
The Design and Implementation of Network
Puzzles

Wu-chang Feng Ed Kaiser Wu-chi Feng Antoine Luu
Portland State University ENSEIRB

{wuchang, edkaiser, wuchi}@cs.pdx.edu antoine.luu@free.fr

Abstract— Client puzzles have been proposed in a num-
ber of protocols as a mechanism for mitigating the effects of
distributed denial of service (DDoS) attacks. In order to pro-
vide protection against simultaneous attacks across a wide
range of applications and protocols, however, such puzzles
must be placed at a layer common to all of them; the net-
work layer. Placing puzzles at the IP layer fundamentally
changes the service paradigm of the Internet, allowing any
device within the network to push load back onto those it is
servicing. An advantage of network layer puzzles over pre-
vious puzzle mechanisms is that they can be applied to all
traffic from malicious clients, making it possible to defend
against arbitrary attacks as well as making previously vol-
untary mechanisms mandatory. In this paper, we outline
goals which must be met for puzzles to be deployed effec-
tively at the network layer. We then describe the design, im-
plementation, and evaluation of a system that meets these
goals by supporting efficient, fine-grained control of puzzles
at the network layer. In particular, we describe modifica-
tions to existing puzzle protocols that allow them to work
at the network layer, a hint-based hash-reversal puzzlethat
allows for the generation and verification of fine-grained
puzzles at line speed in the fast path of high-speed routers,
and an iptables implementation that supports transpar-
ent deployment at arbitrary locations in the network.

I. I NTRODUCTION

The Internet currently carries an enormous amount of
undesirable network communication. This is evidenced
by the growing infestation of worms and viruses such as
Nimda, Code Red, and SQL Slammer [1], [2], [3], recon-
naissance attacks such as port scans, targeted distributed
denial-of-service attacks, and spam. Client puzzles [4],
[5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15]
have been proposed as a mechanism for controlling such
communication. With client puzzles, a server or network

This material is supported in part by the National Science Foundation
under Grant ANI-0230960 and the generous donations of Intel Corpo-
ration. Any opinions, findings, conclusions or recommendations ex-
pressed in this material are those of the authors and do not necessarily
reflect the views of the National Science Foundation or Intel.

being protected generates a cryptographic puzzle that a
client must answer correctly before it is given service.
Such a mechanism gives devices the ability to selectively
push back load to the source of an attack when over-
loaded. While the standard defense for preventing unde-
sirable communication is to apply a binary filter to traffic,
such a defense is difficult to use due to the impact of false
positives and the inability to completely differentiate good
traffic from bad. Client puzzles provide a complementary
weapon to filtering in that they provide an analog control
against traffic that may potentially be deleterious. In con-
trast to filtering, client puzzles also limit an attacker’s abil-
ity to send bad traffic to multiple victims concurrently by
consuming their computational resources.

One of the limitations of current approaches for using
client puzzles is that they can be easily thwarted if an ad-
jacent or underlying protocol does not implement them. In
order to provide reasonable protection across applications,
it has been argued that such a mechanism must be placed
at a layer common to all Internet communication: the IP
layer [15]. The design of the IP layer has been driven by
the “end-to-end principle” [16], a set of guidelines that ar-
gues against putting special-case functions into common
network layers. As a result, only essential functions have
been placed in the network layer while all other functions
have been implemented at the end-points.

Client puzzles provide an essential function that is com-
mon to all applications and should be placed in the IP layer.
The observation that denial-of-service activity can happen
at any layer and only needs to break one link in the end-to-
end chain in order to be successful leads to the “weakest-
link” argument to protocol design:

Put in the common waistline layer functions whose
properties are otherwise destroyed unless implemented
universally across a higher and/or lower layer.

In particular, functions such as congestion control and
DoS prevention require global deployment in order to
be effective. For example, TCP congestion control is
thwarted by UDP flooding and DoS-resistant authentica-
tion protocols are thwarted by IP flooding. Until puzzles
are placed within IP, IP will remain the weakest link.

Motivated by the weakest-link argument, this paper de-
scribes the design and implementation of network layer
puzzles. There are two key properties of our design; a pro-
tocol which supports the issuance of puzzles at a variety of
resource granularities and at any time during the lifetime
of a flow, and a novel fine-grained puzzle mechanism that
can support fast generation in high-speed routers.

Section II describes the design goals for supporting and
deploying puzzles at the network layer. Section III de-
scribes the design of the puzzle protocol. Section IV evalu-
ates our novel puzzle mechanism with respect to a number
of other puzzle mechanisms for use in the network. Sec-
tion V describes and evaluates a Linux-basediptables
implementation that uses IP options and ICMP.

II. GOALS

There are several important goals that must be achieved
in order for client puzzles to be deployed effectively at the
network layer. These goals include:

• Flexible deployment: The protocol must be sufficiently
flexible to support puzzle issuance at arbitrary points in the
network, including at end-hosts, firewalls, and routers.
• Flexible usage: The protocol should support the is-
suance of puzzles at arbitrary resource granularities such
as on a per-host, per-flow, or even per-packet basis. Specif-
ically, it must allow puzzles to be issued at any point dur-
ing the lifetime of a flow.
• Tamper-resistance: The protocol should limit replay at-
tacks over time and space. Puzzle answers should not be
valid indefinitely and should not be usable by other clients.
While the protocol should limit spoofing attacks, a spe-
cific non-goal is strong authentication between the client
and issuer since the issuer may not be the end-host. This
work assumes that the adversary does not lie along the path
from the client to the server (i.e. the adversary cannot read
or modify packets sent between the client and the server).
Such an assumption is reasonable since an adversary that
lies along the path can execute a more effective DoS at-
tack using fewer resources than manipulating puzzles; the
attacker could drop all packets. As a result, the system
should prevent spoofing attacks only from adversaries who
do not lie along the path from the client to the server.
• Efficiency: The protocol and implementation must be
efficient in terms of memory and CPU overhead at the
issuer. Specifically, puzzle generation and verification
should add minimal overhead to network devices in the
worst-case[17] to prevent the puzzle protocol from be-
coming an avenue for denying service. In addition, the
amount of header/packet overhead should be limited to
minimize the effect of reflector attacks [18].

• Minimal application impact: The use of the puzzle
protocol should not break latency-sensitive applications
such as interactive voice, streaming video, and networked
games. Clients who are able and willing to solve puzzles
should be able to run all of their applications seamlessly.

III. PROTOCOLDESIGN

Many of the above goals can be addressed via mech-
anisms described in a variety of previous protocols. This
section describes a basic protocol developed from previous
puzzle work [7], [8], [9], [10], [14], [19] and from TCP
SYN cookies [20], followed by the modifications that are
necessary to allow the protocol to operate at the network
layer. In the remainder of this paper,puzzle serverrefers
to the network device that issues the puzzles, whilepuzzle
client refers to the client that solves the puzzles.

A. Basic Puzzle Protocol

Nc

1. Nc

sc4. P, N , h(A, N)

8. A, h(A, N)s

Ns

6. Check N
7. Solve P to obtain A

c

Client

9. Generate h(A, N)

5. Throw away P and A

3. Calculate h(A, N)
2. Generate P and A

s

s

Server/Issuer

and match to verify A

Protocol Field Description
Nc Client nonce
Ns Server nonce
P Puzzle
A Answer
h() Cryptographic hash function

Fig. 1. Basic puzzle protocol

Figure 1 shows the basic protocol which supports
constant-state operation at the server and client. The only
state required is a set of randomly-generated, periodically-
updated client nonces (Nc) and server nonces (Ns). In or-
der to get the client to solve a puzzle, a server must echo
a client nonce correctly, thus preventing spoofing attacks
from third parties that are not along the path of commu-
nication. Client nonces also prevent a server from con-
tinually issuing puzzles indefinitely to a client that is no
longer requesting service. Server nonces are kept secret
and are used to efficiently verify answers. Since attacks
on pseudo-random number generators are possible, both
client and server nonces should be generated using a “true”
random number generator [21], [22], [23], [24].

The protocol initially starts with a packet stream. The
client attaches a client nonce (Nc) to each packet it for-
wards. Upon receiving a packet that triggers the puzzle

mechanism, the server generates a puzzle (P) and answer
(A) as well as a cryptographic hash of the answer and
server nonce (h(A,Ns)). The server returns the client
nonce, puzzle, and hash. Generating a cryptographic hash
(i.e. SHA1) of the answer with a sufficiently random
nonce allows the the server to discard everything except
the nonce, while retaining the ability to verify correct an-
swers. Clients check the echoed client nonce against its set
of nonces in order to verify that it is still valid before solv-
ing the puzzle. After solving the puzzle, the client attaches
the answer and hash to all subsequent packets to the server.
To verify answers sent by the client, all the server must do
is hash the answer with the server nonce and check if the
generated hash matches the one echoed by the client. If
it does, the correct answer has been given and the server
accepts the packet.

B. Protocol Modifications for IP

While the basic protocol has many salient features, a
few issues remain to be addressed before puzzles are fea-
sible at the IP layer. These include:

• Efficient nonce verification: A problem with using a
set of nonces is the memory overhead of a nonce lookup.
Since many network devices are memory-bound and high-
speed memory is prohibitively expensive [25], reducing
the number of memory accesses is critical. To support ef-
ficient nonce lookup at both the client and server, logical
timestamps (TSc andTSs) are used to directly index into
the nonce table. With them, nonce verification requires
only a single memory access.
• Strict control of answer replay between and within flows:
Solving a single puzzle should not give clients unlimited
access. For example, in the case of port scanning tools
(such asscanrand , nmap, andnessus), solving a sin-
gle puzzle should not allow connections to all other ports
on a host to occur without additional puzzles being solved.
To address this, a flow identifier (F) can be included in
the hash to bind puzzles and answers to particular pack-
ets and flows. Upon receiving an answer, the server uses
the packet’s flow information when verifying the answer.
For example, if the server wishes to implement per-flow
puzzles,F can include the connection identifier 5-tuple
(source IP, destination IP, source port, destination port,
protocol), thus forcing the client to solve a new puzzle for
each new connection. To allow the client to know which
flow to bind puzzle answers to, the flow identifier must be
attached to the puzzle.
• Strict control of answer replay over time: Network puz-
zles can potentially provide routers with a mechanism for
performing mandatory congestion control. In order to
finely control resource usage over short periods of time,

however, the server may require puzzles to expire at a
much finer frequency than its nonce is changed. To support
this, a puzzle expiration time (Te) similar to those used in
client authentication protocols [8], [19], [26], [27] can be
added to the protocol. The puzzle expiration time enables
the server to force clients to continually solve new puz-
zles without forcing the server to change its nonce at the
same rate. The server nonce needs only be updated at a
frequency that would thwart brute-force attacks on it.
• Supporting latency sensitive applications: Forcing a
client to stop and solve a puzzle before continuing ser-
vice can adversely impact the usability of interactive and
streaming applications. It should be possible to issue puz-
zles ahead of time, allowing clients to solve them before-
hand so that they can smoothly transition between two puz-
zle answers and continue service uninterrupted. In order
to support this mode of operation, a puzzle maturity time
(Tm) is included in the protocol. In steady state, the client
uses a pre-calculated answer to a puzzle that has matured
while calculating the solution to the next, maturing puzzle.

C. Full Puzzle Protocol

table
Client nonce

Client cookie
Client Server/Issuer

table
Server nonceClient cookie, Server cookie, A

Client cookie, Server cookie, P, F

Protocol Field Description
Client cookie Nc, TSc

Server cookie TSs, Tm, Te, h(A, Ns, TSs, Tm, Te, F)

P Puzzle and parameters (hints, difficulty)
F Flow identifier
A Answer
Nc Client nonce
TSc Client timestamp
Ns Server nonce
TSs Server timestamp
Tm Puzzle maturity time
Te Puzzle expiry time
h() Cryptographic hash function

Fig. 2. Full puzzle protocol

Figure 2 shows the final protocol with all of the proto-
col components. The client attaches a cookie consisting
of its nonce and a timestamp. A server requiring puz-
zles generates a puzzle and answer along with a hash of
the answer, server nonce, puzzle expiration time, puzzle
maturity time, and flow identifier. The server then sends
back to the client: the client cookie, puzzle and its param-
eters, flow identifier, and a server cookie consisting of the
above hash, server timestamp, puzzle maturity and expi-

ration times. The client, upon receiving the puzzle, cal-
culates the solution and sends back the answer along with
the server cookie. Upon receipt of this message, the server
uses the server timestamp to index into the server nonce
table to obtain the server nonce, checks that the nonce has
not expired, and verifies the answer by regenerating the
hash and comparing it against what the client sent.

IV. PUZZLE MECHANISM SELECTION

While the puzzle protocol facilitates the efficient de-
ployment of puzzles at the network layer, the puzzles
themselves must be appropriately designed for use with
our protocol. In this section, we examine the trade-offs
when selecting a puzzle mechanism for use in the network
layer. In particular, we focus on two properties:efficiency
andresolution. In terms of efficiency, it must be possible
to generate puzzles and verify answers on the order of mi-
croseconds to support large streams of packets from a vast
number of clients (i.e. high-speed routers must be able
to perform puzzle generation and verification in the fast
path). In terms of resolution, it must be possible to finely
control the amount of work given to a client to maintain
high utilization. Puzzles that are too coarse lead to re-
source underutilization similar to that seen with TCP at
low levels of multiplexing.

In this section, we analyze three existing puzzle mecha-
nisms: time-lock puzzles, hash-reversal puzzles, and mul-
tiple hash-reversal puzzles. We introducehint-based hash-
reversal puzzlesas an alternative that is best suited for the
network layer and can be implemented directly in network
devices. Finally, we compare the four mechanisms.

A. Time-Lock Puzzles

Time-lock puzzles are based on the notion that a client
must spend a particular amount of computation time per-
forming repeated squaring; a sequential process that forces
the client to compute in a tight loop for a controllable
amount of time [28]. With time-lock puzzles, the server
estimates the number of squaring operations a client can
perform per second (S), and the amount of time it wants
a client to spend solving the puzzle (T). It calculates the
number of squarings that must be performed to solve the
puzzle, t = T × S, and forces the client to calculate

b = a2t
(mod n). Time-lock puzzles are an attractive puz-

zle type since they provide an exact, fixed amount of work.
Time-lock puzzle generation requires two large prime

numbersp andq, which take significant server resources
to generate. Unfortunately this means time-lock puzzles
cannot be efficiently generated on the order of microsec-
onds.

B. Hash-Reversal Puzzles

Another puzzle approach is to force clients to reverse
cryptographic hashes calculated at the server given the
original random input withn bits erased [7]. In order to
vary the difficulty level,n is either increased or decreased.
The client performs a brute-force search on the erased bits
by hashing each pattern in the space until it finds the an-
swer. Since a single hash can be performed quickly and is
compact, puzzle generation time and size are significantly
less than those of time-lock puzzles. Also, many network
devices have hardware support for cryptographic hashing
and random number generation, making it possible to gen-
erate these puzzles at line speed.

Hash-reversal puzzles have a few disadvantages. The
first is that their solution time is probabilistic in nature
and is based on how lucky the client is in its search. A
search could terminate after the first try or after the2n-
th try. When applied over a large number of puzzles (as
would be the case for network puzzles), the average dif-
ficulty will converge to the desired level, making this an
insignificant disadvantage. A second disadvantage is that
the puzzle can be parallelized by splitting the search range
up amongst a number of different systems. This disadvan-
tage is also insignificant since the same systems could be
used directly in a distributed denial-of-service attack to the
same effect. The only significant disadvantage is that ad-
jacent difficulties vary by a factor of two. Solving ann
bit puzzle is twice as hard as solving an(n− 1) bit puzzle.
Due to this coarseness, it is hard to establish an appropriate
hash-reversal puzzle difficulty that maximizes utilization.

C. Multiple Hash-Reversal Puzzles

Dividing the puzzle into multiple smaller hash-reversal
puzzles as proposed by Juels [7] can mitigate the disadvan-
tages of hash-reversal puzzles. The chances of being lucky
on each sub-puzzle becomes small, decreasing the vari-
ance in total solution time. Furthermore, using sub-puzzles
of varying difficulty allows finer control of the overall puz-
zle difficulty. For example, if the overall difficulty requires
(210+28) hashes worth of work, sub-puzzles of 10-bits and
8-bits could be sent to the client instead of sending either
a 10-bit puzzle or an 11-bit puzzle. Figure 3 demonstrates
the puzzle difficulties supported as a function of the total
number of bits used across all sub-puzzles using one, three,
and six sub-puzzles. The figure shows a fine resolution at
low difficulties, with resolution exponentially worsening
as the difficulty linearly increases.

While multiple sub-puzzles can improve difficulty res-
olution, it does so via a linear increase in generation time
and puzzle size. In order to finely control the resolution
at large difficulties, a puzzle must consist of many sub-

puzzles. To maintain fine-grained control across heavier
workloads with faster client CPU speeds, the number of
sub-puzzles must increase. This prevents multiple hash-
reversal puzzles from being a viable puzzle mechanism.

Fig. 3. Puzzle difficulties supported using single and multiple
hash-reversal puzzles

D. Hint-Based Hash-Reversal Puzzles

We propose a novel mechanism for delivering fine-
grained puzzles in which a single hash-reversal puzzle is
given to the client along with a hint that gives the client an
idea of where the answer lies. The hint is a single value
that is near the answer and solves the coarseness problem
of hash-reversal puzzles. To adjust the difficulty of the
puzzle, the accuracy of the hint is increased or decreased.
For example, suppose a randomly generated numberx is
used as the input to the hashh(x). To generate a puzzle
with O(D) difficulty, the issuer passes the client the hash
and a hint,x−u(0, D). Whereu(0, D) is a randomly cho-
sen number uniformly distributed between0 andD. The
client then starts at the hint and searches the range linearly
for the answer. The number of hashes done by the client to
find x varies probabilistically but the expected value isD

2 .

E. Puzzle Comparison

To compare the puzzle types, Table I lists the properties
of each puzzle type. Unit work (w) describes the basic op-
eration the client must repeatedly perform to solve the puz-
zle and the average amount of time the operation requires
on our evaluation system (an unloaded 1.8GHz Pentium
4). Range describes the range of difficulties supported by
the puzzle based onn, the number of bits in the secret.
The mean and maximum resolution describe the spacing
between adjacent puzzle difficulties.

As the table shows, time-lock puzzles can be given at
a very fine resolution all the way up to the maximum dif-

ficulty level which is bounded by a brute-force search on
the server’s secret nonce (given ann bit nonce, the maxi-
mum puzzle difficulty isO(2n)). In contrast hash-reversal
puzzles have much coarser resolution, especially at higher
difficulty levels. Multiple hash-reversal puzzles can alle-
viate the resolution problem based onk, the number of
n-bit sub-puzzles. While the derivation is out of the scope
of this paper, it can be shown that the number of distinct
difficulty levels is a closed function ofk andn, as shown
in the table. Hint-based hash-reversal puzzles have a very
fine resolution comparable to that of time-lock puzzles.

Fig. 4. Puzzle generation versus solution time

Figure 4 shows the generation time of each puzzle type
as a function of the solution time across a large range of
difficulty levels. Each data point represents an average of
100 different puzzles which were generated and solved on
our evaluation system. As the figure shows, the generation
time for time-lock puzzles is several orders of magnitude
greater than that of any of the hash-reversal puzzle types.

F. Answer Verification

The answer verification mechanism is the same across
all puzzle types; cookies are used to support constant-state
verification of answers. Clients must present their solu-
tion with the server cookie which was attached to the puz-
zle. To verify correctness, the server uses the timestamp
to index into the nonce table and obtain the correspond-
ing nonce, performs a hash of the client’s solution with the
nonce, and checks to see if it matches the echoed server
cookie. These operations are simple, allowing the server
to verify puzzles very quickly. Across 1000 puzzle veri-
fications on our evaluation system, the average time was
1.24µs (i.e. > 800,000 per second).

Puzzle Type Unit Work (w) Range Mean Resolution Max Resolution

Time-Lock squaring (0.75µs) O(2n) w w

Single Hash-Reversal hash (1.09µs) w ∗ 2n w ∗ 2n

n w ∗ 2n−1

Multiple Hash-Reversal hash (1.09µs) w ∗ k ∗ 2n w∗k∗2n∑k

i=0
(n−i)

(
n

i

) , k ≤ n w ∗ 2n−1

w∗k∗2n

(k−n+1)2n+
∑n−1

i=0
(n−i)

(
n

i

) , k > n

Hint-Based Hash-Reversal hash (1.09µs) w ∗ 2n w w

TABLE I

PUZZLE SOLUTION CHARACTERISTICS

V. I MPLEMENTATION

To demonstrate the feasibility of our protocol and puz-
zle algorithm, we implemented our design in Linux using
netfilter andiptables [29]. This section describes
the details of our implementation, provides an example de-
ployment scenario, and evaluates the implementation.

A. Details

The implementation uses the Linux kernel modules
netfilter and iptables to provide hooks and sup-
port for modifying packets in the kernel. Our system im-
plements the protocol using two modules: a puzzle issuing
firewall and a puzzle solving proxy. We found that for
thin clients that do not possess the computational power
required to solve the puzzles, it is possible for an admin-
istrative domain to set up a proxy machine to solve the
puzzles without violating the protocol or its intentions.

There are two possible and acceptable scenarios where
a proxy will become a bottleneck. The first is that the
proxy is working on behalf of clients who are behaving
maliciously and are being issued very difficult puzzles. In
this case it is desirable that the proxy is a bottleneck since
each attacker using the proxy is throttled by the cumulative
difficulty of all puzzles issued to the attackers. Adminis-
trators can fix the bottleneck for legitimate users by dis-
connecting and repairing the machines which are creating
the malicious traffic. The second scenario where a proxy
will become a bottleneck is that the proxy is attempting
to solve puzzles for too many clients. In this case, the ad-
ministrators simply did not allocate an adequete number of
proxies to handle the legitimate users.

The system uses ICMP source quench messages to de-
liver puzzles, and IP options to transmit client cookies and
puzzle answers. Figure 5 shows how the protocol mes-
sages are attached to a packet stream.

The puzzle proxy attaches the client cookie (the IP op-

Need
Puzzle?

Valid
Answer?

Issue
ICMP

Puzzle

Puzzle Firewall

Drop
Packet

Cache
Packet

Add
Cookie to
IP Header

Solve
Puzzle

Resend
Packet

Puzzle Proxy

Add
Answer to
IP Header

Packets
on Flow

Yes

No

Yes

No

Answer
Exists?

Yes

No

Fig. 5. Protocol messages in action

tion shown in Figure 6) to all outgoing packets in a stream
and caches a copy of the latest packet. Upon receiving
packets from a source that requires a mandatory quench,
the puzzle firewall sends a hint-based hash-reversal puz-
zle (the ICMP packet shown in Figure 7) back to the
client. The ICMP puzzle is effectively a mandatory ver-
sion of the pre-existing ICMP source quench [30], where
a client demonstrates it has quenched itself by attaching
correct answers to its subsequent packets. It is important
to know that the puzzle difficulty is a 32-bit unsigned inte-
ger (difficulty ∈ [0, 232]) and a difficulty of0 means that
no puzzles are required. When a puzzle is received by a
puzzle proxy, it verifies the echoed cookie and then solves
the puzzle. After solving the puzzle, the proxy attachs the
answer (the IP option shown in Figure 8) to all future pack-
ets on that flow. The proxy also resends the cached packet
which triggered the puzzle. When the puzzle firewall re-
ceives a packet with an answer it checks the answer before
forwarding the packet. Any time an answer is not valid
(most often due to the answer expiring) the firewall drops
the packet and sends a new puzzle to the client. If the
network drops a puzzle, the next packet on the flow will
trigger another puzzle since it will also be invalid.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type = 25 | Length | Control |
+-+
| Client Timestamp | Client Nonce |
+-+

Fig. 6. Client cookie IP option

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type = 38 | Code | Checksum |
+-+
| Puzzle Type | Length | Control |
+-+
| Client Timestamp | Client Nonce |
+-+
| Issuer Timestamp | Maturity Time |
+-+
| Expiry Time | unused | Protocol |
+-+
| Client IP |
+-+
| Server IP |
+-+
| Client Port | Server Port |
+-+
| Hash of Parameters and Secrets |
+-+
| Puzzle Difficulty |
+-+
| Puzzle Parameters (variable length) |
+-+

Fig. 7. ICMP puzzle

B. Deployment Scenario

To demonstrate how the modules can be used, Figure 9
shows a simple proxy-firewall setup and packet trace. The
client (ak47) behind the proxy initiates two connections
to the destination network being protected by the firewall.
The first connection is to a closed port on a protected server
(mp5:2601), while the second is to a non-existent ma-
chine (10.0.2.123:23). When not using network puz-
zles, the client would simply receive an RST segment in
response to the first connection and receive no response
to the second connection. However, when using network
puzzles, the firewall issues a puzzle for each connection at-
tempt. The proxy, on behalf of the client, must then solve
each puzzle before the client can find out whether or not
the service or machine it is seeking is available.

C. Evaluation

To evaluate our system, we set up a small network of
four clients (acting as their own puzzle solvers) and a sin-
gle server protected by a puzzle firewall connected on a
single VLAN via a Cisco Catalyst 4006 Gigabit switch.
Each client, firewall, and server were dual 1.8GHz Intel
Xeon processors with Gigabit Ethernet interfaces.

As discussed in Section IV the expected number of

hashes to solve a puzzle isdifficulty
2 . The number of hashes

to generate a puzzle is a constant 2 hashes (1 to hash the
answer and 1 to create the issuer cookie), and the number
of hashes to verify a puzzle is a constant 1 hash (to match

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Type = 26 | Length | Control |
+-+
| Client Timestamp | Client Nonce |
+-+
| Issuer Timestamp | Maturity Time |
+-+
| Expiry Time | unused |
+-+
| Hash of Parameters and Secrets |
+-+
| Puzzle Answer |
+-+

Fig. 8. Answer IP option

proxy% iptables −t mangle −A FORWARD −p icmp −icmp−type 38 −j puzClient
proxy% iptables −t mangle −A POSTROUTING −j puzClient

proxy% insmod puzzlenet_mgr.o
proxy% insmod ipt_puzClient.o
proxy% iptables −t mangle −A INPUT −p icmp −icmp−type 38 −j puzClient

Proxy

Client
ak47% telnet mp5 2601
Trying 10.0.2.6...
telnet: Unable to connect to remote host: Connection refused
ak47% telnet 10.0.2.123
Trying 10.0.2.123...

tcpdump trace

firewall% insmod puzzlenet_mgr.o
firewall% insmod ipt_puzServer.o
firewall% iptables −t mangle −A INPUT −j puzServer

Firewall

firewall% iptables −t mangle −A FORWARD −j puzServer

10.0.1.1

ak47

firewallproxy

10.0.1.210.0.0.1 10.0.2.2

mp5

10.0.0.6 10.0.2.6

17:12:53.632566 10.0.1.2 > 10.0.0.6: icmp: type−#38
17:12:56.630212 10.0.0.6.14698 > 10.0.2.6.2601: S

17:12:53.632512 10.0.0.6.14698 > 10.0.2.6.2601: S

17:12:56.630287 10.0.2.6.2601 > 10.0.0.6.14698: R

17:13:05.456542 10.0.1.2 > 10.0.0.6: icmp: type−#38

17:13:14.453935 10.0.0.6.14699 > 10.0.2.123.23: S
17:13:08.454862 10.0.0.6.14699 > 10.0.2.123.23: S

17:13:05.455725 10.0.0.6.14699 > 10.0.2.123.23: S

Fig. 9. Proxy-firewall example

the echoed issuer cookie). To reasonably expect a client
to be doing at least as much work as the issuer, the issuer
should not create puzzles of difficulty less than6.

Throttling effectiveness can be measured by the work
ratio between the puzzle solver and the puzzle issuer. This
can be expressed as solution time

verification time + generation time . Us-

ing a 32-bit unsigneddifficulty ≥ 6, the minimum ratio

is 1 while the maximum ratio is2
31

3 . Since a hash on
the evaluation system takes1.09µs, we expect our fire-
wall to verify a bad answer and generate a new puzzle in
around3 ∗ 1.09µs = 3.27µs. Similarly the maximum dif-
ficulty puzzle would be expected to take1.09µs × 231 =
39.01min to solve.

To measure the rate at which a server can verify and

generate puzzles, the clients were configured to flood the
server with 64-byte UDP packets with invalid answers
as fast as they could. The firewall verified that the an-
swers were invalid and generated a new puzzle for each
invalid answer. The firewall’s peak sustained throughput
over a one minute interval was 182,000 packets per sec-
ond (or 5.49µs to verify and generate). This through-

put (182000packets
s

64B
packet

8b
B

1Gb
1073741824b = 0.087Gbps) is

slightly lower than expected since there is an unavoid-
able (yet relatively small) amount of OS contention for the
CPU. This shows that the throughput of this software im-
plementation is unsuitable for in-network deployment of
puzzle firewalls for all but home networks. However, we
are currently investigating a hardware based implemen-
tation on the IXP2850 which has special hardware hash
units. This device is promising since a hash takes0.094µs
and we anticipate being able to verify and generate puzzles
at Gigabit speeds.

To demonstrate the ability to differentiate between ma-
licious and legitimate clients, we ran another experiment
using the same network configuration, but made one of the
clients non-responsive by having it refuse to answer any
puzzles. A simple controller was implemented to control
the amount of traffic accepted by the firewall. The con-
troller targeted a rate of 150,000 packets per second. If
the number of packets accepted exceeded or fell under-
neath the target, the controller scaled the difficulty based
on the percentage difference. Figure 10 shows the result
of the experiment. After a minute of idling (t = 60sec),
the non-responsive client floods the server with a packet
stream at a rate of around 130,000 packets/sec. As Fig-
ure 10(a) shows, since this is below the target forwarding
rate, the firewall accepts the packets and does not issue
puzzles. After another minute (t = 120sec), the three
“good” clients begin flooding the server, thus driving the
packet rate well beyond 200,000 packets/sec. The firewall
quickly enables puzzles and completely wipes out the non-
responsive client. While the non-responsive client is still
transmitting packets, none of its packets are forwarded by
the firewall. As the figure shows, after a brief oscillation,
the aggregate throughput of accepted packets for the other
three clients remains close to the target rate. Figure 10(b)
shows the puzzle difficulty setting at the firewall through-
out the experiment. As the figure shows, the difficulty re-
mains at 0 (i.e. no puzzles) while the rate of accepted pack-
ets is below the target. As the packet rate increases beyond
the target, the difficulty adapts in order to force the packet
rate back to the targeted level.

A large part of containing Internet worms is slowing
their propogation. Many worms use adaptive port scan-
ning to find new hosts to infect; so by slowing port scans

we can slow the propogation of worms. The deployment
scenario in the previous section indicates that it is possible
to use network puzzles to effectively throttle a port scan.
To evaluate this, we compare the time it takes an efficient
port scanning tool to scan a server not protected by puz-
zles to the time it takes the tool to scan a server protected
by puzzles of various difficulties. The port scanning tool
used wasscanrand , which can scan an entire class B
network in under 4 seconds [31]. Figure 11 shows the re-
sults of this experiment; that a ten-fold increase in puzzle
difficulty results in a ten-fold increase in scanning time.
Without using network puzzles, a scan of 1000 ports took
39ms. At difficulty 100,000 the scan took more than 3
minutes. Extrapolating, puzzles of the maximum difficulty
(232) would force the port scan to take over a month.

Time to Scan Ports

1

10

100

1000

10000

100000

1000000

0 200 400 600 800 1000

Ports Scanned (#)

Ti
m

e
(m

s)

Difficulty 100000
Difficulty 10000
Difficulty 1000
Difficulty 100
Difficulty 10
Difficulty 1
No Puzzles

Fig. 11. Ports scanned over time

VI. D ISCUSSION

A. Related Work

There have been a large number of efforts related to con-
trolling malicious traffic such as denial of service attacks.
One set of approaches focuses on tracing floods back to
their sources via targeted packet injection and intelligent
packet marking [32], [33], [34], [35], [36], [37]. Another
class of approaches is to use pro-active, distributed filter-
ing of packets via direct and indirect methods [38], [39],
[40], [41], [42], [43]. These approaches are complemen-
tary and can be used in conjunction with puzzle-based ap-
proaches.

Cryptographic puzzles themselves were first proposed
by Merkle in public key protocols [5]. Since then, puzzles
have been applied in specific applications such as authen-
tication protocols [6], [9], [19], e-mail protocols [4], [44],
and transport layer protocols [7], [8], [14]. Network layer
puzzles do not preclude the use of higher-layer puzzle pro-

0 60 120 180 240
Time (s)

0

100000

200000

300000
P

ac
ke

ts
 a

llo
w

ed

Good clients (aggregate)
Non−responsive client

0 60 120 180 240
Time (s)

0

1000

2000

3000

4000

5000

D
iff

ic
ul

ty
 (D

)

(a) Packets accepted (b) Puzzle difficulty

Fig. 10. Controlling a non-responsive client

tocols. The IP puzzle semantic of “solve a puzzle before
I forward your packet” provides additional protection on
top of alternative client puzzle protocols where end-host
intervention is required. More importantly, however, is the
fact that the implementation effectively runs at high-speed,
augmenting approaches that rely on some form of network
layer protection to guarantee client access [45].

B. Limitations

There are a few known limitations with the current ap-
proach that we are working to address. These include:

• IP header limitations: The current design and the 40-
byte maximum IP header length allows for only a sin-
gle puzzle answer to be attached on the forward path.
While the IPv6 header allows for any number of headers
to be used for this purpose [46], we are currently examin-
ing IPv4-based mechanisms for supporting multiple puz-
zle answers per packet in case there are multiple puzzle
issuers on an end-to-end path.
• Eavesdropping attacks: The lack of a true authentication
mechanism means that an eavesdropper along the network
path can spoof a puzzle back to the client. For example,
on a wireless network, an eavesdropper can capture pack-
ets passively, capture the client nonces, and send puzzles
back to the victim. While link-layer authentication and
encryption can help, this vulnerability should be carefully
considered before deployment.
• Reflector attacks: Since puzzles consume a non-zero
amount of bandwidth, they can be used as part of a reflec-
tor attack [18]. Adversaries could spoof a particular source
IP address and flood the victim with bogus puzzles. Due
to the compact size of the puzzle and the ability to keep
such attacks out in the network, however, we argue that IP

puzzles do not significantly raise the risk of such attacks
compared to spoofed TCP SYN floods.
• Congestion control: Puzzles can be used to implement
mandatory congestion control. For this to happen, a more
sophisticated controller must be designed that can perform
robustly in a range of environments. While such con-
trollers exist in the “voluntary” domain of TCP congestion
control and active queue management [47], [48], there are
no such equivalents in the puzzle domain yet.
• High-speed router implementation: Since the protocol
and system have been designed with high-speed routers in
mind, we are currently implementing a version of it on the
fast path of Intel’s IXP 2850 network processor [49].
• Targeted difficulty levels: The current implementation
uses a single, adaptive difficulty level for all of the clients
it services. It has been shown that such an approach has
many disadvantages including a clear adverse impact on
legitimate clients [45]. We are augmenting our system us-
ing efficient, high-speed mechanisms [50], [51], [52], [53]
for delivering differential puzzles whose difficulties vary
based on end-to-end, application-driven information [54],
[55], [56]. This work is described in the next sub-section.

C. Future Work: Reputation-Based Networking

The goal of reputation-based networking is to quickly
identify malicious clients and place an extremely large
computational punishment on all of their communication
using network layer puzzles. There is a wealth of locally
observable behavior information that can be used to adap-
tively deliver harder puzzles to clients exhibiting suspi-
cious behavior. For example, intrusion detection systems
(IDS) such as Snort [54] as well as application log files
can clearly identify systems that are being used for unde-

Humans

CERT

Spam
Blacklists

dshield.org

Honeypots

IDS

External Information Sources

WeightsFilters

Intelligent Aggregation

PortsAddresses

Reputation Database

User
Experience

Machine
Rankings

Performance Evaluation

Genetic
Algorithms

Neural
Networks

Adaptation

Bayesian
Filters

Reputation Dissemination

Fig. 12. Managing reputations for network puzzles

sirable purposes. In addition, there is an immense amount
of external information that can be used. For example,
the DShield service [56] exports a database of informa-
tion on which ports are being attacked actively and which
machines are currently being used to launch attacks.

To perform puzzle difficulty management more intelli-
gently, we are currently building aPuzzle Manager: an
intelligent agent that aggregates input from a number of
information sources in order to determine the reputation of
clients and the difficulty of puzzles they must solve to ob-
tain service. Such reputations are then fed into the mech-
anisms used for punishing malicious clients. We envision
that such mechanisms can be used as a form of emergency
response to the onset of large-scale cyber-attacks. Specif-
ically, clients with low global reputations will be forced
to solve more difficult network puzzles before their pack-
ets are routed. Figure 12 outlines the architecture of the
reputation-based system we are constructing. As the figure
shows, in order to keep up with the changing Internet land-
scape, the performance of the system must be continuously
evaluated against system utilization measurements, ma-
chine threat rankings, and user experience reports. Adap-
tation algorithms will be employed in order to use the feed-
back to properly adjust the aggregation functions to max-
imize the system performance. In particular, the system
must continuously learn the reliability of individual infor-
mation sources and adjust the filtering and weighting of
information accordingly.

The more interesting research issues focus on the sur-
vivability of the system; intelligently thwarting the at-
tempts of malicious clients trying to avoid the punishment
mechanisms or subverting the sources of information to
render the system completely inaccurate.

VII. C ONCLUSION

Network puzzles are an elegant mechanism for miti-
gating the effects of undesirable network communication.
This paper has described the design and implementation
of a network layer puzzle protocol and algorithm that can
be used to effectively slow down flooding attacks and port
scanning activity. The system allows for high-speed im-
plementations in the fast path of modern network devices,
can be flexibly deployed, and is resistant against replay and
spoofing attacks.

VIII. A CKNOWLEDGMENTS

We would like to thank Tim Sheard for his initial sug-
gestion of sending hints with puzzles, as well as Mark
Baugher and Fred Baker for their helpful discussions re-
garding the protocol and implementation. We would like
to thank Raj Yavatkar for the generous support which made
this work possible.

REFERENCES

[1] D. Moore, C. Shannon, and J. Brown, “Code-Red: A Case Study
on the Spread and Victims of an Internet Worm,” inInternet Mea-
surement Workshop, November 2002.

[2] S. Staniford, V. Paxson, and N. Weaver, “How to 0wn the Inter-
net in Your Spare Time,” in11th USENIX Security Symposium
(Security ’02), 2002.

[3] CERT, “CERT Advisory CA-2004-02 Email-borne Viruses,”
http://www.cert.org/advisories/CA-2004-02.

html , 2004.
[4] C. Dwork and M. Naor, “Pricing via Processing or Combatting

Junk Mail,” in Crypto, 1992.
[5] R. Merkle, “Secure Communications Over Insecure Channels,”

Communications of the ACM, vol. 21, no. 4, April 1978.
[6] L. von Ahn, M. Blum, N. Hopper, and J. Langford, “CAPTCHA:

Using Hard AI Problems for Security,” inEurocrypt 2003., 2003.
[7] A. Juels and J. Brainard, “Client Puzzles: A Cryptographic De-

fense Against Connection Depletion,” inNDSS, 1999, pp. 151–
165.

[8] D. Dean and A. Stubblefield, “Using Client Puzzles to Protect
TLS,” in 10th Annual USENIX Security Symposium, 2001.

[9] T. Aura, P. Nikander, and J. Leiwo, “DOS-Resistant Authenti-
cation with Client Puzzles,”Lecture Notes in Computer Science,
vol. 2133, 2001.

[10] J. Leiwo, T. Aura, and P. Nikander, “Towards Network Denial of
Service Resistant Protocols,” inSEC, 2000, pp. 301–310.

[11] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and D. Wallach,
“Security for Peer-to-Peer Routing Overlays,” inProceedings of
OSDI, December 2002.

[12] M. Abadi, M. Burrows, M. Manasse, and T. Wobber, “Moderately
Hard, Memory-bound Functions,” 2003.

[13] I. Clarke, O. Sandberg, B. Wiley, and T. Hong, “Freenet: A Dis-
tributed Anonymous Information Storage and Retrieval System,”
Lecture Notes in Computer Science, vol. 2009, pp. 46+, 2001.

[14] X. Wang and M. Reiter, “Defending Against Denial-of-Service

Attacks with Puzzle Auctions,” inIEEE Symposium on Security
and Privacy, 2003.

[15] W. Feng, “The Case for TCP/IP Puzzles,” inACM SIGCOMM
Workshop on Future Directions in Network Architecture (FDNA-
03), Karlsruhe, Germany, August 2003.

[16] J. Saltzer, D. Reed, and D. Clark, “End-To-End Arguments in
System Design,”ACM Transactions on Computer Systems, vol.
2, no. 4, pp. 277–288, November 1984.

[17] S. Crosby and D. Wallach, “Denial of Service via Algorithmic
Complexity Attacks,” inUSENIX Security Symposium, August
2003.

[18] V. Paxson, “An Analysis of Using Reflectors for Distributed
Denial-of-Service Attacks,”Computer Communication Review,
vol. 31, no. 3, July 2001.

[19] W. Aiello, S. Bellovin, M. Blaze, J. Ioannidis, O. Reingold,
R. Canetti, and A. Keromytis, “Efficient, DoS-resistant, Secure
Key Exchange for Internet Protocols,” inConference on Com-
puter and Communications Security, 2002.

[20] D. Bernstein, “SYN Cookies,” http://cr.yp.to/

syncookies.html , 2003.

[21] B. Warner, “EGD: The Entropy Gathering Daemon,”http:

//egd.sourceforge.net , 2002.

[22] W. Aiello, S. Rajagopalan, and R. Venkatesan, “Design of Prac-
tical and Provably Good Random Number Generators,” inACM-
SIAM Symposium on Discrete Algorithms, January 1995.

[23] D. Wagner, “Randomness for Crypto,”http://www.cs.

berkeley.edu/˜daw/rnd/ , 2003.

[24] Intel, “Intel Random Number Generator (RNG),”
http://developer.intel.com/design/security/

rng/rngppr.htm , 2003.

[25] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb, “Building
a Robust Network-Processor-Based Router,” inProceedings of
ACM SOSP, October 2001.

[26] T. Dierks and C. Allen, “The TLS Protocol Version 1.0,”RFC
2246, January 1999.

[27] K. Fu, E. Sit, K. Smith, and N. Feamster, “Dos and Don’ts of
Client Authentication on the Web,” inUSENIX Security Sympo-
sium, August 2001.

[28] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock Puzzles
and Timed-release Crypto,” MIT/LCS/TR-684, 1996.

[29] netfilter/iptables developers, “netfilter/iptables Project,”http:

//www.netfilter.org .

[30] J. Postel, “Internet Control Message Protocol,”RFC 792,
September 1981.

[31] D. Kaminsky, “Doxpara: Paketto Keiretsu (scanrand),”
http://www.doxpara.com/read.php/code/

paketto.html , 2002.

[32] H. Burch and W. Cheswick, “Tracing Anonymous Packets to
Their Approximate Source,” inUSENIX LISA, December 2000.

[33] S. Savage, D. Wetherall, A. Karlin, and T. Anderson, “Practical
Network Support for IP Traceback,” inSIGCOMM, 2000, pp.
295–306.

[34] A. Snoeren, C. Partridge, L. Sanchez, C. Jones, F. Tchakountio,
S. Kent, and W. Strayer, “Hash-based IP Traceback,” inSIG-
COMM, August 2001.

[35] D. Song and A. Perrig, “Advanced and Authenticated Marking

Schemes for IP Traceback,” inINFOCOM 2001, 2001, pp. 878–
886.

[36] ICMP Traceback Working Group, “ICMP Traceback
(itrace),” http://www.ietf.org/html.charters/

itrace-charter.html , 2002.
[37] A. Yaar, A. Perrig, and D. Song, “Pi: A Path Identification Mech-

anism to Defend Against DDoS Attacks,” inIEEE Symposium on
Security and Privacy, May 2003.

[38] R. Mahajan, S. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and
S. Shenker, “Controlling High Bandwidth Aggregates in the Net-
work,” Computer Communication Review, vol. 32, no. 3, July
2002.

[39] H. Jamjoom and K. Shin, “Persistent Dropping: An Efficient
Control of Traffic Aggregates,” inSIGCOMM, August 2003.

[40] A. Keromytis, V. Misra, and D. Rubenstein, “SOS: Secure Over-
lay Services,” inSIGCOMM, August 2002.

[41] D. Andersen, “Mayday: Distributed Filtering for Internet Ser-
vices,” inUSITS, March 2003.

[42] K. Lakshminarayanan, D. Adkins, A. Perrig, and I. Stoica, “Tam-
ing IP Packet Flooding Attacks,” inHot Topics in Networks
(HotNets-II), 2003.

[43] S. Ioannidis, A. Keromytis, S. Bellovin, and J. Smith, “Imple-
menting a Distributed Firewall,” inACM Conference on Com-
puter and Communications Security, 2000, pp. 190–199.

[44] A. Back, “Hashcash: A Denial of Service Counter-
Measure,” Tech. Rep., Cypherspace, August 2002,http:

//cypherspace.org/hashcash/hashcash.pdf .
[45] V. Gligor, “Guaranteeing Access in Spite of Service-Flooding

Attacks,” inSecurity Protocols Workshop, April 2003.
[46] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6)

Specification,”RFC 2460, December 1998.
[47] Van Jacobson, “Congestion Avoidance and Control,” inProceed-

ings of ACM SIGCOMM, August 1988, pp. 314–329.
[48] S. Floyd and V. Jacobson, “Random Early Detection Gateways for

Congestion Avoidance,”ACM/IEEE Transactions on Networking,
vol. 1, no. 4, pp. 397–413, August 1993.

[49] Intel, “Intel IXP2850 Network Processor,” http:

//www.intel.com/design/network/products/

npfamily/ixp2850.htm , 2003.
[50] D. Lin and R. Morris, “Dynamics of Random Early Detection,”

in Proceedings of ACM SIGCOMM, September 1997.
[51] W. Feng, D. Kandlur, D. Saha, and K. Shin, “Stochastic Fair

Blue: A Queue Management Algorithm for Enforcing Fairness,”
in Proc. of INFOCOM, April 2001.

[52] P. McKenney, “Stochastic Fairness Queueing,” inProceedings of
IEEE INFOCOM, March 1990.

[53] J.L. Rexford, A.G. Greenberg, and F.G. Bonomi, “Hardware-
Efficient Fair Queueing Architecture for High-Speed Networks,”
in Proceedings of INFOCOM, March 1996.

[54] M. Roesch, “Snort - Lightweight Intrusion Detection for Net-
works,” in Proceedings of the 13th Systems Administration Con-
ference (LISA ’99), 1999.

[55] V. Paxson, “Bro: A System for Detecting Network Intruders in
Real-Time,” in10th Annual USENIX Security Symposium, Jan-
uary 1998.

[56] DShield.org, “Distributed Intrusion Detection System,”http:

//www.dshield.org , 2002.

