
Effective Disincentives Against Spam

Wu-chang Feng (wuchang@cs.pdx.edu)
Ed Kaiser (edward.l.r.kaiser@gmail.com)

Supported by:

Webmail

Motivation
• Spammers targeting webmail systems to send spam

• Creating new accounts on free webmail sites (GMail,
Hotmail, Yahoo! Mail)

• Hijacking legitimate accounts via spear phishing attacks to
send spam (Horde/IMP, SquirrelMail)

• Webmail spam 5% of all spam sent in 2008 [IronPort08]

CAPTCHAs to the rescue?
• Use a hard AI problem for security

• Force users to solve a problem that is hard for a
computer, but easy for a human

• Does not require special client software

• Widely used
• Google / Gmail
• Microsoft Live / Passport / Hotmail
• Yahoo!

CAPTCHA Problem #1
• User experience is frustrating, annoying, and

aesthetically unappealing
• Inaccessible to many
• Not suitable for frequent transactions

Blogger Facebook TicketMaster

CAPTCHA Problem #2
• Adversaries solving the hard OCR problem

• Strong financial incentive to break them
• Yahoo!, Windows Live, Google all broken in early 2008
• PWNtcha CAPTCHA solving library

CAPTCHA Problem #3
• Economics broken

• Fixed workload priced at 10 seconds of human time
• Outsourced for under 1¢ per CAPTCHA

• CAPTCHA pricing does not work when value of what is
being protected is more than 1¢

Outsourcing Example

Need a variable workload to price out adversaries!

Proof-of-Work (PoW)
• a.k.a. Client Puzzles

• Alternative to CAPTCHA
• Clients solve a cryptographic puzzle to get access

• Addresses CAPTCHA problems
• No user interface issues
• Adversary must break a cryptographic problem
• Adjustable difficulty that can be arbitrarily increased

• But….
• Landscape littered with unused PoW schemes!
• Hashcash, TLS puzzles, TCP puzzles, IP puzzles, Public

work

Problems with Proof-of-Work
• Ineffective puzzle algorithms
• Inability to protect legitimate clients
• Deployment

Ineffective puzzle algorithms
• Ideal puzzle algorithm

• Fast issuing
• Fast verification
• Fine-granularity work given to client
• Deterministic work given to client
• Non-parallelizable

• Current puzzle schemes based on breaking a
weakened cryptographic problem
• Hash-reversal
• Time-lock

Hash-reversal puzzles
• Brute-force search on the input space of a

cryptographic hash (H) to generate a specific output
• Hash-reversal [Juels99]

H(input) = P

• Give client P and high-order bits of input, client solves for input
• Number of bits given determines difficulty

• Hint-based hash-reversal [Feng05]
H(input) = P, Hint = input – u(0,D), D = difficulty

• u = uniform distribution over 0,D
• Given P and Hint, client solves for input

• Targeted hash-reversal [Kaiser08]
• N = random number generated by server, D = difficulty

• Client finds any input such that
H(N || input) = 0 mod D

Analyzing hash-reversal puzzles
• The good

• Fast issuing
• Single hash or random number to issue

• Fast verification
• Single hash to verify

• The bad
• Can be coarse-grained

• Powers of two [Juels99]

• Non-deterministic
• Probabilistic run-times

• Parallelizable
• Hash searches easily parallelized across machines

Time-lock puzzles
• Based on repeated modular squaring [Rivest96]

• Server generates
•n=p*q where p and q are two large primes
• Random number a and Difficulty t

• Server sends client a,n,t
• Client calculates A=a2t mod n
• Server validates answer via short-cut

• φ = (p-1)*(q-1)
•r = 2t mod φ
•A = ar mod n

Analyzing time-lock puzzles
• The bad

• Slow issuing
• Generating large primes per puzzle prohibitively expensive

• Slow verification
• Must keep track of all puzzles a,n,t to subsequently verify

• The good
• Fine-grained

• Granularity down to a single modular squaring operation

• Deterministic
• Exact number of squarings given

• Non-parallelizable
• Repeated squaring not easily parallelized

kaPoW’s modified time-lock puzzle
• Modify algorithm to efficiently issue and verify

• Re-use modulus n across clients
• Generate a as a hash of client request parameters and server

nonce to make server constant state and prevent replay
a = H(K || fc)
K = server random number
fc = client request parameters (URL, POST data, client IP, etc.)

• n and K must be refreshed periodically to prevent attacks

Comparison

Problems with Proof-of-Work
• Ineffective puzzle algorithms
• Inability to protect legitimate clients
• Deployment

Inability to protect legitimate clients
• Resource disparity gives adversary a huge

advantage
• Statically priced proof-of-work cannot stop

adversaries with massive resources [Laurie04]
• Must control difficulty across users to achieve

adequate separation of adversaries from legitimate
clients [Liu06]

Prior PoW systems
• Simplistic difficulty settings easily bypassed

• Static, uniform difficulties
• [Juels99], [Aura00], [Dean01], [Goodman04]

• Dynamic, uniform difficulties
• [Back02], [Wang03]

• Usage-based difficulty
• [Kaiser08]

• Content-based difficulty
• [Zhong05]

kaPoW’s defense-in-depth approach
• Set difficulty using comprehensive metrics

• Time
• Time of day, time since last e-mail transmission, time since account

creation

• Usage
• Number of messages recently sent, number of recipients in message

• Location
• Geographic distance from server, distance from prior transmissions

• Reputation
• Presence on distributed IP address blacklists

• Content
• Spam score of message, reputation of embedded URLs

• Social network
• Whether recipient has sent messages to sender or is in sender’s social

network

Problems with Proof-of-Work
• Ineffective puzzle algorithms
• Inability to protect legitimate clients
• Deployment

Deployment
• Prior systems require software modifications
• kaPoW implemented with PHP and Javascript

• No protocol changes
• No web browser changes
• No web server changes

• PHP script
• Analyzes client and content metrics to determine difficulty
• Dynamically embeds PoW challenges with client-specific

difficulty into form submission and URL tags
• Attaches 9KB JavaScript solver for client to run
• Verifies subsequent solutions

• JavaScript solver
• Client browser runs solver to calculate answers
• Attaches answers to subsequent requests

Prototype
• http://kapow.cs.pdx.edu/mail

Prototype
• http://kapow.cs.pdx.edu/mail

Prototype
• http://kapow.cs.pdx.edu/mail

• Modulus generation via OpenSSL
• Content analysis via SpamAssassin, URIBL, SURBL
• Reputation lookup via Spamhaus, SpamCop, and Project

Honeypot DNS blacklists
• Geographic location resolution via MaxMind’s GeoIP
• Leverages BigInteger library for Javascript solver

Evaluating modified time-lock
• Modulus generation

• Per-request generation
prohibitive

• Periodic generation
feasible

• Puzzle issuing
• 5.32µs

• Puzzle verification

9.881600

3.901200

1.13800

0.165400

Generation time
(seconds)

Key size
(bits)

4.011600

2.351200

1.16800

0.184400

Verification time
(milliseconds)

Key size
(bits)

Evaluating adaptive difficulties
• No access to production webmail service so…
• Simulate a hijacked account on a university webmail

service with a simplistic difficulty algorithm
• score = ST + SU + SL + SR + SC + SS

• ST = Time component
– 1 if during an 8-hour “active” period, 0 otherwise

• SU = Usage component
– 1 if user sent a message in past 5 minutes, 0 otherwise

• SL = Location component
– 1 if user is within 500 miles, 0 otherwise

• SR = Reputation component
– 1 if client IP is on a blacklist, 0 otherwise

• SC = Content component
– 1 if SpamAssassin considers message spam, 0 otherwise

• SS = Social network component
– 1 if recipient is in user’s address book, 0 otherwise

• t = 20*score6

Simulation experiments
• Spam bot with a hijacked user account

• Greedy sender sending messages to random e-mail addresses
continuously throughout the day

• SC=1 for 80% of messages
• SS=1 for all messages

• Legitimate sender using the same account
• Sends one message during the middle of the day at a local

location from a “good” IP address to a friend
• ST=0
• SL=0
• SR=0
• SC=0
• SS=0

• Full-day simulation across 1000 trials

Results
• Legitimate sender minimally impacted

• Worst-case greedy bot in local location on a “good”
IP address sends 160 messages per day on average

0.000 ± 0.0008.4 ± 1.2Remote bot, bad IP

0.104 ± 0.04130.4 ± 2.3Remote bot, good IP

0.116 ± 0.04030.3 ± 2.2Local bot, bad IP

0.400 ± 0.000159.7 ± 5.6Local bot, good IP

Average message delay
for legitimate client

Average messages sent
by bot during the day

Bot type

Conclusion
• kaPoW Webmail addresses key problems in proof-of-

work systems
• Ineffective puzzle algorithms

• Modified time-lock algorithm
• Inability to protect legitimate clients

• Defense-in-depth approach for determining difficulties
• Deployment

• PHP, Javascript implementation requiring no changes to browser or
web server

• Future work
• More effective difficulty algorithms
• Evaluation on a deployed webmail service
• Applying techniques to other web applications
• Commercialization

Questions?

http://kapow.cs.pdx.edu

http://kapow.cs.pdx.edu/mail

Extra slides

Issuing Challenges
• Example HTML content on disk

• Javascript solver

<INPUT TYPE='button' VALUE='Submit'
AA=13F75ABE24C
NN=A2972AACCC37BE6F6BF5CA01282B
TT=1048576 ONCLICK='Solve(this);' >

while (tag.cnt < tag.tt) {
squareMod_(tag.a,tag.n);
tag.cnt += 1;

}
// Update the tag to indicate success and POST the form.
tag.A = bigInt2str(tag.a,16);
document.getElementById("answer").value = tag.A;
document.getElementById("do").value = "submit";
document.forms[1].submit();

Sometimes Not Even A Hard Problem
• Poor homebrew CAPTCHAs

• eg. Scranton Times Tribune
“Sum the two flashing numbers: ”

• Small biased solution space

• Trivial character isolation

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Solution

Fr
eq

ue
nc

y

+

... Scripted in 15 Minutes
• Test pixel color at fixed locations

wget $1 -O temp.gif
giftopnm -image=all temp.gif > temp.ppm
./solve

int main(int argc, char *argv[]) {
FILE *fp = fopen("temp.ppm", "rb");
unsigned char buf[81028];
fread(buf, 81028, 1, fp);
int answer = 0;
#define t(x,v) if ((row[((x)*3)] < 240)||\

(row[((x)*3)+1] < 240)||\
(row[((x)*3)+2] < 240)) answer += v

unsigned char *row = &(buf[14 + (30*270*3)]);
t(44, 1); t(72, 2); t(100, 3); t(123, 4); t(149, 5);
t(162, 6); t(193, 7); t(213, 8); t(243, 9);

row = &(buf[28 + (80*270*3)]);
t(44, 1); t(72, 2); t(100, 3); t(123, 4); t(149, 5);
t(162, 6); t(193, 7); t(213, 8); t(243, 9);
printf("CAPTCHA answer: %d\n", answer);

}

Addressing economics
• How do you construct a pricing system that works?

• What is the cost of unattended (idle) CPU cycles?
• Can costs be controlled to create sufficient disincentives for

botnets of 20,000 idle machines?
• How much is it worth to keep bots hidden?
• How do you cope with price limits to legitimate users?

