP (E-mail access)
- □ What uses (mainly) UDP?
 - DNS, NTP (network time protocol), Highly interactive online games (First-Person Shooters)
 - Many protocols can use both
- Check out /etc/services on *nix or C:\WIN*\system32\services
- 🗆 IANA
 - * http://www.iana.org/assignments/port-numbers

Question?

- * Are TCP, UDP, and IP enough?
- What other functionality would applications need?

Security?
 * IPsec/SSL/TLS
 Quality-of-service?
 * RSVP, int-serv, diff-serv
 Reliable, out-of-order delivery service?
 * SCTP
 Userdling analy serves?

Handling greedy sources?

End-to-end principle and the Hourglass design

- □ The good
 - Basic network functionality allowed for extremely quick adoption and deployment using simple devices
- The bad
 - New network features and functionality are impossible to deploy, requiring widespread adoption within the network
 - IP Multicast, QoS

Why did the Internet win?

- Packet switching over circuit switching
- End-to-end principle and "Hourglass" design
- Layering of functionality
- Distributed design, decentralized control
- Superior organizational process

Modular approach to network functionality

- Simplifies complex systems
 - Each layer relies on services from layer below and exports services to layer above
- Hides implementation
- * Eases maintenance and updating of system
 - Layer implementations can change without disturbing other layers (black box)

Examples:

- Topology and physical configuration hidden by network-layer routing
 - Applications require no knowledge of routes
 - e.g. web servers do not need to calculate routes to clients
 - New applications deployed without coordination with network operators or operating system vendors

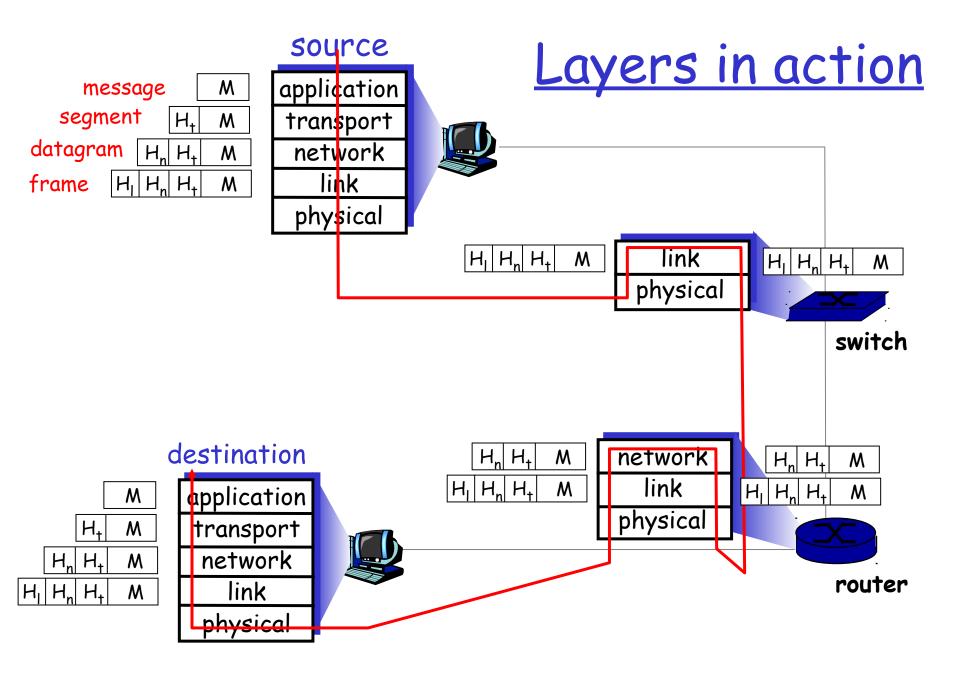
Application

Host-to-host connectivity

Link hardware

Layering essential in Protocols

Set of rules governing communication between network elements (applications, hosts, routers)


- Protocols specify:
 - Interface to higher layers (API)
 - * Interface to peer
 - Format and order of messages
 - Actions taken on receipt of a message

Layering: Internet protocols

- application:
 - FTP, SMTP, HTTP
 - e.g. URL requests and responses
- transport: process-process data transfer
 - * TCP, UDP
 - e.g. how those requests and responses are broken up into network packets
- network: routing of datagrams from source to destination
 - IP
 - e.g. how to deliver those packets to their destinations
- link: data transfer between neighboring network elements
 - * Ethernet, 802.11
 - e.g. how to deliver those packets to the next hop
- physical: bits "on the wire"

e	application
	transport
	network
	link
	physical

]__

Introduction

Why did the Internet win?

- Packet switching over circuit switching
- End-to-end principle and "Hourglass" design
- Layering of functionality
- Distributed design, decentralized control
- Superior organizational process

Distributed design and control

Requirements from DARPA

- Must survive a nuclear attack
- Reliability
 - Intelligent aggregation of unreliable components
 - Alternate paths, adaptivity
- Distributed management & control of networks
 - Allows individual networks to independently develop without large amounts of coordination
 - Exceptions: TLDs and TLD servers, IP address allocation (ICANN)

Why did the Internet win?

- Packet switching over circuit switching
- End-to-end principle and "Hourglass" design
- Layering of functionality
- Distributed design, decentralized control
- Superior organizational process

Superior organizational process

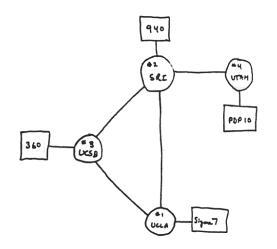
- IAB/IETF process allowed for quick specification, implementation, and deployment of new standards
 - Free and easy download of standards
 - Rough consensus and running code
 - 2 interoperable implementations
 - Bake-offs
 - http://www.ietf.org/

🗆 ISO/OSI

- Large cost to obtain copy of standards
- Slow approval process
- Standards measured by the inch!

Internet history

Introduction


1-

Internet History

1961-1972: Early packet-switching principles

- 1961: Kleinrock queueing theory shows effectiveness of packetswitching
- 1964: Baran packetswitching in early military nets
- 1967: ARPAnet conceived by Advanced Research Projects Agency
- 1969: first ARPAnet node operational

- **1972**:
 - ARPAnet public demonstration
 - NCP (Network Control Protocol) first host-host protocol
 - first e-mail program
 - ARPAnet has 15 nodes

Internet History

1972-1980: Internetworking, new and proprietary nets

- 1970's: proprietary network architectures developed: DECnet, SNA, XNA
- 1974: Cerf and Kahn architecture for interconnecting networks
- 1976: Ethernet at Xerox PARC
- 1979: ARPAnet has 200 nodes

Cerf and Kahn's internetworking principles:

- minimalism, autonomy no internal changes required to interconnect networks
- best effort service model
- stateless routers
- decentralized control

define today's Internet architecture 1980-1990: new protocols, a proliferation of networks

- 1983: deployment of TCP/IP
- 1983: smtp e-mail protocol defined
- 1983: DNS defined for name-to-IP-address translation
- 1985: ftp protocol defined
- 1988: TCP congestion control

Late 1980s, Early 1990s: new national networks: Csnet, BITnet, NSFnet, Minitel

> 100,000 hosts connected to confederation of networks

Internet History

1990, 2000's: commercialization, the Web, new apps

- Early 1990's: ARPAnet decommissioned
- 1991: NSF lifts restrictions on commercial use of NSFnet (decommissioned, 1995)
- early 1990s: Web
 - hypertext [Bush 1945, Nelson 1960's]
 - HTML, HTTP: Berners-Lee
 - * 1994: Mosaic, later Netscape
- Iate 1990's: commercialization of the Web

Late 1990's - 2000's:

- more killer apps: instant messaging, P2P file sharing
- network security to forefront
- est. 50 million host, 100 million+ users
- backbone links running at Gbps

<u>References</u>

- National Research Council "The Internet's Coming of Age"
 - http://www.nap.edu/html/coming_of_age/
- RFC 1958
 - http://www.ietf.org/rfc/rfc1958.txt
- J. H. Saltzer, D. P. Reed and D. D. Clark "End-to-end arguments in system design", Transactions on Computer Systems, Vol. 2, No. 4, 1984
 - http://www.acm.org/pubs/citations/journals/tocs/1984-2-4/p277-saltzer/
- D. Clark, "The design philosophy of the DARPA Internet", SIGCOMM 1988, August 16 - 18, 1988.
 - http://www.acm.org/pubs/citations/proceedings/comm/52324/ p106-clark/