Reducing Malicious Traffic With IP Puzzles

Ed Kaiser, Wu-chang Feng, Wu-chi Feng, Antoine Luu

Motivation

Arrgh! There is so much bad traffic on the internet! DoS attacks • Port scans • Spam e-mail • Game cheaters • Worms • Hacking

Question: What can be done?

Answer: Make clients accountable for their behavior by using a mechanism for punishing them if they behave badly.

Client puzzles offer an ideal punishment mechanism:

- Easy to assign punishment
- Can make punishment arbitrarily difficult
- False positives degrade but do not deny service

Other work secures individual protocol vulnerabilities, however the most effective solution should protect all network traffic; thus it must be placed in the IP layer.

Our approach:

IP layer client puzzles

Challenges

Flexible Deployment

• Puzzle issuers at arbitrary network locations

Minimal Overhead

- Puzzles can be generated at line speed
- Constant state at the puzzle issuer
- Minimal packet expansion

Tamper Resistance

- Replay attacks
- Spoofing attacks
- Work ahead attacks

Support for Real Time Apps

- Online games
- Streaming media

Protocol Extensions

Puzzle Protocol

Client	Client Cookie		Issuer
Client Nonce Cache	Clie	Client Cookie, Server Cookie, F, Puzzle	
	Cli	ent Cookie, Server Cookie, Answer	Nonce Cache
Protocol Fi		Description	
Client Cookie		TS_{c}, N_{c}	
Server Cookie Puzzle		TS _s , TŠ _m , TS _e , h(F, TS _c , N _c , TS _s , N _s , TS _m , TS _e) Difficulty, Puzzle Parameters	
Answer		Puzzle Answer	
TS		Client Logical Timestamp	
N		Client Nonce	
TŠ _s		Issuer Logical Timestamp	
N _s		Issuer Nonce	
F		Flow Identifier	
TS _m		Puzzle Maturity Time	
TS _e		Puzzle Expiry Time	
h()		Hash Message Authentication Code (HIMAC)

- Keyed HMAC; h()
- high entropy random number generator; rand()

Creating the Puzzle:

- 1) Answer +rand()
 - 2) Hint Answer (*rand*() mod Difficulty)
 3) Puzzle Hash Answer)
- 4) discard the Answer

Solving the Puzzle:

- 1) Search Value +Hint
- 2) if h(Search Value) = Puzzle Hash Answer +Search Value
- 3) Search Value *Search Value + 1
- 4) go to step 2

- **Puzzle Parameters (variable length)**
- Type = 26 Length **IP** Options Control **Client Nonce Client Timestamp Answer**: **Issuer Timestamp** Maturity Time **Expiry Time** Hash of Parameters and Secrets Puzzle Answer (variable length)

1

2

3

5

7

8

tcpdump: listening on eth0 20:54:05.570461 dragon.32803 > monkey.22: S 20:54:05.570644 monkey > dragon: icmp: type-#38 20:54:05.570679 dragon.32803 > monkey.22: S 20:54:05.570826 monkey.22 > dragon.32803: S 20:54:05.570853 dragon.32803 > monkey.22: . 20:54:05.572148 monkey.22 > dragon.32803: P 20:54:05.572190 dragon.32803 > monkey.22: . 20:54:05.572317 dragon.32803 > monkey.22: P 20:54:05.572445 monkey.22 > dragon.32803: .

Performance

Constant State at Issuer

Fast Issuer

- creation: 2 random numbers and 2 hashes
- verification: 1 hash

Minimal Overhead

• puzzle is 51 bytes; answer is 26 bytes

Fine Grain Difficulty Control • can linearly increment puzzle difficulty

• 1.8GHz Intel Xeon machines on Gigabit switch

Issuer: validate and create puzzles at 182K packets/s Client: solve min-difficulty puzzles at 130K packets/s

Adjusting the difficulty of IP Puzzles can force port scans to take a selectively long time to complete.

Future Work

Reputation-Based Networking

- Keep interaction history about clients
- Determine their reputability
- Use IP Puzzles to punish clients who are bad
- Share knowledge with other IP Puzzle firewalls

Publicly Auditable Puzzles

 Puzzle answers can be independently verified intermediate IP Puzzle routers by Answers can indicate amount of work done

Puzzles With Useful Answers

• Puzzle algorithms where the answers provide useful computation for the puzzle issuer • Puzzle answer must be easily verifiable

IXP Implementation

