
Protecting the Web with Transparent Proof-of-Work

Ed Kaiser, Wu-chang Feng

Supported by:

Motivation
• Unwanted web traffic is everywhere

– Denial of Service
– Comment spam
– Click fraud
– Ticket robots
– Fake web account signup
– Duplicate on-line voting

• Observation
– Most attacks are automated

CAPTCHAs to the rescue!
• Use a hard AI problem for security

– Force users to solve a problem that is hard for a
computer, but easy for a human

– Turing test that does not require special client
software

• Widely used
– Google
– Microsoft Live/Passport/Hotmail
– Yahoo!
– phpBB

CAPTCHA Problem #1
• User-interface problem

– Inaccessible to visually impaired
– Some inaccessible to normal users

– Designed with several attempts in mind
• frustrating, annoying, aesthetically unappealing

experience
• not suitable for frequent transactions

Blogger Facebook TicketMaster

CAPTCHA Problem #2
• Adversaries solving the hard AI problem

– Improvements to OCR erodes effectiveness
– Examples

• Yahoo! broken 1/2008
• Windows Live/Passport, Google reported broken 2/2008
• PWNtcha CAPTCHA solving library

CAPTCHA Problem #3
• Economics broken

– Fixed workload priced at 10 seconds of human time
• Outsourced for under 1¢ per CAPTCHA

– CAPTCHA pricing does not work
• When adversary resources are vastly greater than legitimate ones
• When value of what is being protected is more than 1¢

CAPTCHA Problem #3
• Example

Need a variable workload to price out adversaries!

Proof-of-Work (PoW)
• Alternative to CAPTCHA

– Clients solve a computational puzzle to get access

• Addresses CAPTCHA problems
– No user interface issues
– Adversary must solve a hard cryptographic problem
– Adjustable difficulty that treats CPU cycles as

currency

But…
• Landscape littered with unused PoW schemes!

– Hash cash, TLS puzzles, TCP puzzles
– IP puzzles, Public puzzles (two of our own stinkers)

• Why?
– Introduces a big problem CAPTCHA does not
– Forces changes to network protocols and software
– Client must install PoW software to participate

Our approach: mod_kaPoW
• Provide benefits of PoW without changes to client

– Apache module
• Dynamically embedds PoW with client-specific difficulty into URLs
• Attaches JavaScript solver for client to run
• Verifies subsequent solutions

– Client browser
• Runs JavaScript solver to calculate answers
• Attaches answers to subsequent URL requests

– No protocol changes
– No web browser changes
– No web content changes

mod_kaPoW architecture

URL w/ valid PoW

mo
d_
ka
Po
W

Clients

Apache 2.0

URL w/ invalid PoW

Error Page

Content
Solution
Script

Error
Page

Content

mod_kaPoW puzzle
• Based on targeted hash reversal

• Server attaches puzzle to embedded links
– Nc = client-specific server-generated nonce
– Dc = client-specific server-assigned difficulty

• Client JavaScript solver finds A such that
SHA1(Nc || URL || A) = 0 mod Dc

– Brute-force search requiring Dc SHA1 hashes on
average to find

– Attaches Nc, Dc, and A to URL to access content

Wu-chang Feng, Ed Kaiser, “The Case for Public Work”
Global Internet 2007

Example
• Original content on disk

• Content after Apache embedding of PoW

– JavaScript solver kaPoW.js
• Registers “onLoad” and “onClick” event handlers
• Implements SHA1 to solve PoWs of URLs given puzzle parameters

– “onLoad” for embedded images
– “onClick” for embedded links

Demo

Overhead
• Negligible for dynamic page
• Small fixed amount for static page
• Fast verification and rejection

Thwarting DoS
• Simple experiment

– Good client at 1 request per second
– 6 flooding adversaries attack at 35 second mark
– Counting Bloom Filter used to track usage and set difficulty

What next?
• Towards a computational approach for protecting

Internet applications
• Building applications around kaPoW

– Treat CPU cycles as currency and create virtual markets
– Use cycles to create incentives for proper behavior
– Force adversaries (spammers, ticket brokers, hackers) to

“pay” for access
• A tax paid to Intel!

Tackling comment spam
• Content-based difficulties

– Force “spammy” comments to use a large amount of cycles
– Send posts through SpamAssassin and use its score to

determine puzzle difficulty
• Weighted voting

– Allow users to “vote” on comments with their CPU cycles
– Promote comments with the most committed cycles

• Community-assisted pricing
– Allow users police the price for posting for each other based

on prior posts
– Use “karma” (Slashdot) to determine CPU cycles a

particular user needs to post

Tackling click fraud
• Increase click costs on suspected fraud

– Apply credit-card fraud techniques to detect possible fraud
– Increase CPU tax on ad click-throughs that are suspicious

• Use prior history of clicks to prevent Auction Experts employees
from “clicking-through” Google ads

Tackling ticket robots
• Increase cost of “purchase” link geographically

– Use MaxMind/GeoIP to determine where clicks originate
– Increase costs on those far away
– Forces ticket robots to be located in each city

• Much better economics than $0.01 CAPTCHAs!

Roadmap
• Adding to LAMP stacks

– Linux, Apache, MySQL, PHP/Perl
– Allowing applications to control difficulty
– phpBB, WordPress, Twiki, Drupal, guestbooks

• Using with CAPTCHA
– Frequent transactions protected with kaPoW
– Infrequent transactions protected by both

A brief plug on AMT work
• CS 576: Detecting Cheating in On-line Games

– Repeating last year’s successful offering
– Using Intel’s AMT as an undetectable debugger
– What exploits used by cheat software could be reliably

measured by the AMT?

• NSF FIND, GENI
– Clean-slate design of the Internet
– Building Future Networks Around Ubiquitous Use of AMTs

• Trusted Third Parties make many security protocols easy
• Can TPMs acting as TTPs fix problems in network protocol design?
• An interesting academic exercise (for now)

Questions?

http://kapow.cs.pdx.edu

Extra slides

Addressing economics
• How do you construct a pricing system that works?

– What is the cost of unattended (idle) CPU cycles?
– Can costs be controlled to create sufficient disincentives for

botnets of 20,000 idle machines?
– How much is it worth to keep bots hidden?
– How do you cope with price limits to legitimate users?

