
MetaCAPTCHA: A Metamorphic Throttling Service
for the Web

Akshay Dua∗, Thai Bui∗, Tien Le∗, Nhan Huynh∗ and Wu-chang Feng∗
∗ {akshay, buithai, letien, nhhuyng, wuchang}@cs.pdx.edu

Department of Computer Science
Portland State University

Abstract—Spam is a problem that refuses to go away. An
immense amount of time and money is currently devoted to
hiding spam, but not enough is devoted to effectively preventing
it. CAPTCHAs are a prevalent spam prevention mechanism, but
are getting harder for humans to solve and easier for programs to
“break”. CAPTCHAs also cannot prevent spam from hijacked
accounts since they are mostly used during account creation.
Proof-of-work approaches are gaining popularity, but current
implementations are not effective enough and cannot be used
by generic web applications. We present MetaCAPTCHA, an
application-agnostic spam prevention service for web applica-
tions. It dynamically issues CAPTCHAs and proof-of-work “puz-
zles” while ensuring that more malicious users solve “harder”
puzzles. In order to support its operation, MetaCAPTCHA
implements a novel secure protocol — for authenticating web
sites and validating proof-of-work solutions — that allows for
seamless integration across a variety of web applications.

I. INTRODUCTION

Internet spammers are relentless. Although, email spam is
reducing (≈ 70.5% in Jan 2012 from 92.2% in Aug 2010), the
spam on social network sites is edging up [1]. Approximately
4 million Facebook users receive spam from around 600,000
new or hijacked accounts each day [1], [2]. What’s worse
is the success rates of social spam: in Jan 2010, 0.13%
of all spam URLs on twitter were visited by around 1.6
million unsuspecting users [3]. This “clickthrough” rate is
almost two orders of magnitude larger than for email spam.
Spammers cost businesses $20.5 billion annually in decreased
productivity and technical expenses, and this cost is projected
to rise to $198 billion in the next four years [4]. There are two
prevalent methods to prevent this deluge of spam: CAPTCHA
and proof-of-work; both methods have benefits and drawbacks
[5].

A CAPTCHA can effectively protect an online transaction
so long as there aren’t OCR algorithms that can automatically
“solve” or “break” it [6]. Once a class of CAPTCHAs is
broken, the corresponding application becomes defenseless
against spam bots. CAPTCHAs are also prone to outsourcing
attacks where humans are employed to solve CAPTCHAs en
masse. A major cause of success for these attacks is that
CAPTCHAs don’t provide a way to change the cost of solving
them [7], [8]. Additionally, the usability burden imposed by
CAPTCHAs [9] limits their use to only protecting infrequent
transactions like creating accounts. This leaves frequent trans-
actions, like message posting, open to abuse. Attackers exploit

this loophole by hijacking accounts and using them to send
spam.

Proof-of-work does not have CAPTCHA’s usability issues
and can therefore be used in frequent transactions. This is
because the assigned “work” can be done automatically by the
device without user intervention. Additionally, this paradigm
enables an application to price a transaction by varying the
amount of work that needs to be done as payment. However,
proof-of-work systems are only effective if the price of the
transaction is based on the corresponding user’s reputation
[10]. Unfortunately, many proposed proof-of-work systems
do not accurately characterize user reputation [11] and those
that attempt to do so, are too tightly integrated with a given
application [12], [13], [11], [14].

In this work, we describe MetaCAPTCHA, an application-
agnostic spam prevention service for the web. In order to
support its operation, MetaCAPTCHA implements a novel
secure protocol — for authenticating web sites and vali-
dating proof-of-work solutions — that allows for seamless
integration across a variety of web applications. Specifically,
MetaCAPTCHA makes the following contributions:
• It integrates the CAPTCHA and proof-of-work ap-

proaches while augmenting each: it can dynamically issue
proof-of-work or CAPTCHA puzzles while ensuring that
malicious users solve much “harder” puzzles than honest
users. More specifically, our results show that honest
users were never issued a puzzle during 95% of their
transactions.

• Puzzles are randomly picked and delivered within a
generic solver that eventually executes those puzzles in
the user’s web browser. Thus, the solver code is metamor-
phic: changing randomly in each transaction. This turns
the reverse engineering problem around on the adversary
who must now attach a debugger to discover the solver’s
execution steps.

• It uses a Bayesian reputation system that can accu-
rately predict a user’s reputation score based on features
configured by the web application. Since multiple web
applications can be protected by MetaCAPTCHA, its
reputation system provides global visibility on attacks
across all those applications.

• It contains a modular puzzle library that can be configured
with new classes of CAPTCHAs or proof-of-work puz-
zles while allowing the removal of those classes that are

known to be “broken”. These puzzle library modifications
can be made by the web application without any change
to its source code. Furthermore, the variety of puzzles
in the library ensures that breaking one class of puzzles
won’t compromise MetaCAPTCHA as a whole.

• Web applications can easily install the MetaCAPTCHA
API by making changes similar to those required by
existing CAPTCHA implementations [15], [16].

II. BACKGROUND

MetaCAPTCHA dynamically issues CAPTCHA and proof-
of-work puzzles. We now provide a brief background on each
kind of puzzle.

A. CAPTCHA

CAPTCHA stands for “Completely Automated Pub-
lic Turing-test to tell Computers and Humans Apart”.
CAPTCHAs usually consist of images containing squiggly
characters that are easy for humans to read, but hard for pro-
grams to parse. The idea is to allow humans to access the web
application’s services while deterring automated adversaries
like bots. A popular implementation of the CAPTCHA is the
reCAPTCHA [17].

B. Proof-of-work

The proof-of-work approach was first proposed by Dwork
and Naor [18] to combat email spam. The idea was to
impose a per-email cost on senders, where, the cost was in
terms of computational resources devoted by the sender to
compute the pricing function. Once a sender proved that it
correctly computed the pricing function, the server would
send the email. Effectively, sending bulk spam would become
“expensive” because computational resources are finite. The
characteristics of such a pricing function f was then described
as follows:

1) “moderately” easy to compute
2) not amenable to amortization: given any l values

m1, . . . ,ml, the cost of computing f(mi) is similar to
the cost of computing f(mj) where i 6= j. In other
words, no amount of pre-processing should make it
easier to compute f on any input.

3) Given x and y, it is easy to check if y = f(x)

An example of a pricing function is one that finds partial hash
collisions [19]. A function fk : x → y is said to compute a
k-bit partial hash collision on string x, if given a hash function
H , the first k bits of H(x) are equal to the first k bits of H(y).
Notice that fk(·) has all the properties required of a pricing
function.

Although the proof-of-work approach seemed promising,
Laurie and Clayton [10] demonstrated in 2004 that reducing
spam to 1% of normal email would require delaying each
message — including one that an honest user sends — by
≈ 6 minutes; a high price to pay for innocent users. This
delay was computed based on then current rates of spam,
number of email users, and under the assumption that 1
million compromised machines were spewing spam. Since

then, spam has increased by 18% to 74.2%, so we expect
the aforementioned delay to be much larger now.

To reduce this delay, Liu and Camp [20] proposed basing
puzzle difficulties on user reputation. The idea was that users
with lower reputations would receive harder puzzles than those
with higher reputations. Since easier puzzles would be much
quicker to solve, honest users would experience a nominal
delay when sending messages where as malicious users may
be significantly delayed. Thus, with an accurate reputation
system, the proof-of-work approach can be a practical, fair,
and effective technique for combating spam.

MetaCAPTCHA

Web App

Submit Message

Need Proof-of-Work

Solve Puzzle

Get Proof-of-W
ork

1

2

4

3

Show Proof-of-Work5

Initial
Setup

Client

Browser + User

Fig. 1. System model: user’s browser must show proof-of-work
before the web application accepts the user’s message. The dotted
line indicates initial setup performed by the web application to use
the MetaCAPTCHA service.

III. SYSTEM MODEL

This section describes the system model in which Meta-
CAPTCHA is applicable. In general, interactive web applica-
tions where online transactions can be exploited by spammers,
such as message forums, webmail, social applications, and
event-ticket purchasing can employ MetaCAPTCHA for spam
prevention. Heymann et al. [5] provide an exhaustive discus-
sion on the common characteristics of such web applications.

An overview of the system model and high-level interactions
between the MetaCAPTCHA service, the web client, and
the corresponding web application is shown in Figure 1.
The interactions begin when a user attempts to perform an
online transaction. The web application allows the transaction
to proceed only when it has sufficient proof that the client
completed the work it was assigned by MetaCAPTCHA.

As shown in Figure 1, we treat the user separate from the
browser while collectively referring to them both as the client.
The next section discusses the details of how a user interacts
with a web application protected by MetaCAPTCHA.

IV. COMMUNICATION PROTOCOL

This section discusses the MetaCAPTCHA communication
protocol. For simplicity, we assume the scenario where a
client is attempting to post a message. Note, however, that
MetaCAPTCHA can protect more general web transactions
like purchasing event tickets, creating accounts, etc.

A web client begins communicating with MetaCAPTCHA
after being referred by the corresponding web application.
In this case, the application will refer a client attempting
to post a message to MetaCAPTCHA. The client will then

need to obtain and solve a puzzle. The idea is that the web
application will allow messages from only those clients that
have successfully solved a puzzle issued by MetaCAPTCHA.
The communication protocol for obtaining and solving a
puzzle begins with authentication as explained in the next
section.

A. Authentication
MetaCAPTCHA only issues puzzles to clients of partic-

ipating web applications. This requires MetaCAPTCHA to
authenticate two things, (i) the identity of the web application,
and (ii) the client is an authorized user of the web application.
MetaCAPTCHA provides each web application with an API
key K during a registration phase. The web application must
keep K secret as it will later be used for authenticating both
the application itself and all its clients.

User/
Client

TGS

Server
1

2 3

4

5

1. Request for TGS ticket
2. Ticket for TGS
3. Request for Server ticket
4. Ticket for Server
5. Request for service

Kerberos

Web Application

MetaCAPTCHA

Fig. 2. Kerberos authentication overview and how it relates to Meta-
CAPTCHA authentication. Figure adapted from Steiner et al. [21]

As implied by the system model in Section III, a client is not
given access to the services provided by the web application
until it shows proof of a correctly solved puzzle. The only
way to be issued a puzzle is to first show that the client is
an authorized user of a registered web application. A client
does so by presenting to MetaCAPTCHA a “server-ticket”
issued by the web application. The authentication protocol
used is modeled around Kerberos [21], wherein the web
application acts as the Ticket-Granting-Server (TGS) for the
MetaCAPTCHA service as shown in Figure 2 [cite steiner].
Notice that steps 1 and 2 of the Kerberos protocol — where
a client authenticates itself to Kerberos — are not required
because MetaCAPTCHA assumes that it will be replaced by
the web application’s existing authentication mechanism (e.g
password).

After a client submits a message, the web application returns
a server-ticket S1 = C||ID||HMAC(K,C||ID) containing
client-specific information C, a web application ID issued by
MetaCAPTCHA during the registration phase, and a Hash-
based Message Authentication Code (HMAC) for C created
using the web application’s secret key K (See Figure 3). The
server-ticket S1 is called the puzzle-request ticket and is sent
by clients to MetaCAPTCHA for requesting puzzles.

When MetaCAPTCHA receives the puzzle-request-ticket
S1, it verifies that the client is indeed a user of a registered
web application. MetaCAPTCHA performs this verification by
checking the integrity of the HMAC included in the ticket.
Notice that the correct HMAC can only be generated by a reg-
istered web application because it includes that application’s
unique API key.

Web
Browser

MetaCAPTCHA

Web App

Submit Message

Solve/Verify

Puzzle

1

2

4

5

3

5

Es
ta

bl
ish

 S
ha

re
d

Se
cr

et
 K

ey

HeadWinds assigned application ID

Web application's secret key

Proof-of-Work

Fig. 3. MetaCAPTCHA authentication and puzzle solution verification

Once the integrity of the HMAC is ascertained by Meta-
CAPTCHA, the client is issued a puzzle to solve. Details of
client-specific information C are presented in Section IV-B.

B. Puzzle Delivery and Verification

MetaCAPTCHA only issues puzzles to authenticated clients
as previously shown. The hardness of the issued puzzle de-
pends on the client-specific information C = (timestamp,
message_data) sent by the client to MetaCAPTCHA dur-
ing the authentication phase. Here, timestamp indicates
when the message was created (this assumes the web appli-
cation and MetaCAPTCHA are loosely time-synchronized);
message_data contains the message text submitted by the
client and any other information related to it. MetaCAPTCHA
uses the information in C to compute a reputation score, which
in turn is used to determine the puzzle difficulty level: the
amount of time a user’s browser must compute to provide
sufficient proof-of-work to the web application. Higher the
reputation score, more malicious the client, and longer their
browser spends solving puzzles. Its important to note here that
MetaCAPTCHA may issue multiple puzzles to ensure that the
browser stays busy for the determined amount of time (i.e. the
difficulty level)

Once the user’s browser has solved all puzzles, it must send
back the final solution to MetaCAPTCHA. If the solutions are
correct, MetaCAPTCHA will issue the client a proof-of-work-
ticket S2 = Ts||Te||HMAC(K,Ts||Te||S1), where Ts and Te
are the start and end time stamps of the puzzle solving session.
The client must present this ticket to the web application (see
Figure 3), which will then verify its integrity before allowing
the client to complete posting the message. Additionally, if
the difference between the current time and Te is greater
than some threshold tdiff , the client’s proof-of-work ticket
is rejected.

C. Calculating Reputation

The reputation score is the probability that a given message
is spam as determined by a Naive Bayes classifier. A client’s
reputation score is calculated each time she posts a message
to the web application and is dependent on the features of the
message and the client that sent it. A feature is any metric
with a finite set of values. For example, blacklist status of
the message’s source IP address, SpamAssasin score of the
message, or number of times the poster was “thanked”. Given
such message features and any other client-related features
provided by the web application, MetaCAPTCHA’s reputation

service can generate the client’s reputation score. For the list
of features used in this work, refer to Figure 4.

The reputation service is initialized by training the classifier
using ground-truth feature values for messages that have
already been posted. Training information about each message
must include the values for each feature and its classification as
spam or ham (not spam). The information about all messages
is then fed to the classifier, which builds a probability model
to determine how likely a given new message is spam. This
likelihood or probability is called the reputation score and its
value ranges from 0 to 1 with higher scores implying more
malicious users.

D. Reputation Score to Puzzle Difficulty

Puzzle difficulty is the amount of time a client must be
kept busy solving puzzles. MetaCAPTCHA’s approach is to
first, determine the puzzle difficulty based on the reputation
score, and then, continuously issue puzzles until the client
has computed for the amount of time indicated by the puzzle
difficulty. The advantage of this approach is that it gets rid
of an adversary’s incentive to solve puzzles quicker (e.g by
offloading, or parallelizing the computation). The formula used
for determining puzzle difficulty is inspired by Laurie and
Clayton’s work on proof-of-work systems [10] and can be
stated as:

t = (tmax + 1)r − 1

Here, t is the puzzle difficulty we want to calculate, r is a
reputation score between 0 and 1, and tmax is:

tmax =
tp

sp(1− δ)

where, δ is the reduction in spam the web application is
seeking (e.g. 10%) from an average sp of spam messages
received in time period tp. Notice that difficulty t increases
exponentially with reputation r.

E. Issuing Puzzles

Once the puzzle difficulty t is determined, the puzzle
service randomly generates a puzzle based on the list that is
configured. The puzzle is then issued to the client who must
solve it and return a solution. If the solution is returned in time
t′ < t, then a new puzzle is chosen and issued. This process
is repeated until the client has computed for at least t amount
of time. The idea behind issuing several puzzles is to ensure
that no user can complete an online transaction unless they
have computed for a length of time ≥ t.

1) Puzzle Types: Essentially, a puzzle type is a parameter-
ized function. A puzzle-type with an instantiated set of param-
eters is called a puzzle. Puzzles that require human interaction
to solve (e.g. CAPTCHA) are called interactive puzzles, while
those that don’t (e.g. proof-of-work), are called non-interactive
puzzles. MetaCAPTCHA additionally supports hybrid puzzles
that have both an interactive and a proof-of-work component.
The following puzzles are currently supported, however, this
set can be dynamically updated:

• Targeted Hash-Reversal (non-interactive): forces a client
to compute d hashes before finding the right answer [22].

• Modified Time-Lock (non-interactive): forces the client
to compute in a tight loop for an amount of time that can
be precisely controlled [11].

• CAPTCHA (interactive): forces the client to solve a
traditional CAPTCHA [17], [16]

• CAPTCHA+ (hybrid): traditional CAPTCHA with a
modified time-lock puzzle in the background

V. RESULTS

We now evaluate MetaCAPTCHA and show that its
defense-in-depth approach improves spammer identification,
that this identification is accurate, and that it is an efficient
spam prevention service.

A. Experimental Setup

The experimental setup used in our evaluation includes a
MetaCAPTCHA server with a 2.4 GHz Intel Xeon quad-
core processor running Red Hat Linux on a 2.6.18 kernel. A
live discussion forum active from Sep 1 to Oct 19th 2012
employed MetaCAPTCHA as its spam prevention service.
MetaCAPTCHA’s effectiveness and performance has been
evaluated in the context of this forum. At the time, the forum
had 2282 messages from 485 users in 112 sub-forums con-
taining 997 conversation threads. Upon registration, the forum
provided most of this historical user and message data to help
train MetaCAPTCHA’s Naive Bayes classifier in identifying
spam. Since the provided data was considered ground-truth, a
part of it was used to train the classifier and the rest to evaluate
it. The classification (spam or ham) was then compared with
ground-truth to judge the classifier’s effectiveness. The data
consisted of values for all features shown in Figure 4 for each
of 1442 messages posted to the forum. We now describe the
experiments used to evaluate MetaCAPTCHA.

B. Defense-in-Depth

Defense-in-depth implies the use of multiple features to
determine user reputation as opposed to only one or a few.
Recall that a user’s reputation score is the probability that the
message she is posting is spam. This probability is determined
by the Naive Bayes classifier. If the probability that a message
is spam is higher than the probability that it is not, the classifier
tags the message as spam. Therefore, the better the classifier
is at identifying spam, the better it is at identifying spammers
and assigning appropriate reputation scores.

We evaluated the spam identification accuracy of the clas-
sifier by using standard machine learning techniques. The
idea was to measure the classifier’s precision and recall;
precision is the fraction of messages that are actually spam
(or ham) among those classified as spam (or ham); recall
is the fraction of actual spam (or ham) that gets classified
correctly. A commonly used combined metric is the harmonic
mean of precision and recall, called the F-measure. Higher the
F-measure, better the classifier is at identifying spam.

Spam Ham
0

0.2

0.4

0.6

0.8

1

0.013

0.935 0.983
DShield
Blacklist
Language
GEOIP
SA Score
Thanks
Account Age
Akismet
Total

F-
M

ea
su

re

Fig. 4. Defense-in-depth: using multiple features for spam classifica-
tion is better than using one or a few. “Total” implies that all-of-the
above features were used for training the classifier.

We used 10-fold cross-validation to train and test the classi-
fier on feature data for 1442 messages. During each train-and-
test run we limited the set of features that the classifier could
use. More specifically, in all but the last run, the classifier
was trained on one distinct feature. However, in the last run,
it was trained on all features together. The F-measure was
then computed and plotted for each of the runs. We can see in
Figure 4 that the classifier’s F-measure is largest when using
all features together than when using any single one.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Spammer

Mixed

Non-Spammer

Reputation Score

Pr
ob

ab
ilit

y

0.880.06

(a) Reputation score accuracy

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
0.0

0.2

0.4

0.6

0.8

1.0

Spammer

Mixed

Non-Spammer

Puzzle Difficulty (hrs)

Pr
ob

ab
ilit

y

0.14 5.18

(b) Puzzle difficulty accuracy

Fig. 5. Reputation Accuracy: CDF of reputation scores and puzzle
difficulties assigned to spammers, non-spammers, and mixed users
(those that sent at least 1 spam and 1 ham)

C. Reputation Accuracy

We evaluated the accuracy with which MetaCAPTCHA’s
reputation service distinguished between spammers and honest
users. To do this, we first divided forum users into one of

three categories, (i) spammers: those how sent only spam,
(ii) non-spammers: those who sent no spam, and (ii) mixed:
those who sent both spam and ham. Here, ’users’ implies
the senders of messages included in ground-truth information
provided by the forum. After the categorization, there were
99 messages sent by non-spammers, 240 messages sent by
spammers, and 151 messages sent by mixed users in the test
set (34% of ground-truth data picked uniformly at random).
We then fed these messages to MetaCAPTCHA’s classifier
and extracted the reputation scores from the output (note that
reputation scores range from 0 to 1 and higher scores imply
more malicious users). Finally, we plotted a CDF of reputation
scores for each category of users.

Figure 5(a) shows that ≈ 90% of spammers have reputation
scores over 0.95, whereas ≈ 99% of non-spammers got a
reputation of 0.065 or less. Among the honest users, only one
suffered the ill fate of being assigned a reputation of 0.88,
whereas 94% were assigned a reputation of zero — implying
that they did not solve a puzzle at all!

Interestingly, mixed users were treated largely as non-
spammers. To understand why, we further analyzed messages
sent by these users and realized that a majority of the users
had posted vastly more ham than spam (see Figure 6). Thus,
justifying their lower reputation scores.

1 2 3 4 5 6 7 8 9 10 11 12
0
5

10
15
20
25
30 138 131 141 502Ham

Spam

User

M
es

sa
ge

Po
sts

(c
ou

nt
)

Fig. 6. Distribution of spam and ham sent by mixed users. Mixed
users sent very little spam (between 1 and 8) when compared to the
total messages they posted. Note: columns that exceeded the y-scale
have explicitly marked y-values

Although reputation scores have accurately identified spam-
mers from non-spammers, MetaCAPTCHA’s success depends
on issuing harder puzzles to more malicious users. This
requires evaluating the function that converts reputation score
to puzzle difficulty (see Section IV-D). We first computed the
maximum puzzle difficulty tmax = 6.82 hrs based on time
period tp = 1 month, number of spam messages sp seen
in that month, and a spam reduction factor δ = 0.6. We
then plotted a CDF, shown in Figure 5(b), of the difficulty of
puzzles issued to spammers, non-spammers, and mixed users
for each message they sent. We can see that in this scenario,
≈ 90% of spammers solved a puzzle over 6 hrs long, ≈ 5%
of non-spammers solved a puzzle between 7.2 secs and 8.4
minutes long, and ≈ 95% of non-spammers solved no puzzles
at all.

VI. RELATED WORK

This section discusses relevant spam prevention schemes
and how they relate to MetaCAPTCHA: the two prevalent
ones are CAPTCHAs and proof-of-work [5].

CAPTCHAs come in many shapes and forms: textual
CAPTCHAs require users to identify distorted letters [17],
[16], visual CAPTCHAs require users to identify the content
or characteristics of an image (e.g. orientation [23]), and
audio CAPTCHAs usually require users to identify words
in a noisy environment [24]. However, CAPTCHAs are not
always fun to solve, so systems like Mollom [25] selectively
issue them to only those users that appear to be posting spam.
MetaCAPTCHA can incorporate the above CAPTCHAs with
the added benefit of a difficulty setting.

Proof-of-work systems that discourage spam include Hash-
cash, a system that requires senders to attach “postage” to
e-mail [12]. The postage is a partial hash collision on a
string derived from the recipient’s email address. Another
proof-of-work solution for throttling email spam was pre-
sented by Zhong et al. [13]. However, unlike Hashcash, their
system based puzzle difficulty on the “spamminess” of the
message. Feng et al. proposed kaPoW [11], a reputation-
based proof-of-work system to discourage spam in webmail.
MetaCAPTCHA incorporates the features of above proof-of-
work systems while augmenting them with a generic puzzle
issuing mechanism and a comprehensive reputation service.
Furthermore, it can be easily configured and used by generic
web applications.

VII. CONCLUSION

We presented MetaCAPTCHA, an application-agnostic
spam prevention service for the web. MetaCAPTCHA seam-
lessly integrates the CAPTCHA and proof-of-work approaches
allowing web application to issue “harder” CAPTCHAs to
malicious users. Web applications can configure the puz-
zles MetaCAPTCHA issues; a configurable library of puz-
zles also ensures that weaknesses in one class of puzzles
won’t compromise MetaCAPTCHA as a whole. We evaluated
MetaCAPTCHA in the context of a reference web appli-
cation and showed that 95% of honest users hardly notice
MetaCAPTCHA’s presence, whereas the remaining 5% were
required to solve very “easy” puzzles before accessing the
application’s services.

REFERENCES

[1] Geoffrey A. Fowler, Shayndi Raice, Amir Efrati, “Facebook,
Twitter battle ’social’ spam,” http://www.theaustralian.com.au/
business/wall-street-journal/facebook-twitter-battle-social-spam/
story-fnay3ubk-1226237108998, Jan 2012.

[2] Mark Risher, “Social Spam and Abuse — Annual
Trend Review,” http://blog.impermium.com/2012/01/13/
social-spam-and-abuse-the-year-in-review/, Jan 2012.

[3] C. Grier, K. Thomas, V. Paxson, and M. Zhang, “@spam: the
underground on 140 characters or less,” in Proceedings of the 17th
ACM conference on Computer and communications security, ser. CCS
’10. New York, NY, USA: ACM, 2010, pp. 27–37. [Online]. Available:
http://doi.acm.org/10.1145/1866307.1866311

[4] SPAM LAWS, “Spam Statistics and Facts,” http://www.spamlaws.com/
spam-stats.html, 2011.

[5] P. Heymann, G. Koutrika, and H. Garcia-Molina, “Fighting spam on
social web sites: A survey of approaches and future challenges,” Internet
Computing, IEEE, vol. 11, no. 6, pp. 36–45, 2007.

[6] O. R. Team, “List of weaknesses,” http://ocr-research.org.ua/list.html.
[7] M. Motoyama, K. Levchenko, C. Kanich, D. McCoy, G. M. Voelker, and

S. Savage, “Re: Captchas–understanding captcha-solving services in an
economic context,” in USENIX Security Symposium, vol. 10, 2010.

[8] M. Motoyama, D. McCoy, K. Levchenko, S. Savage, and G. M. Voelker,
“Dirty jobs: The role of freelance labor in web service abuse,” in
Proceedings of the 20th USENIX conference on Security. USENIX
Association, 2011, pp. 14–14.

[9] J. Yan and A. El Ahmad, “Usability of captchas or usability issues in
captcha design,” in Proceedings of the 4th symposium on Usable privacy
and security. ACM, 2008, pp. 44–52.

[10] B. Laurie and R. Clayton, “Proof-of-work proves not to work,” in The
Third Annual Workshop on Economics and Information Security, 2004.

[11] W. Feng and E. Kaiser, “kapow webmail: Effective disincentives against
spam,” Proc. of 7th CEAS, 2010.

[12] A. Back et al., “Hashcash-a denial of service counter-measure,” URL:
http://www. hashcash. org/papers/hashcash. pdf, 2002.

[13] Z. Zhong, K. Huang, and K. Li, “Throttling outgoing spam for webmail
services,” in Conference on Email and Anti-Spam, 2005.

[14] E. Kaiser and W. Feng, “Helping ticketmaster: Changing the economics
of ticket robots with geographic proof-of-work,” in INFOCOM IEEE
Conference on Computer Communications Workshops, 2010. IEEE,
2010, pp. 1–6.

[15] Google, “recaptcha: Stop spam, read books,” http://www.google.com/
recaptcha.

[16] D. Phillips, “Securimage php captcha — free captcha script,” http://
www.phpcaptcha.org/.

[17] L. Von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum, “re-
captcha: Human-based character recognition via web security measures,”
Science, vol. 321, no. 5895, p. 1465, 2008.

[18] C. Dwork and M. Naor, “Pricing via processing or combatting junk
mail,” in Advances in CryptologyCRYPTO92. Springer, 1993, pp. 139–
147.

[19] A. Back, “Hashcash faq,” http://www.hashcash.org/faq/.
[20] D. Liu and L. Camp, “Proof of work can work,” in Fifth Workshop on

the Economics of Information Security, 2006.
[21] J. G. Steiner, C. Neuman, and J. I. Schiller, “Kerberos: An authentication

service for open network systems,” in USENIX conference proceedings,
vol. 191, 1988, p. 202.

[22] W.-c. Feng and E. Kaiser, “The case for public work,” in IEEE Global
Internet Symposium, 2007. IEEE, 2007, pp. 43–48.

[23] R. Gossweiler, M. Kamvar, and S. Baluja, “What’s up captcha?:
a captcha based on image orientation,” in Proceedings of the 18th
international conference on World wide web, ser. WWW ’09. New
York, NY, USA: ACM, 2009, pp. 841–850. [Online]. Available:
http://doi.acm.org/10.1145/1526709.1526822

[24] Y. Soupionis and D. Gritzalis, “Audio captcha: Existing solutions
assessment and a new implementation for voip telephony,” Computers
& Security, vol. 29, no. 5, pp. 603–618, 2010.

[25] Mollom, “How mollom works — mollom,” http://mollom.com/
how-mollom-works.

