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Abstract—

This paper describes and evaluates Stochastic Fair Bke(SFB), a

novel technique for enforcing fairneas among a large number of

flows. SFB scalably detects and rate-timits non-responsive flows
through the use of a marking probability derived from the BLUE

queue management algorithm and a Bloom filter. Using analysis

and simulation, SFB is shown to effectively handle non-responsive
flows using an extremely small amount of state information.

I. INTRODUCTION

Up until recently, the Internet has mainly relied on the

cooperative nature of TCP congestion control in order to

limit packet loss and fairly share network resources. In-

creasingly, however, new applications are being deployed

which do not use TCP congestion control and are not re-

sponsive to the congestion signals given by the network.

Such applications are potentially dangerous because they

drive up the packet loss rates in the network and can even-

tually cause congestion collapse [8, 13]. In order to ad-

dress the problem of non-responsive flows, a lot of work

has been done to provide routers with mechanisms for

protecting against them [2, 9]. The idea behind these ap-

proaches is to detect non-responsive flows and to limit

their rates so that they do not impact the performance of

responsive flows.

This paper describes and evaluates Stochastic Fair

BLUE (SFB), a novel technique for protecting TCP

flows against non-responsive flows using the BLUE algo-

rithm [6]. SFB is highly scalable and enforces fairness

using an extremely small amount of state and a small

amount of buffer space. SFB is based on two indepen-

dent algorithms. The first is the BLUE queue management

algorithm. This algorithm uses a single marking probabil-

ity to mark packets (using ECN [14]) in times of conges-

tion. The heavier the congestion is, the higher the mark-

ing probability. The second algorithm is based on Bloom

filters [1]. This algorithm allows for the unique classifi-

cation of objects through the use of multiple, independent

hash functions. Using Bloom filters, object classification

can be done with an extremely small amount of state in-

formation.

The rest of the paper is organized as follows. Sec-

tion II briefly describes the BLUE algorithm and Bloom

filters. Using these two techniques, Section III describes

and evaluates Stochastic Fair BLUE (SFB), an algorithm

which scalably enforce fairness amongst a large number

of connections using a small amount of buffer space. Sec-

tion IV compares SFB to other approaches which have

been proposed to enforce fairness amongst connections.

Finally, Section V concludes with a discussion of future

work.

II. BACKGROUND

SFB is a simple modification of the BLUE algorithm.

BLUE is a fundamentally different queue management al-

gorithm which uses a single marking probability to man-

age congestion. BLUE addresses one of the fundamen-

tal problems of current active queue management algo-

rithms in that they rely on queue lengths as an estimator

of congestion. While the presence of a persistent queue

indicates congestion, its length gives very little informa-

tion as to the severity of congestion, that is, the number

of competing connections sharing the link. In a busy pe-

riod, a single source transmitting at a rate greater than

the bottleneck link capacity can cause a queue to build up

just as easily as a large number of sources can. Since the

RED algorithm relies on queue lengths, it has an inherent

problem in determining the severity of congestion. As a

result, RED requires a wide range of parameters to oper-

ate correctly under different congestion scenarios. While

RED can achieve an ideal operating point, it can only do

so when it has a sufficient amount of buffer space and is

correctly parameterized [18].

The idea behind BLUE, on the other hand, is to per-

form queue management based directly on packet loss and

link utilization rather than on the instantaneous or aver-

age queue lengths. BLUE maintains a single probability,

which it uses to mark (or drop) packets when they are en-

queued. If the queue is continually dropping packets due

to buffer overflow, BLUE increments the probability, thus

increasing the rate at which it sends back congestion no-

tification. Conversely, if the queue becomes empty or if

the link is idle, BLUE decreases its marking probability.

This effectively allows BLUE to “learn” the correct rate
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enqueo

Calculate hashes ho, /tl, .... hL._l;

Update bins at each level
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if (.B[i] [hi] .qlen > bin.size)

l?[i] [hi] .pm += delta;

Drop packet;
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if (’ym~n == 1)
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else

Mark/drop with probability pmin;

Fig. 1. SFB algorithm

it needs to send back congestion notification. BLUE has

been shown to effectively manage congestion using an ex-

tremely small amount of buffer space [6].

SFB is an application of a Bloom filter to the BLUE

algorithm. Bloom filters are commonly used in word pro-

cessing software applications as an efficient means to do

spell-checking. They are also used in web caches to effi-

ciently determine the existence of an object in the cache.

The idea behind Bloom filters is to use L levels of bins

with each level containing N bins. For each level, an in-

dependent hash function is used to hash a particular object

(URL string, English word, TCP/lP connection ID, etc.)

into one of the N bins. Each object is then classified and

identified by the bins it maps into in each level. Since an

object can map into N possible values at each level, an

object is identified by an L-tuple of numbers which range

from 1 to N. This effectively gives the algorithm NL

unique “buckets” using L * N number of bins. One appli-

cation of this filter is in spell checkers. Using sufficiently

large values of L and N, the entire English dictionary is

run through the Bloom filter. Each bin in this filter has a

single bit. For each word in the dictionary, every bin that

the word hashes into has its bit set to 1. When a document

is then spell-checked, words which do not map into bins

that are all 1 are flagged as incorrect.

III. STOCHASTIC FAIR BLUE

A. The algorithm

SFB combines BLUE and Bloom filters to produce a

highly scalable means to enforce fairness amongst flows
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using an extremely small amount of state and a small

amount of buffer space. Figure 1 shows the basic algo-

rithm. SFB is a FIFO queueing algorithm that identifies

and rate-limits non-responsive flows based on accounting

mechanisms similar to those used with BLUE. SFB main-

tains N x L accounting bins. The bins are organized in

L levels with N bins in each level. SFB also maintains

(L) independent hash functions, each associated with one

level of the accounting bins. Each hash function maps

a flow into one of the N accounting bins in that level.

The accounting bins are used to keep track of queue oc-

cupancy statistics of packets belonging to a particular bin.

This is in contrast to Stochastic Fair Queueing [ 11] (SF@

where the hash function maps flows into separate queues.

Each bin in SFB keeps a markingldropping probability pm

as in BLUE, which is updated based on bin occupancy. As

a packet arrives at the queue, it is hashed into one of the

N bins in each of the L levels. If the number of packets

mapped to a bin goes above a certain threshold (i.e., the

size of the bin), pm for the bin is increased. If the number

of packets drops to zero, pm is decreased.

The observation which drives SFB is that a non-

responsive flow quickly drives pm to 1 in all of the L bins

it is hashed into. Responsive flows may share one or two

bins with non-responsive flows, however, unless the num-

ber of non-responsive flows is extremely large compared

to the number of bins, a responsive flow is likely to be

hashed into at least one bin that is not polluted with non-

responsive flows and thus has a normal pm value. The

decision to mark a packet is based on pmin, the mini-

mum pm value of all bins to which the flow is mapped

into. If p~~n is 1, the packet is identified as belonging

to a non-responsive flow and is then rate-limited. Note

that this approach is akin to applying a Bloom filter on

the incoming flows. In this case, the dictionary of mes-

sages or words is learned on the fly and consists of the

1P headers of the non-responsive flows which are multi-

plexed across the link. When a non-responsive flow is

identified using these techniques, a number of options are

available to limit the transmission rate of the flow. In this

paper, flows identified as being non-responsive are sim-

ply limited to a fixed amount of bandwidth. This policy is

enforced by limiting the rate of packet enqueues for flows

with Pmin values of 1. Figure 2(a) shows an example of

how SFB works. As the figure shows, a non-responsive

flow drives up the marking probabilities of all of the bins

it is mapped into. While the TCP flow shown in the figure

may map into the same bin as the non-responsive flow at

a particular level, it maps into normal bins at other levels.

Because of this, the minimum marking probability of the

TCP flow is below 1.0 and thus, it is not identified as being

non-responsive. On the other hand, since the minimum

marking probability of the non-responsive flow is 1.0, it
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(b) Network topology for evaluation

SFB example and topology
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I Packet Loss 2Mbs HOW

(Mbs) SFB RED SFRED SFQ

Total 1.86 1.79 3.10 3.60

2Mbs fiOW I 1.85 I 0.03 I 0.63 1.03 I

All TCPflOWS II 0.01 I 1.76 I 2.57 I 2.47 \
1 ,

l PacketLoss II 45Mbs HOW I

(Mbs) SFB RED SFRED SFQ

I Total II 44.85 I 13.39 I 42.80 I 46.47 I
II 1 1 1

45Mbs HOW I 44.84 I 10.32 I 40.24 I 43.94 I
II 1 1 [

All TCP flOWS 0.01 3.07 2.56 2.53

TABLE I

SFB LOSS RATES (ONE NON-RESPONSIVE FLOW)

is identified as being non-responsive and rate-limited.

Note that just as BLUE’S marking probability can be

used in SFB to provide protection against non-responsive

flows, it is also possible to apply Adaptive RED’S rnazP

parameter to do the same [5]. In this case, a per-bin mazP

value is kept and updated according to the behavior of

flows which map into the bin. As with RED, however,

there are two problems which make this approach inef-

fective. The first is the fact that a large amount of buffer

space is required in order to get RED to perform well. The

second is that the performance of a RED-based scheme

is limited since even a moderate amount of congestion

requires a maxP setting of 1. Thus, RED, used in this

manner, has an extremely difficult time distinguishing be-

tween a non-responsive flow and moderate levels of con-

gestion. In order to compare approaches, Stochastic Fair

RED (SFRED) was also implemented by applying a Bloom

filter to RED.

B. Evaluation

Using ns, the SFB algorithm was simulated in the same

network as in Figure 2(b) with the transmission delay

of all of the links set to 10ms. The SFB queue is con-

figured with 200KB of buffer space and maintains two

hash functions each mapping to 23 bins. The size of
1 rd

each bin is set to 13, approximately 50% more than ~

of the available buffer space. Note that by allocating
1 rd

more than ~ the buffer space to each bin, SFB effec-

tively “overbooks” the buffer in an attempt to improve

statistical multiplexing. Notice that even with overbook-

ing, the size of each bin is quite small. Since BLUE

performs extremely well under constrained memory re-

sources, SFB can still effectively maximize network effi-

ciency. The queue is also configured to rate-limit non-

responsive flows to 0.16Mbs.

In the experiments, 400 TCP sources and one non-

responsive, constant rate source are run for 100 seconds

from randomly selected nodes in (n., rzl, nz, ns, nl) to

randomly selected nodes in (nb, n(j, nT, ns, ng ). In one

experiment, the non-responsive flow transmits at a rate of

2Mbs while in the other, it transmits at a rate of 45Mbs.

Table I shows the packet loss observed in both experi-

ments for SFB. As the table shows, for both experiments,

SFB performs extremely well. The non-responsive flow

sees almost all of the packet loss as it is rate-limited to a

fixed amount of the link bandwidth. In addition, the table

shows that in both cases, a very small amount of packets

from TCP flows are lost. Table I also shows the perfor-

mance of RED. In contrast to SFB, RED allows the non-

responsive flow to maintain a throughput relatively close

to its original sending rate. As a result, the remaining TCP

sources see a considerable amount of packet loss which

causes their performance to deteriorate. SFRED, on the

other hand, does slightly better at limiting the rate of the

non-responsive flow, however, it cannot fully protect the

TCP sources from packet loss since it has a difficult time
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discerning non-responsive flows from moderate levels of

congestion. Finally, the experiments were repeated using

SFQ with an equivalent number of bins (i.e., 46 distinct

queues) and a buffer more than twice the size (414Kl?),

making each queue equally sized at 9KB. For each bin in

the SFQ the RED algorithm was applied with minth and

maxth values set at 2KB and 8KB, respectively. As

the table shows, SFQ with RED does an adequate job of

protecting TCP flows from the non-responsive flow. How-

ever, in this case, partitioning the buffers into such small

sizes causes a significant amount of packet loss to occur.

Additional experiments show that as the amount of buffer

space is decreased even further, the problem is exacer-

bated and the amount of packet loss increases consider-

ably.

To qualitatively examine the impact that the non-

responsive flow has on TCP performance, Figure 3(a)

plots the throughput (of all 400 TCP flows using SFB when

the non-responsive flow sends at a 45Mbs rate. As the

figure shows, SFB allows each TCP flow to maintain close

to a fair share of the bottleneck link’s bandwidth while

the non-responsive flow is rate-limited to well below its

transmission rate, In contrast, Figure 3(b) shows the same

experiment using normal RED queue management. The

figure shows that the throughput of all TCP flows suf-

fers considerably as the non-responsive flow is allowed

to grab a large fraction of the bottleneck link bandwidth.

Figure 3(c) shows that while SFRED does succeed in rate-

limiting the non-responsive flow, it also manages to drop

a significant amount of packets from TCP flows. This is

due to the fact that the lack of buffer space and the inef-

fectiveness of maxP combine to cause SFRED to perform

poorly as described in Section III-A. Finally, Figure 3(d)

shows that while SFQ with RED can effectively rate-limit

the non-responsive flows, the partitioning of buffer space

causes the fairness between flows to deteriorate as well.

The large amount of packet loss can induce retransmis-

sion timeouts across a subset of flows which causes sig-

nificant amounts of unfairness [12]. Thus, through the

course of the experiment, a few TCP flows grab a dispro-

portionate amount of the bandwidth while many of the

flows receive significantly less than a fair share of the

bandwidth across the link. In addition to this, SFQ with
RED allows ~th

46
of the 400 flows to be mapped into the

same queue as the non-responsive flow. Flows that are

unlucky enough to map into this bin receive an extremely

small amount of the link bandwidth. SFB, in contrast, is

able to protect all of the TCP flows in this experiment.

C. Limitations of SFE3

While it is clear that the basic SFB algorithm can pro-

tect TCP-friendly flows from non-responsive flows with-

out maintaining per-flow state, it is important to under-

stand how it works and its limitations. SFB effectively

uses L levels with N bins in each level to create NL vir-

tual buckets. This allows SFB to effectively identify a sin-

gle non-responsive flow in an NL flow aggregate using

O(L * N) amount of state. For example, in the previous

section, using two levels with 23 bins per level effectively

creates 529 buckets. Since there are only 400 flows in the

experiment, SFB is able to accurately identify and rate-

limit a single non-responsive flow without impacting the

performance of any of the individual TCP flows, As the

number of non-responsive flows increases, the number of

bins which become “polluted” or have pm values of 1 in-

creases. Consequently, the probability that a responsive

flow gets hashed into bins which are all polluted, and thus

becomes misclassified, increases. Clearly, misclassifica-

tion limits the ability of SFB to protect well behaved TCP

flows.

Using simple probabilistic analysis, Equation (1) gives

a closed-form expression of the probability that a well-

behaved TCP flow gets misclassified as being non-

responsive as a function of number of levels (L), the

number of bins per level (B), and the number of non-

responsive/malicious flows (M), respectively.

p = [1 – (1 – +~]L (1)

In this expression, when L is 1, SFB behaves much like

SFQ. The key difference is that SFB using one level is still

a FIFO queueing discipline with a shared buffer while SFQ

has separate per-bin queues and partitions the available

buffer space amongst them.

Using the result from Equation (l), it is possible to op-

timize the performance of SFB given a priori information

about its operating environment, Suppose the number of

simultaneously active non-responsive flows can be esti-

mated (M) and the amount of memory available for use in

the SFB algorithm is fixed (C). Then, by minimizing the

probability function in Equation (1) with the additional

boundary condition that L x N = C, SFB can be tuned

for optimal performance. To demonstrate this, the prob-

ability for misclassification across a variety of settings is

evaluated. Figure 4 shows the probability of misclassify-

ing a flow when the total number of bins is fixed at 90

and 900. In these figures, the number of levels used in

SFB along with the number of non-responsive flows are

varied. As the figures show, when the number of non-

responsive flows is small compared to the number of bins,

the use of multiple levels keeps the probability of misclas-

sification extremely low. However, as the number of non-

responsive flows increases past half the number of bins

present, the single level SFB queue affords the smallest

probability of misclassification. This is due to the fact that

when the bins are distributed across multiple levels, each

0-7803-7018-8/01/$10.00 (C) 2001 IEEE IEEE INFOCOM 2001 
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non-responsive flow pollutes a larger number of bins. For a single non-responsive flow pollutes only one bin. Us-

example, using a single level SFB queue with 90 bins, ing a two-level SFB queue with each level containing 45
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bins, the number of effective bins is 45 x 45 (2025). How-

ever, a single non-responsive flow pollutes two bins (one

per level). Thus, the advantage gained by the two-level

SFB queue is lost when additional non-responsive flows

are added, as a larger fraction of bins become polluted

compared to the single-level situation.

To examine the performance degradation of SFB as

the number of non-responsive flows increases, Figure 5

shows the bandwidth plot of the 400 TCP flows when 4

and 8 non-responsive flows are present. In these exper-

iments, each non-responsive flow transmits at a rate of

5Mbs. As Equation (1) predicts, in an SFB configura-

tion that contains two levels of 23 bins, 2.65% of the TCP

flows (11) are misclassified when 4 non-responsive flows

are present, Similarly, when 8 non-responsive flows are

present, 8.96% (36) of the TCP flows are misclassified.

When the number of non-responsive flows approaches

N, the performance of SFB deteriorates quickly as an in-

creasing number of bins at each level becomes polluted.

In the case of 8 non-responsive flows, approximately 6

bins or one-fourth of the bins in each level are polluted.

As the figure shows, the number of misclassified flows

matches the model quite closely. Note that even though

a larger number of flows are misclassified as the number

of non-responsive flows increases, the probability of mis-

classification in a two-level SFB still remains below that

of SFQ or a single-level SFB. Using the same number of

bins (46), the equation predicts that SFQ and a single-level

SFr3misclassify 8.42% of the TCP flows (34) when 4 non-

responsive flows are present and 16. 12~0 of the TCP flows

(64) when 8 non-responsive are present.

D. SFB with moving hash finctions

In this section, two basic problems with the SFB algo-

rithm are addressed. The first, as described above, is to

mitigate the effects of misclassification. The second is to

be able to detect when non-responsive flows become re-

sponsive and to reclassify them when they do.

The idea behind SFB with moving hash functions is to

periodically or randomly reset the bins and change the

hash functions. A non-responsive flow will continually

be identified and rate-limited regardless of the hash func-

tion used. However, by changing the hash function, re-

sponsive TCP flows that happen to map into polluted bins

will potentially be remapped into at least one unpolluted

bin. Note that this technique effectively creates virtual

bins across time just as the multiple levels of bins in the

original algorithm creates virtual bins across space. In

many ways the effect of using moving hash functions is

analogous to channel hopping in CDMA [17] systems. It

essentially reduces the likelihood of a responsive connec-

tion being continually penalized due to erroneous assign-

ment into polluted bins.

6

I Packet Loss (Mbs) II 10-30s I 30-50s ] 50-70s I

-

TABLE 11

SFB LOSS RATES (OSCILLATING FLOW EXPERIMENT)

To show the effectiveness of this approach, the idea

of moving hash functions was applied to the experiment

in Figure 5(b). In this experiment, 8 non-responsive

flows along with 400 responsive flows share the bottle-

neck link. To protect against continual misclassification,

the hash function is changed every two seconds. Fig-

ure 6(a) shows the bandwidth plot of the experiment. As

the figure shows, SFB performs fairly well. While flows

are sometimes misclassified causing a degradation in per-

formance, none of the TcP-friendly flows are shut out due

to misclassification. This is in contrast to Figure 5 where

a significant number of TCP flows receive very little band-

width.

While the moving hash functions improve fairness

across flows in the experiment, it is interesting to note

that every time the hash function is changed and the bins

are reset, non-responsive flows are temporarily placed on

“parole”. That is, non-responsive flows are given the ben-

efit of the doubt and are no longer rate-limited. Only after

these flows cause sustained packet loss, are they identi-

fied and rate-limited again. Unfortunately, this can po-

tentially allow such flows to grab much more than their

fair share of bandwidth over time. For example, as Fig-

ure 6(a) shows, non-responsive flows are allowed to con-

sume 3.85Mbs of the bottleneck link. One way to solve

this problem is to use two sets of bins. As one set of bins

is being used for queue management, a second set of bins

using the next set of hash functions can be warmed up. In

this case, any time a tlow is classified as non-responsive,

it is hashed using the second set of hash functions and

the marking probabilities of the corresponding bins in the

warmup set are updated. When the hashes are switched,

the bins which have been warmed up are then used. Thus,

non-responsive flows are rate-limited right from the be-

ginning. Figure 6(b) shows the performance of the double

buffered moving hash. The algorithm effectively controls

the bandwidth of the non-responsive flows and affords the

TCP flows a very high level of protection.

One of the advantages of the moving hash function is

that it can quickly react to non-responsive flows which be-

come TcP-friendly. In this case, changing the hash bins
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places the newly reformed flow out on parole for good high rate, is it again rate-limited. To show this, an ad-

behavior. Only after the flow resumes transmitting at a ditional experiment was run using the same experimental
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setup as above. In this experiment, one non-responsive

flow with a transmission rate of 5Mbs and one oscillating

flow is run between network endpoints. The oscillating

flow transmits at 5Mbs from t = 10s to t = 30s and

from t = 50s to t = 70s. At all other times, the flow

transmits at O.10Mbs, approximately a fair share of the

bottleneck link. Table II shows the packet loss rates in the

experiment. As the table shows, the first non-responsive

flow sees a sustained packet loss rate throughout the ex-

periment which effectively limits its throughput to well

below its transmission rate. The table also shows that

when the second flow transmits at 5Mbs, itobserves a

sustained packet loss rate as a large fraction of its packets

are dropped by the queue. When the second flow cuts its

transmission rate to a fair share of the link’s bandwidth, it

is reclassified and a very small fraction of its packets are

dropped. Finally, the table shows that all 400 TCP flows

see a minimal amount of packet loss throughout the ex-

periment. Figure 7 shows the bandwidth plot for the TCP

flows in the experiment. As shown in the figure, SFB pro-

tects the TCP flows from the non-responsive flows, thus

allowing them to maintain close to a fair share of the bot-

tleneck link.

E. Round-trip time sensitivity

The previous experiments with SFB use a network

topology in which all of the connections have approx-

imately the same round-trip time. When a large num-

ber of connections with varying round-trip times are used

with SFB, fairness between flows can deteriorate. It has

been shown that TCP connections with smaller round-

trip times can dominate the bandwidth on the bottleneck

link since their window increases are clocked more fre-

quently. When a small number of such connections are

present, SFB can mitigate this problem somewhat. Similar

to the non-responsive flow cases above, TCP connections

with small round-trips slowly drive the marking probabil-

ity of their bins higher. Thus, when pmi~ is calculated,

they receive a larger fraction of congestion notification.

However, when a large number of TCP flows with vary-

ing round-trip times are present, this mechanism breaks

down just as SFB breaks down with a large number of

non-responsive flows.

Figure 8 shows the performance of RED and SFB using

the original network shown in Figure 2(b). Using this net-

work, 400 sources are randomly started between network

end points. As the figure shows, both RED and SFB show

biases towards connections with smaller round-trip times.

However, since all of the flows still use TCP, the amount

of unfairness between flows is limited.

IV. COMPARISON TO OTHER APPROACHES

SFB provides one particular solution for identifying

and rate-limiting non-responsive flows, thereby enforcing

fairness. This section compares SFB to other related ap-

proaches.

A. RED with Penalty Box

The RED with penalty box approach uses a finite log of

recent packet loss events. The algorithm identifies flows

which are non-responsive based on the log [10] and takes

corrective action. Flows which are identified as being

non-responsive are rate-limited using a mechanism such

as class-based queueing [7]. While this approach may be

viable under certain circumstances, it is unclear how the

algorithm performs in the face of a large number of non-

responsive flows. Unless the packet loss log is large, a

single set of high bandwidth flows can dominate the loss

log and allow other, non-responsive tlows to go through

without rate-limitation. In addition, flows which are clas-

sified as non-responsive remain in the “penalty box” even

if they subsequently become responsive to congestion. A

periodic and explicit check is required to move flows out

of the penalty box. Finally, the algorithm relies on a TCP-

friendliness check in order to determine whether or not

a flow is non-responsive. Without a priori knowledge of

the round-trip time of every flow being multiplexed across

the link, it is difficult to accurately determine whether or

not a connection is TcP-friendly.

B. FRED

Another proposal for using RED mechanisms to pro-

vide fairness is F1OW-RED (FRED) [9]. The idea behind

FRED is to keep state based on instantaneous queue oc-

cupancy of a given flow. If a flow continually occupies

a large amount of the queue’s buffer space, it is detected

and limited to a smaller amount of the buffer space. While

this scheme provides rough fairness in many situations,

since the algorithm only keeps state for flows which have

packets queued at the bottleneck link, it requires a large

amount of buffers to work well. Without sufficient buffer

space, it becomes hard for FRED to detect non-responsive

flows since they may not have enough packets continually

queued to trigger the detection mechanism. In addition,

non-responsive flows are immediately re-classified as be-

ing responsive as soon as they clear their packets from

the congested queue. For small queue sizes, it is quite

easy to construct a transmission pattern which circum-

vents FRED’s protection mechanisms. Note that SFB does

not directly rely on queue occupancy statistics, but rather

long-term packet loss and link utilization behavior. Be-

cause of this, SFB is better suited for protecting TCP flows

against non-responsive flows using a minimal amount of

buffer space. Finally, as with the packet loss log approach,

FRED also has a problem when dealing with a large num-

ber of non-responsive flows. In this situation, the ability

to distinguish these flows from normal TCP flows dete-

riorates considerably since the queue occupancy statis-
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tics used in the algorithm become polluted. By not us-

ing packet loss as a means for identifying non-responsive

flows, FRED cannot make the distinction between N TCP

flows multiplexed across a link versus N non-responsive

flows multiplexed across a link.

C. RED with per-jiow Queueing

A RED-based, per-active flow approach has also been

proposed for providing fairness [16]. The idea behind

this approach is to do per-flow accounting and queueing

only for flows which are active. The approach argues that

since keeping a large amount of state is feasible, per-flow

queueing and accounting is possible even in the core of

the network. The drawbacks of this approach is that it

provides no savings in the amount of state required. If

N flows are active, O(N) amount of state must be kept

to isolate the flows from each other. In addition, this ap-

proach does not address the large amount of legacy hard-

ware which exists in the network. For such hardware, it

may be infeasible to provide per-flow queueing and ac-

counting. Because SFB provides considerable savings in

the amount of state and buffers required, it is a more vi-

able alternative.

D. Stochastic Fair Queueing

Stochastic Fair Queueing (SFQ) is similar to an SFB

queue with only one level of bins. The biggest differ-

ence is that instead of having separate queues, SFB uses

the hash function for accounting purposes. Thus, SFB has

two fundamental advantages over SFQ. The first is that

it can make better use of its buffers. SFB gets some sta-

tistical multiplexing of buffer space as it is possible for

the algorithm to overbook buffer space to individual bins

in order to keep the buffer space fully utilized. As de-

scribed in Section III-B, partitioning the available buffer

space adversely impacts the packet loss rates and the fair-

ness amongst TCP flows. The other key advantage is that

SFB is a FIFO queueing discipline. As a result, it is possi-

ble to change the hash function on the fly without having

to worry about packet re-ordering caused by mapping of

flows into a different set of bins. Without additional tag-

ging and book-keeping, applying the moving hash func-

tions to SFQ can cause significant packet re-ordering.

E. Core-Stateless Fair Queueing

Core-Stateless Fair Queueing [15] (CSFQ) is a highly

scalable approach for enforcing fairness between flows

without keeping any state in the core of the network. The

approach relies on per-flow accounting and marking at

the edge of the network in conjunction with a probabilis-

tic dropping mechanism in the core of the network. The

idea behind CSFQ is to estimate the rate of the flow at the

ingress of the network or network cloud and to attach an

estimate of the flow’s sending rate to every packet that

the flow sends. Given this label, intermediate routers at

congested links in the network calculate a dropping prob-

ability which is derived from an estimate of a fair share

of the bottleneck link capacity and the rate of the flow as

identified in the label.

While CSFQ provides an elegant and efficient solution

to providing fairness, it relies on the use of additional in-

formation that is carried in every packet of the flow. Thus,

the scheme trades off overhead in the packet header at ev-

ery network link for resource management overhead at

the bottleneck router. In addition, it requires that both in-

termediate routers and edge devices adhere to the same

labeling and dropping algorithm. A misconfigured or

poorly implemented edge device can significantly impact

the fairness of the scheme. SFB, on the other hand, does

not rely on coordination between intermediate routers and

edge markers and can peform well without placing addi-

tional overhead in packet headers.
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V. CONCLUSION AND FUTURE WORK

This paper hasdemonstrated thee fficacyof SFB anew

queue management algorithm for protecting TCP flows ’16]

against non-responsive flows. As part of on-going work,

several extensions to SFB are being considered. In partic- [17]

ular, additional mechanisms for managing non-responsive

flows are being examined. In this paper, non-responsive ~lgl

flows were rate-limited to a fixed amount of bandwidth

across the bottleneck link. However, it is possible to rate-

limit non-responsive flows to a fair share of the link’s ca-

pacity. One way to do this is to estimate both the number

of non-responsive flows and the total number of flows go-

ing through the bottleneck. Using this information, the

rate-limiting mechanism can be set accordingly. Another

possible mechanism to find the number of “polluted” bins

and use it to derive the fraction of flows which are non-

responsive. Assuming perfect hash functions, this can be

directly derived from simple analytical models of SFB as

described in Section III. Finally, the development of an

“enhanced” BLUE queue management algorithm which is

similar to “enhanced” RED [3,4] is being considered. By

using BLUE, the buffer requirements needed to support

differentiated services can be greatly reduced.
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