Hashes, Caches, Puzzles, and the IXP

Wu-chang Feng

Damien Berger Abdelmajid Bezzaz Francis Chang Jin Choi Wu-chi Feng Ashvin Goel Kang Li Antoine Luu Deepa Srinivasan Jonathan Walpole

OGI SCHOOL OF SCIENCE & ENGINEERING OREGON HEALTH & SCIENCE UNIVERSITY

Outline

- A quick tour of our work on...
 - Mapping Bit Vector onto the IXP
 - Exact packet classification cache architectures
 - Approximate packet classification caches
 - TCPivo: High-performance packet replay
 - IXP networking practicum course
- Followed by...
 - The Case for IP Puzzles

Packet classification algorithm mapping

- Motivation
 - Packet classification is an inherent function of network devices
 - Many algorithms for single-threaded software execution
 - Many hardware-specific algorithms
 - Not a lot for programmable multi-processors
- Our study
 - Examine algorithmic mapping of a hardware algorithm (BitVector) onto the IXP
 - Pipelined (4 dimensions on 3 µ-engines, 1 combo, 1 ingress, 1 egress)
 - Parallel (complete lookup on 4 μ-engines, 1 ingress, 1 egress)

Packet classification algorithm mapping

Initial results

- Hard to generalize
 - Depends on workload, rulesets, implementation
- Trie lookups bad for µ-engine health
 - Frequently forced into aborted state due to branching
 - ✤ Linear search: ~10-11%,
 - Pipelined Bit-Vector: ~17%
 - Parallel Bit-Vector: ~22%
 - Impacts device predictability and algorithm/compiler design
 - Avoid branches, utilize range-matching?

Memory bottleneck favors parallel over pipelined in IXP1200

- Pipelined slightly worse than parallel due to multiple header parsing
- Will change with IXP2xxx next-neighbor registers

Deepa Srinivasan, "Performance Analysis of Packet Classification Algorithms on Network Processors", OGI MS Thesis, May 2003 (submission planned)

Exact Packet Classification Caching

- Motivation
 - Caching essential for good performance
 - Impacted by traffic and address mix
 - Recent work on analyzing..
 - Internet address allocation
 - Traffic characteristics of emerging applications such as games and multimedia
- Our study
 - How does recent work impact design of caches?
 - Hash function employed in cache (IXP hash unit vs. XOR)
 - Replacement policies (LFU vs. LRU)

Exact Packet Classification Caching

Initial results

- Address allocation policies allow µ-engine based XOR-hashes to outperform stronger hashes (i.e. centralized IXP hash unit)
- LFU provides only marginal improvement over LRU with multimedia traffic

Kang Li, Francis Chang, Damien Berger, Wu-chang Feng, "Architectures for Packet Classification Caching", *in Proceedings of International Conference on Networks*, Sept. 2003.

Approximate Packet Classification Caching

- Motivation
 - Large # of fields and large headers
 - Forcing caches to grow (and become slow)
 - Reducing entries degrades performance
 - Classic space-time trade-off in cache performance
- Our study
 - Throw a wrench into space-time trade-off
 - Examine another axis: *accuracy*
 - Quantify the space-time benefits of reducing cache accuracy
 - Understand the implications of using network devices that are not always "correct"
 - Similar to Intel's probabilistic computing
 - See recent interviews from Borkar, Tennenhouse

Approximate Packet Classification Caching

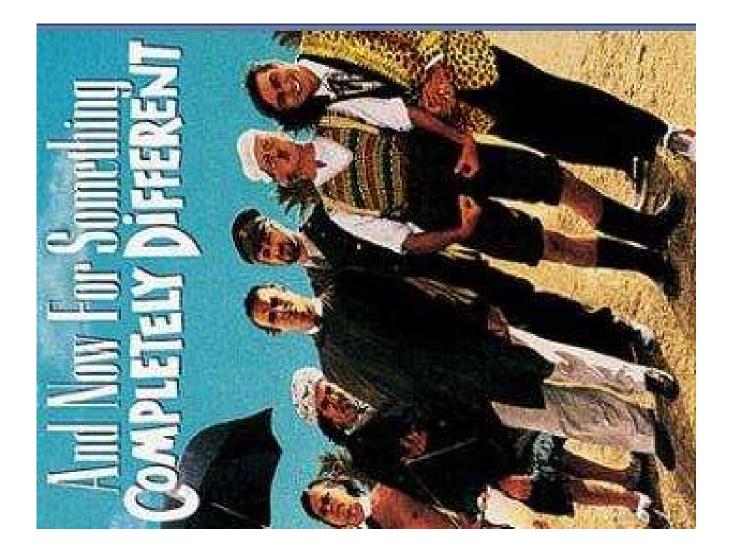
- Results
 - Order of magnitude space savings for an error rate of one in a billion
 - Analytical model for controlling misclassification rate
 - Poster outside....

Francis Chang, Kang Li, Wu-chang Feng, "Approximate Caches for Packet Classification", *in ACM SIGCOMM 2003 Poster Session*, Aug. 2003. **Poster**

Francis Chang, Kang Li, Wu-chang Feng, "Approximate Caches for Packet Classification", *in submission*. **Paper**

TCPivo: High-Performance Packet Replay

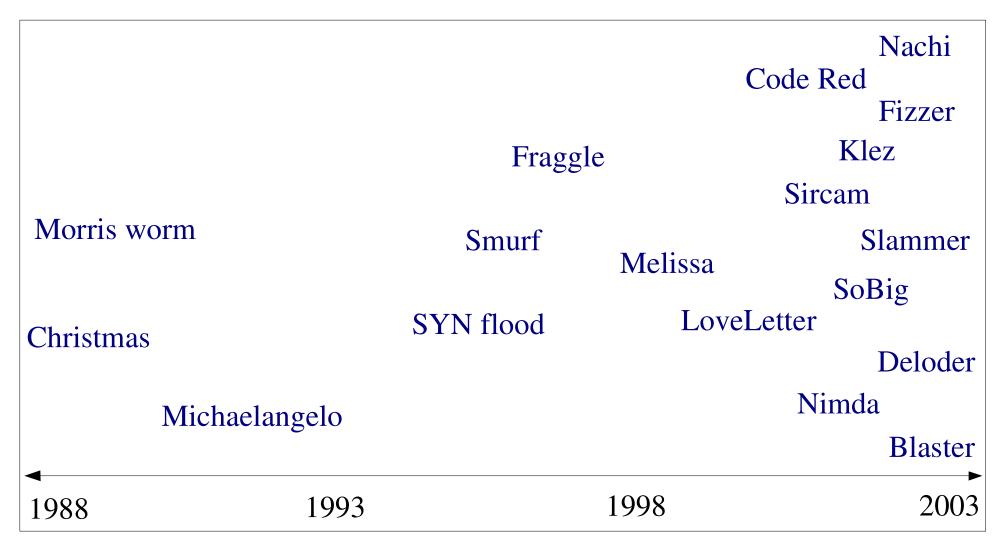
- Motivation
 - Require accurate, high-performance packet replay with IP addresses intact to evaluate network devices
 - Must be cheap (commodity hardware, open-source software)
- TCPivo
 - Linux x86-based tool for accurate replay above OC-3
 - Trace management
 - Timer management
 - Low transmission overhead
 - Proper scheduling and pre-emption
 - Software available, poster outside...


Wu-chang Feng, Ashvin Goel, Abdelmajid Bezzaz, Wu-chi Feng, Jonathan Walpole, "TCPivo: A High-Performance Packet Replay Engine", in Proceedings of ACM SIGCOMM Workshop on Models, Methods, and Tools for Reproducible Network Research (MoMeTools) August 2003.

IXP Network Practicum course

- Contents
 - 10-week quarter, 3-hour laboratory per week
 - Basics of the ACE framework
 - Command-line development
 - µ-code assembler development of microblock components
 - C development of core components
 - Workbench development
 - µ-engine C development of microblock components
 - IXP simulator
- Projects and assignments
 - Packet and protocol counters
 - Load-balancing switches, FragRouter, Token bucket markers
 - Content filters (SMTP viagra reset, WWW bomb reset)

IXP Network Practicum course


- Spring 2003
 - Instructor: Me
 - TA: Francis Chang
 - Enrollment: 16 fairly satisfied students (3.4 out of 4.0)
 - Limited by our hardware resources
 - Forced to turn back students
 - 12 out of 16 with intel.com e-mail addresses
 - Several external inquiries for student list
 - Feeling very conflicted about this...
- Fall 2003
 - Offering course again to those unable to take it
 - Instructor: Francis Chang
 - Will start in two weeks....

The Case for IP Puzzles

Motivation

 A quick look back on 15 years of not so "Good Times" SMTP, TCP, ICMP, UDP, FastTrack, SMB, finger, SSL, SQL, etc.

Puzzles

- An interesting approach for mitigating DoS activity...
 - Force client to solve a problem before giving service
 - Currently for e-mail, authentication protocols, transport layers
 - Fundamentally changes the Internet's service paradigm
 - Clients no longer have a free lunch
 - Clients have a system performance incentive to behave
- A contrast in approaches
 - Leave doors open and unlocked, rely on police/ISPs
 - Centralized enforcement (not working)
 - Give everyone guns to shoot each other with
 - Distributed enforcement (may not work either)
 - Harness the infinite energy of the global community to fight problem
 - Promising anecdotal evidence with spamming the spammers...

Posit

• Puzzles can only be effective if placed at the IP layer

Why are IP puzzles a good idea?

- "Weakest link" corollary to e2e/waistline principles
 - Put in the common waistline layer functions whose properties are otherwise destroyed unless implemented universally across a higher and/or lower layer
 - DoS prevention, congestion control destroyed if any adjacent or underlying layer does not implement it
 - TCP congestion control thwarted by UDP flooding
 - DoS-resistant authentication protocols thwarted by IP flooding
 - Until puzzles are in IP, it will remain one of the weakest links

IP puzzle scenario #1

- Port and machine scanning
 - Instrumental to hackers and worms for discovering vulnerable systems
 - The nuclear weapon: scanrand
 - Inverse SYN cookies and a single socket
 - Statelessly scan large networks in seconds
 - 8300 web servers discovered within a class B in 4 seconds
 - Technique not used in any worm....yet
 - Forget Warhol
 - "American Pie" worm => done in 15 seconds?
 - Finally, a grand networking challenge!

IP puzzle scenario #1

Mitigation via a "push-back" puzzle firewall

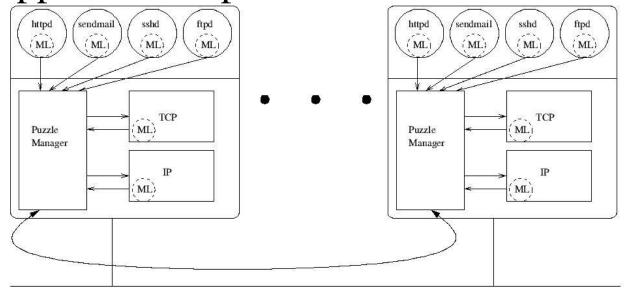
Why are IP puzzles a bad idea? (What are the research challenges?)

- Tamper-resistance
- Performance
- Control
- Fairness
- Deployment

Tamper-resistance

- A tool to both prevent and initiate DoS attacks
 - Disable a client by...
 - Spoofing bogus puzzle questions to it
 - Spoofing its traffic to unfairly trigger puzzles against it
 - Disable a router or server by...
 - Forcing it to issue loads of puzzles
 - Forcing it to verify loads of bogus puzzle answers
 - Replaying puzzle answers at high-speed
 - Probably many more....

Performance


- Must support low-latency, high-throughput operation
 - Must not add latency for applications such as on-line games
 - Must support high-speed transfers
- At what granularity should puzzles be applied?
 - Per byte(s)?
 - Per packet(s)?
 - Per flow(s)?
 - Per flow aggregate?
 - Driven by performance and level of protection required

Control

- Puzzles require control algorithms to maintain high utilization and low loss
 - Mandatory, multi-resolution ECN signals that can be given at any time granularity
 - Can apply ideas from TCP/AQM control
 - Adapt puzzle difficulty within network based on load
 - Adapt end-host response to maximize throughput while minimizing system resource consumption (natural game theoretic operation)
 - Hypothesis
 - Easier to design puzzle controllers versus those used in TCP/AQM

Fairness

- Mechanism in a layer with minimal information
 - Can support bandwidth-based puzzle delivery
 - Can support some differentiation to deter Smurf/Fraggle
- Need a "puzzle manager" to drive IP-layer puzzle policy based on application input

Fairness

- Enables "Reputation-based networking"
 - Software vendors
 - Making "trustworthy computing" mandatory (not marketing)
 - Long-term, computational tax for poorly designed software
 - System administrators and IT practices
 - Making responsible system management mandatory
 - Disturbing pervading notion: "cheaper to leave infected than patch"
 - Long-term, computational tax on poorly administered systems
 - End-users
 - Making users choose more secure software and adopt better practices
 - Punish users behaving "badly"
 - Long-term, computational tax on ignorance and maliciousness
 - "Nothing is certain but death and taxes." B. Franklin

Deployment

- Can be transparently and incrementally deployed via puzzle firewalls/proxies
- Application-driven puzzle manager requires more intrusive changes
- Financial incentive to change is present
 - Lost productivity (see last several weeks)
 - Lost revenue, services (WWW, power, ATM, etc.)
 - SoBig.* author laughing all the way to the bank (Grrrr....)
 - Change may need a kick from the government or industry?

Why is this good for Intel?

- Keeping the Internet healthy
- Drives a whole new market for faster CPUs
 - Make the incompetent, the lazy, and the malicious "pay" for use of the Internet
 - Computational tax for running insecure software paid directly to Intel
- Demand for a whole new class of network devices
 - Puzzle proxies and firewalls based on IXP network processors

Status

- netfilter/iptables implementation
 - Tamper-proof operation (must be along path to deny service)
 - Puzzle generation ~1µs
 - Puzzle verification ~1µs, constant amount of state
 - Fine-grained puzzle difficulty adjustment
 - 100,000 puzzles/sec on commodity hardware
 - 1Gbs+ for per-packet puzzles with MTU packets
 - Small packet overhead
 - Puzzle question ~40 bytes
 - Puzzle answer ~20 bytes
 - Puzzle proxy and puzzle firewall implemented
 - Can set up demo upon request
 - Can play puzzle-protected Counter-strike transparently

Where's the IXP implementation?

- Big issue: IXP1200 is not built for security
 - Pseudo-random number generator can be predicted
 - Internal hash unit cyptographically weak
- Have a very short wish-list of functions
 - IXP 2850? Overkill, but we'll take one...
 20000 NW Walker Road Beaverton, OR 97006

Wu-chang Feng, "The Case for TCP/IP Puzzles", in Proceedings of ACM SIGCOMM Workshop on Future Directions in Network Architecture (FDNA-03)

Wu-chang Feng, Antoine Luu, Wu-chi Feng, "Scalable Fine-Grained Control of Network Puzzles", *in submission*

Questions?

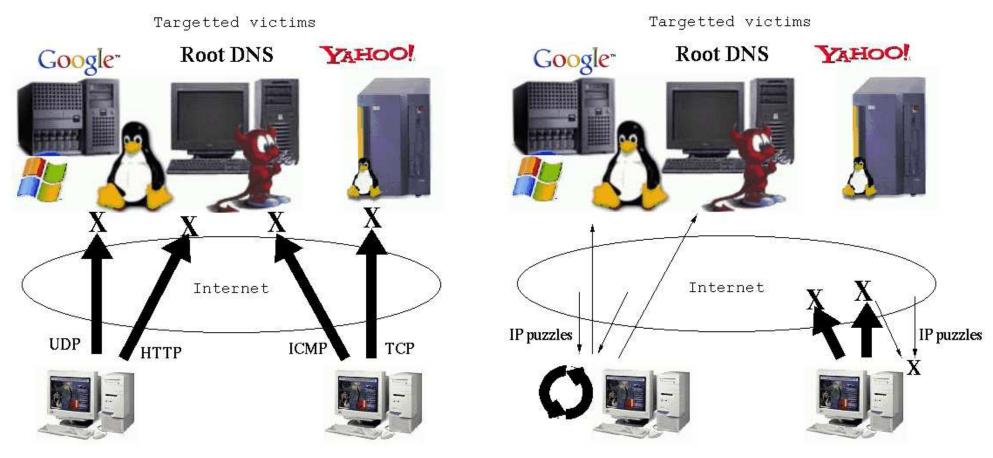
- Packet Classification http://www.cse.ogi.edu/sysl/projects/ixp
- TCPivo

http://www.cse.ogi.edu/sysl/projects/tcpivo

- CSE 506: Networking Practicum material http://www.cse.ogi.edu/~wuchang http://www.cse.ogi.edu/~francis/cse506
- PuzzleNet and Reputation-based Networking http://www.cse.ogi.edu/sysl/projects/puzzles

Extra slides

Fairness


- Inserting a "trust" estimator into the knowledge plane
 - Answer the "WHO" question?
 - Who is a likely source of a future DoS attack?
 - No keys, no signatures, no centralized source
 - Based on time-varying distributed view of client behavior
 - Similar to GeoNetMap's "confidence" measure

IP puzzle scenario #2

- Coordinated DDoS: simultaneous attacks against multiple sites from the same set of zombie machines
 - Mafiaboy (2000)
 - Have zombies initiate low bandwidth attacks on a diverse set of victims to evade localized detection techniques (such as mod_dosevasive)

IP puzzle scenario #2

Mitigation using IP puzzles

Zombie participants in a coordinated DoS attack

Zombie participants in a coordinated DoS attack