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Crowd-sourced mobile embedded systems allow people to contribute sensor data, for critical ap-

plications, including transportation, emergency response and eHealth. Data integrity becomes

imperative as malicious participants can launch software and Sybil attacks modifying the sensing
platform and data. To address these attacks, we develop (i) a Trusted Sensing Peripheral (TSP)

enabling collection of high-integrity raw or aggregated data, and participation in applications

requiring additional modalities; and (ii) a Secure Tasking and Aggregation Protocol (STAP) en-
abling aggregation of TSPs trusted readings by untrusted intermediaries, while efficiently detecting

fabricators. Evaluations demonstrate that TSP and STAP are practical and energy-efficient.

Categories and Subject Descriptors: C.2 [Computer Communication Networks]: Computer
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and Embedded Systems; C.4 [Performance of Systems]: Design Studies
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Additional Key Words and Phrases: trust, security, mobile computing, embedded systems, crowd-
sourced sensing, critical systems, data integrity

1. INTRODUCTION

Today, there are over 4 billion mobile phone users in the world; many of whom
use smartphones. These embedded devices, are either equipped with in-built posi-
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tioning, audio, video and other sensors and could potentially interface with other
sensor-equipped devices (eg. automotives and pacemakers). Crowd-sourced sensing
from mobile embedded systems offers an unprecedented opportunity to connect us
through mobile social applications and instrument our world for critical applications
ranging from intelligent transportation[Hull et al. 2006], disaster response, urban
monitoring[Agapie et al. 2008], public safety, public health[Reddy et al. 2007] and
real-time citizen journalism[CNN ]. All that is required then, is for sensor-equipped
mobile devices, to publish readings to Internet portals like SensorMap [Nath et al.
2006] while people go about their everyday lives.

This use of existing mobile communications infrastructure makes crowd-sourced
mobile embedded sensing systems cheaper to deploy than dedicated wireless sensor
networks. Data collected from such systems can improve understanding of local
environments, help shape public policy, facilitate new scientific research or facilitate
large scale clinical studies. However, government and researchers alike will be
reluctant to use the data if they cannot trust its integrity.

This lack of trust would be unfounded if sensed data were infeasible to fabricate,
but that is not the case. The openness of the Internet infrastructure and the poten-
tially critical role of data provide both a massive opportunity and an incentive to
tamper with these data flows. Consider a crowd-sourced traffic navigation system
like Waze [Waze ]. Participants of Waze download a client application on their
smartphones that activates the phone’s internal GPS receiver, and periodically re-
ports their GPS coordinates to Waze. With sufficient user participation, Waze
can provide optimal routes to destinations based on the real-time traffic informa-
tion learned from participants. A malicious participant could easily fool Waze by
modifying the client application to change the GPS coordinates or delay publishing
them. He could launch multiple emulated smartphones on resource-abundant hard-
ware and submit random GPS coordinates. We classify the former as a software
attack and the latter as a Sybil attack [Douceur 2002]. Such data distortion attacks
could be motivated by mischief, personal gain, or malice. For example, a user may
want to make a neighborhood street appear congested when it is not, so others do
not take that route. Although our example considers GPS, the software and Sybil
attacks are applicable to any of the phone’s sensors.

Moreover, a common thread across the crowd-sourced sensing applications is in
shaping data from communication-equipped mobile embedded devices into tools for
understanding the complexity of our physical world and responding to it swiftly,
often working without human intervention. To achieve this transformation, the
massive volumes of data originating from the sensors, actuators and other devices
and flowing into back-end computers must be automatically aggregated and ana-
lyzed for rapid decision-making. In any sophisticated system, such rapid analysis
leverages aggregated data for efficiency; rather than relying on raw data. However,
aggregation is also vulnerable to data fabrication attacks as an aggregator can easily
pollute the aggregate value.

This paper presents a trusted-hardware based sensing platform to combat the
above attacks, enabling crowd-sourced high-integrity data collection, of either raw
or aggregate data. Its contributions are:

—The design and implementation of a Trusted Sensing Peripheral (TSP). The
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TSP is a sensing platform that consists of a Trusted Platform Module (TPM)
[Trusted Computing Group c] and hardware sensors. Our goal is to make the
TSP economically infeasible to emulate or modify without being detected. The
TPM facilitates this by attesting to the authenticity and integrity of the TSP as
well as the sensor data. Successfully verified attestations prove to a data receiver,
such as an online portal, that the data is indeed authentic and was not altered,
either by the TSP or during transit. Experiments show that the TSP is very
energy efficient: it has a projected battery life of over 80 days when collecting,
attesting, and transmitting a temperature sample every 30 seconds.

—An efficient, end-to-end, high-integrity, data aggregation protocol for crowd-sourced
mobile embedded sensing systems. The TSP publishes sensor data to an online
portal via the participant’s mobile device acting as a forwarding proxy. To reduce
the energy expended in transmitting data and the processing overhead at the por-
tal, the mobile proxy has the option of aggregating the TSP’s raw data before
forwarding it. However, the online portal has no way of trusting that the ag-
gregation was performed correctly. To provide aggregation integrity guaratees to
the portal, we developed STAP, a protocol modeled on a bit-commitment scheme
[Chaum et al. 1987; Baughman and Levine 2001]. STAP uses a pseudo-random
challenge-response mechanism that allows a portal to detect a lying proxy; Our
results indicate that by checking only 20% of the aggregates, the portal can
detect a lying proxy within the first six false aggregates received.

—A high-integrity platform that augments legacy mobile devices with trustworthy
sensing. The Trusted Sensing Peripheral (TSP) enables legacy untrustworthy
mobile devices to produce trusted data. Section 6.2 discusses challenges to mak-
ing contemporary sensing-capable phones trustworthy: namely the absence of
proper hardware support, distrust in trusted hardware, and growing exposure to
remote attacks. Besides trustworthy sensing, the TSP provides greater sensing
modalities than commodity mobile devices.

2. RELATED WORK

Existing research on crowd-sourced mobile embedded sensing systems does not
address the data integrity problem the way we define it, namely, “How can a data
portal — receiving data from sensors not under its control — trust that the data is
a true representation of the real-world phenomenon being sensed?”.

Research on traditional sensing, however, does suggest some approaches that
might be adapted to solving the above problem. For example, a reputation-based
framework implemented at the portal could identify and ignore data from sources
with a low reputation [Ganeriwal et al. 2008]. A source is assigned a low repu-
tation as long as it generates outlying data samples when compared to others in
its neighborhood. Note that this approach does not provide protection from Sybil
attacks, where an adversary could create any number of virtual sources and use
them to artificially raise a given source’s reputation. A reputation based system
will also be more effective in detecting faulty sources than malicious ones, reason
being, malicious sources will try to avoid detection by publishing fabricated, but
not necessarily outlying data [Ganeriwal et al. 2008]. Among other issues, reputa-
tion based frameworks require redundant sources of data to detect outliers, and are
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specific to the type of data being collected.

Another approach, also from traditional sensing, involves filtering fabricated data
that is injected into the sensor network [Zhu et al. 2004]. Data that at least t + 1
local sensors don’t agree on, or data coming from unauthentic sensors is considered
fabricated. The system is thus resilient to adversaries that have compromised at
most t sensor nodes. Since each sensor in the network can be authenticated, the
sensor network is resilient to Sybil attacks. However, the assumption is that each
sensor node already shares a key with the authenticator (the base station). This
assumption might be realistic for traditional wireless networked embedded systems,
but is not realistic for crowd-sourced mobile embedded sensing systems where the
data portals and data producers (participants from the crowd) are different au-
tonomous entities. It would be unreasonable to expect that every potential data
portal has a preexisting secret with every potential data producer. The Sybil at-
tack, could thus be launched by a data producer during the time a shared secret is
established with a new data portal. Another disadvantage is that software attacks,
where data is modified after being sensed, can be detected only when less than t+1
nodes have been compromised.

An orthogonal approach, as opposed to those discussed above, and closer to
what is presented in this paper, is for data portals to use systems like Pioneer or
SWATT (SoftWare-based ATTestation) to externally verify the code executing on
a remote data producer’s platform [Seshadri et al. 2005; Seshadri et al. 2004]. With
assurance in the producer’s sensing platform, the portal will be inclined to trust
data from it. Unlike our trusted-hardware approach, both SWATT and Pioneer are
software-based systems that challenge the remote platform to compute a digest of
its memory contents. The digest is computed by traversing the memory in a pseudo-
random fashion as determined by the random challenge. The challenger is expected
to know the memory contents of the remote platform beforehand and can therefore
compute the correct digest independently for verification later in the protocol. A
remote platform could fool the challenger by separately storing the original contents
of the modified portions of memory, allowing it to still provide the correct digest.
However, since the traversal is pseudo-random, the malicious platform cannot know
before hand the order in which the memory will be checked. As a result, the attacker
will have to check each memory access to see if the addresses matches one of the
modified ones. This extra check will cause the digest computation operation to
take longer than expected, causing the challenger to become suspicious. Notice
though, that both SWATT and Pioneer cannot prevent a Sybil attack from an
adversary that has abundant computational resources. The attacker could simulate
the remote platform on more powerful hardware while still meeting the expected
response time. Since the response time of the remote platform is an estimate based
on the hardware configuration and the expected communication latency, SWATT
and Pioneer only provide a probabilistic guarantee of the remote platform’s integrity.
Estimating response times may itself be a daunting task.

More recently, YouProve [Gilbert et al. 2011] studies the question of how to verify
the authenticity of user-modified data. Their focus is on audio and images, rather
than aggregated scalar data. Like our earlier work, their approach explores how
a Trusted Platform Module could be leveraged. Their work assumes the eventual
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Fig. 1. The TSP publishes data via the participant’s mobile device, which can then process the
data, or forward it as is.

availability of a TPM on a smartphone. Unlike us, they do not actually implement
their system using a physical TPM due to the non-availability of TPMs on current
commodity smartphones.

Our protocol is inspired by an approach in traditional sensing called Secure Infor-
mation Aggregation (SIA) [Przydatek et al. 2003]. Most research on fault-tolerant
sensor data aggregation focuses on faults that arise due to the natural data loss
arising from the noise and asynchrony of physical deployments[Denantes et al. 2008;
Sharma et al. 2007]; rather than due to a malicious adversary. SIA does assume a
malicious adversary. However, unlike our approach, SIA assumes that the sensors
are trustworthy and does not provide an implementation of the protocols. Our
framework also makes it easy to incorporate other SIA algorithms that are more
suitable for the respective aggregation function.

3. SYSTEM MODEL AND TRUST RELATIONSHIPS

As Figure 1 shows, the TSP collects sensor data, has the TPM sign it, and forwards
it to the mobile proxy, which either aggregates the raw data or forwards it as
is. The portal does not trust that the TSP is functioning as expected and thus,
requires that the TSP prove its trustworthiness. The portal also does not trust the
mobile proxy to correctly perform the aggregation and expects proof of aggregation
integrity. An aggregation may be incorrectly performed by the mobile proxy if it
does not use inputs from the TSP, or if it uses a different aggregation function
than what is expected by the portal. In either case, once the TSP proves that it
is indeed trustworthy, it assists the portal with establishing aggregation integrity.
The portal is assumed to be trusted by all parties. However, it can prove its true
identity by presenting a public-key certificate signed by a trusted authority. The
certificate can be presented using standard secure communication protocols like
SSL/TLS [openssl.org ].

4. THREAT MODEL

In our system, we consider threats to the proper operation of the TSP and the
mobile proxy.

4.1 Threats to the TSP

Our goal is to prevent or detect software and Sybil attacks [Douceur 2002] against
the TSP. This will ensure that data reported to the portal was not modified in unin-
tended ways by the TSP software, and did not originate from emulated, simulated,
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or fake devices. We considered the following specific threats:

—Software modification. This refers to any modification of the TSP firmware. Such
modifications can be used to compromise the integrity of the data collected by
the sensor. Protecting the TSP from software modification attacks ensures that
the data output is the same as the data collected by the sensors on the TSP.
Thus, preventing software modification also preserves data integrity.

—Sybils. The adversary can have a device that either pretends to be a legitimate
TSP, or creates multiple emulated or simulated TSPs. Each instance of such
a “fake” TSP is called a Sybil [Douceur 2002]. The Sybil attack can only be
successful if the system cannot reliably distinguish between a real and fake TSP.

—Communication Integrity Compromise. A man-in-the-middle can inject, modify,
drop, or replay messages in transit between the TSP and the portal. This includes
any changes made by the mobile proxy to the data it is forwarding, or any changes
made to the data being transmitted between the TSP and the proxy, or between
the proxy and the portal. A successful attack on communication integrity can
result in the publication of false, corrupt or stale data.

4.2 Threats to the Mobile Proxy

The participant’s mobile device serves either as a forwarding proxy for raw data
originating from the TSP, or as a data aggregating proxy when processing the raw
data before sending it to the portal. A malicious participant may modify its mobile
proxy to compromise the integrity of published data. The proxy is not trusted by
the portal or the TSP in any role and poses the following threats to data integrity:

—Communications compromise. The threats posed by a compromised forwarding
proxy are the same as threats to communication integrity between the TSP and
the portal. Addressing communication integrity threats simultaneously addresses
threats from a malicious proxy.

—Malicious data aggregation. When a compromised mobile proxy functions as a
data aggregating proxy, it can fake the aggregate values, drop them, or inject
any new ones. In this scenario, the portal must be able to detect and reject data
from the malicious proxy.

4.3 Threats not Addressed

Although we address some of the most challenging threats to data integrity in
crowd-sourced mobile embedded sensing systems, the following threats, although
important, have not been addressed:

—Availability. A remote adversary may force the TSP or proxy to continuously
receive messages, depleting their battery [Stajano and Anderson 2000]. Or the
mobile proxy may drop all communications between the TSP and the portal.
Such forms of Denial of Service (DoS) attacks are currently not addressed.

—Confidentiality. We primarily address data integrity in crowd-sourced mobile
embedded sensing systems, as such, we rely on other components to provide con-
fidentiality. For example, the channel between the TSP and the mobile proxy (see
Figure 1) can be secured using Bluetooth’s security features [Bluetooth Special
Interest Group 2009; Padgette et al. 2012].
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—Physical Data Poisoning. A participating adversary may alter the very phe-
nomenon being sensed. For example, he could collude with others to drive slowly,
thus, depicting congestion. It is important to note that the TSP necessitates
physical tampering of the phenomenon to publish fabricated data, as opposed to
simple software modification to do the same. We believe this greatly raises the
bar for data poisoning attacks.

—Hardware attacks on the TPM. Since the TPM is the root of trust for our ap-
proach, we assume that it is tamper-proof as claimed, not compromised, and
functioning as expected. This is a reasonable assumption given that simple
yet effective hardware attacks on the TPM, like the timing and reset attacks
have already been addressed [Atmel Corporation ; Trusted Computing Group b].
Furthermore, the most recent attack involving extraction of an obsolete TPM’s
“burned-in” private key took specialized skills, around six months, and costly
equipment worth about 200,000 USD [The H. Security 2010]!

—Privacy The TSP is a sensing device that is carried by paraticipants as they go
about their daily lives. Sensitive data like location information published by the
TSP could compromise the privacy of the participant. As a result, the partici-
pant must trust the portal with their sensitive data. Although mix networks like
Tor [Dingledine et al. 2004] anonymize the origin of data, privacy threats due
to sensitive information (e.g. location) in the data itself still remain. Moreover,
protecting participant privacy while guaranteeing the integrity of the data they
publish is a topic of active research and out of the scope of this paper [Shi et al.
2011; Rastogi and Nath 2010; Popa et al. 2009]. We do, however, acknowledge
the fundamental privacy implications of TPM on hardware and software config-
urations, and believe that our solution works as an opt-in service. The decision
to attest (upload a fidelity certificate, as in YouProve [Gilbert et al. 2011]) is
an explicit choice that remains under the users control. We see our solution as
an opt-in service for users who wish to prove the authenticity of the data they
contribute. Moreover, we believe that the importance of privacy itself (and how
it impacts user participation) differs across users. The University of Cambridge
researchers recently launched EmotionSense [Lathia et al. 2013], which logged
sensitive information like location, acceleration, call time, call duration etc. and
streamed this data to a remote database. Many would think that privacy con-
cerns might stifle the application, but EmotionSense currently has 10,000 active
users and by using opt-in terms of service, has passed the necessary ethical hur-
dles too.

5. THE TRUSTED PLATFORM MODULE

As we discuss in Section 6, the TPM is the root of trust for data authenticity
and platform integrity assurance provided by the TSP. Trust in the TPM stems
from internationally recognized common criteria standards [The Common Crite-
ria Recognition Agreement ]. The TPM is a tamper-proof secure coprocessor that
enables trusted computing principles on commodity computing platforms. It is
housed on the host platform and provides tamper-proof storage for cryptographic
keying material, and platform configuration information. Additionally, it can digi-
tally sign and report the securely stored configuration information, thus indirectly
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attesting to the integrity of the platform. Further, since the digital signatures are
computed using keys protected from extraction, any signed information from the
TPM can be considered authentic once the signature is verified.

A TPM is associated with several credentials, each containing information regard-
ing the TPM or its associated platform, and digitally signed by the entity issuing
the credentials. References to the various TPM credentials (in the form of message
digests) along with the public portion of the TPM’s RSA signing key (AIKpub:
Attestation Identity Key) are included in a final attestation identity credential that
is then signed by a trusted certificate authority. Once presented to remote en-
tities, the successful verification of the attestation identity credential proves that
the specified platform indeed contains a certified TPM and that any digital signa-
tures performed by that TPM (using AIKpriv) can be verified using the included
public signing key. Since the corresponding private key is securely created, stored,
and protected from extraction by the TPM itself, the TPM’s signature cannot be
repudiated.

The TPM also provides load-time platform integrity verification via its platform
attestation feature. However, run-time changes to the platform cannot be directly
captured by the TPM. Section 6.2 discusses the design of our Trusted Sensing
Peripheral (TSP) that inherently resists run-time software attacks. Thus, trust in
the run-time state along with trust in the initial platform configuration transitively
induces trust in the load-time state of the platform, allowing the TSP to use the
TPM solely as a signing authority.

6. DESIGN

In this section, we describe the Trusted Sensing Peripheral (TSP) and the Secure
Tasking and Data Aggregation protocol (STAP).

6.1 Design Assumptions

We assume that the online portal has the TPM’s attestation identity credentials
that contain its public Attestation Identity Key AIKpub, used to verify the TPM’s
signature. For STAP, we assume a secure transmission channel (e.g. the Secure
Sockets Library (SSL)) between the proxy and the portal, and that the portal has
a strong pseudo-random number generator. Our protocol’s security depends on the
assumption that a malicious proxy cannot reliably predict the sequence of random
numbers generated by the portal.

6.2 Design Rationale

Designing a high-integrity sensing platform is not trivial. Especially, when the
platform can potentially be in the physical possession of an adversary. This, by-
definition, is the case with crowd-sourced mobile embedded sensing systems: par-
ticipants carry mobile platforms with built-in sensors that upload data to an online
portal. Although most participants may be honest, one can not ignore that mali-
cious participants may poison the data integrity.

At the least, the portal must be able to detect sensory data tampering, or the
sensing platform must be able to prevent it entirely. Since participation in crowd-
sourced sensing is voluntary, people may register at any time with private hetero-
geneous sensing devices. Thus, the system must be able to detect fake devices or
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prevent their participation.
Cryptographic techniques that detect data tampering across a communication

channel (e.g. message digests) work only if the communicating parties have a
vested interest in protecting the transmitted data. However, in crowd-sourced
mobile embedded sensing systems, one of the parties, namely the data producer,
could very well be the adversary, making it very hard for the portal to discover if
fabricated data was being protected in the first place.

The portal could compare multiple data values produced in the same region and
reject the outliers. However, as discussed later in Section 2, this method may be
effective at detecting outliers, but is counter to the objective of an adversary who
actually wants to avoid detection. Consider again, the example of an adversary
that emulates multiple distinct mobile devices and publishes GPS data to make a
quiet neighborhood street appear congested. This situation will hardly appear to
the system as outlying activity. Furthermore, since the portal cannot distinguish
between real and emulated platforms, this sort of software collusion attack using
multiple Sybil (or fake) identities will go undetected. Other issues with this ap-
proach are the need for redundant data sources in any region, and different outlier
detection mechanisms depending on the type of data being collected.

Consequently, our design takes the prevention approach. Here, the sensing plat-
form itself prevents any modification to the sensed data. We use a trusted third-
party housed on the platform to vouch for the integrity of all the software running
on it. If the portal cannot verify the presence of a trusted third-party on the remote
sensing platform, it can choose not to trust the data emanating from it. Since the
presence of the trusted third-party cannot be cloned or faked, it is impossible for
a sensing platform to appear trustworthy when its not. Our trusted third-party
housed on the sensing platform is the TPM. It forms the root of trust for data and
platform integrity assurances provided by the associated sensing platform.

Recall that the sensing platform in crowd-sourced mobile embedded sensing sys-
tems is usually the participant’s mobile device, which is assumed to already have
existing sensing capabilities (e.g. GPS, accelerometer, microphone). However, our
approach was to build a separate “closed box” high-integrity sensing platform we
now call the Trusted Sensing Peripheral (TSP). Several factors motivated this ap-
proach:

—As Garfinkel et al. stated in their work on a trusted virtualization platform called
Terra [Garfinkel et al. 2003], “The security benefits of starting from scratch on
a “closed box” special-purpose platform can be significant”. They believed, like
us, that an opaque special-purpose platform can more easily protect the integrity
of its contents.

—Providing “closed box” semantics on most commodity mobile devices is not pos-
sible due to the lack of required hardware support and effective protection of
software from run-time attacks. Terra [Garfinkel et al. 2003] provides load-time
application integrity guarantees using the TPM, and strong isolation by running
it inside a virtual machine managed by a Trusted Virtual Machine Monitor. How-
ever, we are not aware of any existing commodity mobile devices equipped with
TPM chips. Further, Terra does not protect software from run-time attacks by
malicious device drivers that have access to the DMA controller. Another sys-
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tem proposed by McCune et al. [McCune et al. 2008], called Flicker, provides a
secure execution environment for a portion of an application’s logic. Besides the
need for a TPM, this approach also requires additional hardware support (like
the SKINIT instruction found on certain AMD processors [Advanced Micro
Devices ], or the GETSEC + SENTER instructions on certain Intel processors
[Intel Corporation ]) to setup the secure execution environment. Flicker provides
protection from DMA attacks, and strong isolation by disabling all interrupts
and debugging support. However, regardless of hardware support, certain prac-
tical limitations remain. Flicker requires that the OS and all associated tasks be
suspended during the time the secure execution environment is active. Given the
high overhead of the SKINIT instruction and the required TPM operation on
a desktop (912.6 msec on a 2.2 GHz AMD Athlon 64-bit Dual Core processor),
it is safe to assume that the situation will be worse on a mobile platform with
users frustratingly noticing their mobile device freeze periodically to allow secure
sensing activities to take place.

—Existing mobile devices with sensing capabilities (e.g. smart phones) are as
exposed and vulnerable as today’s desktops. Our always-on Internet-connected
smartphones are already at risk of being usurped by active botnets [Kelly Jackson
Higgins for Dark Reading ]. A “closed box” sensing platform, such as one without
a connection to the Internet, will make remote attacks on sensory data integrity
more challenging.

—Decoupling trustworthy sensing from trusted computing like we have done with
the TSP will make trustworthy sensing less invasive and encourage its adoption.
Features provided by trusted computing, like TPM-based platform attestation,
have been the topic of much debate. Some like Ross Anderson and Bruce Schneier
have been vocal critics and consider it to be an invasive technology that en-
courages software monopolies, facilitates DRM, and compromises privacy [Bruce
Schneier ; Ross Anderson ]. For example, since it is necessary to verify the in-
tegrity of all software components on a platform to provide integrity assurances
about a single one [Sailer et al. 2004], the verifier would effectively know all about
the platform’s OS and application configuration. Thus, the TPM’s platform at-
testation feature may inadvertently pose a threat to privacy. Isolating the TPM
into the “closed-box” TSP helps alleviate this concern.

—A separate trustworthy sensing device, like our TSP, could expand sensing capa-
bilities. Mobile devices, like smartphones are equipped with only those sensors
that help their functionality (e.g. GPS, microphone, accelerometer). However,
some crowd-sourced sensing applications may require more specialized sensors,
such as smog, dust, or chemical pollutant sensors to measure air quality.

6.3 TSP Architecture

Figure 1 shows the TSP architecture, consisting of a TPM-capable hardware plat-
form with attached sensors. A Bluetooth module allows the TSP to communicate
with an array of mobile devices supporting the technology.

We achieve “closed-box” semantics on the TSP by building it using a special-
purpose Modified Harvard-architecture sensing platform [Francillon and Castelluc-
cia 2008], and permanently disabling features that may compromise its software
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Fig. 2. Secure Tasking and Data Aggregation Protocol (STAP)

integrity. It is widely known, that run-time attacks exploiting memory-related
vulnerabilities with the intent of modifying program instructions, have little or
no chance of success on such platforms [Francillon and Castelluccia 2008]. Such
platforms provide strong physical isolation between executable instructions in pro-
gram memory, and information in data memory. The program memory on such
devices is read-only, and the program counter is not allowed to refer to addresses
in data memory. Consequently, program instructions can neither be changed, nor
be executed from data memory at run-time. All usual methods to reprogram the
TSP — physical or remote — are disabled permanently. Normal communication
methods, like the radio, are also disabled. The only connection between the TSP
and the outside world is via a Bluetooth channel that provides secure encrypted
communication facilities [Bluetooth Special Interest Group 2009; Padgette et al.
2012]. Additionally, the size and format of each STAP packet received via the
Bluetooth channel is verfied before being processed any further. These protections
shield the TSP from a recent permanent code injection attack against Modified
Harvard-architecture platforms [Francillon and Castelluccia 2008].

Given the above protections in place, a physical or remote adversary will not
be able to change the pre-programmed firmware on the TSP. Consequently, the
on-board TPM need only attest to a firmware version identifier on the device when
challenged by a remote entity. Any data sensed by the TSP is signed by the TPM
to guarantee its authenticity and integrity. Trust in the data is induced via trust
in the platform integrity.

6.4 Secure Tasking and Aggregation

Secure tasking involves verifying that the given platform has a TPM (see Section 5),
then challenging it to produce a TPM attestation of the platform’s firmware, then
verifying the attestation is authentic and correctly represents the TSP firmware
(e.g. comparing the respective message digests), and finally scheduling the TSP to
collect, sign, and send data from a subset of its sensors at regular intervals.

To save energy required for data transmissions, and help reduce processing over-
head at the portal, the data producer’s mobile device (the mobile proxy) may choose
to aggregate the raw data from the TSP before forwarding it to the portal. For
example, instead of sending raw GPS coordinates from the TSP every 30 seconds,
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the mobile proxy may send a coarser region covered by those coordinates every five
minutes. The problem is that the portal has no way of knowing if the mobile proxy
is using the right inputs to the aggregation function (i.e. raw data from the TSP)
or if it is even computing the correct aggregation function. What is needed is a
way for the portal to check the integrity of the aggregation.

We have developed STAP (Figure 2), a protocol that allows the portal to detect
if the untrusted mobile proxy is fabricating the aggregates, as opposed to comput-
ing them using the TSP’s signed raw data. Algorithms for checking aggregation
integrity of data orginating from sensors was first addressed by Przydatek el al.
[Przydatek et al. 2003]. Their solution enabled a large remote sensor network to
report aggregtion results that were “close” to the true result. To achieve complete
accuracy, sensor network aggregators would need to send all the raw data input
to the aggregation function. Since the transmission costs were assumed to be pro-
hibitive, an approximation was considered acceptable. However, in our scenario,
the transmission costs between the mobile proxy (the aggregator) and the portal are
not similarly high, so STAP is able to guarantee the accuracy of the aggregation.
In addition, STAP allows the portal to tune the number of aggregation results it
wants to check. This flexibility enables the portal to trade-off resources required
to perform integrity checking with the amount of integrity desired. The following
paragraphs now describe the STAP protocol.

To detect a lying proxy, the portal must know the aggregation function in ad-
vance. This can be done using pre-defined campaigns that specify the data to col-
lect, when to collect that data, and how to aggregate it [Burke et al. 2006; Kapadia
et al. 2008]. Then, during the course of receiving data, the portal pseudo-randomly
requests the mobile proxy for the latest window of signed raw data used to compute
the just received aggregate (the proxy needs to buffer this data). When the portal
receives the raw data from the mobile proxy, it verifies that the TSP signed them,
then recomputes the aggregate using the aggregation function, and finally compares
the computed aggregate with the one already sent. If the comparison fails, the por-
tal can choose to reject further transmissions from this lying proxy. This is similar
to the concept of bit-commitment introduced by Chaum et al. [Chaum et al. 1987]
where one commits to a value before it is checked for correctness.

The pseudo-random challenge forces the mobile proxy to guess when it is safe
to fabricate an aggregate. Eventually, a lying proxy will guess wrong and get
caught. Lying more only causes the proxy to be detected faster, and lying less only
delays that outcome. The following equation represents the expected number of
aggregates E(n) a portal accepts, when challenging aggregates with probability q,
before detecting a proxy lying with probability p.

E(n) =

∞∑
n=1

n× (1 − pq)n−1 × pq (1)

We evaluate STAP in Section 8 and show that the experimental results closely
match the analytical one above.

7. IMPLEMENTATION

In this section, we discuss our TSP prototype and the implementation of STAP.
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Fig. 3. Trusted Sensing Peripheral with a Bluetooth and GPS module.

7.1 Trusted Sensing Peripheral (TSP)

We use the secFleck [Hu et al. 2009] as the foundation of the TSP. The secFleck
is the portion of the TSP consisting of the Atmel TPM chip (based on v1.2 of the
Trusted Computing Group specification [Trusted Computing Group a]), and the
Fleck sensor board (see Figure 3).

The Fleck is a sensing platform with 8 KB of memory and an 8 MHz Atmega
micro controller [Sikka et al. 2007]. It houses the TPM module, and is extensible
with various sensors. The TSP firmware, including the FleckOS, sensor device
drivers, and our application, runs on the Fleck hardware.

Figure 3 shows the TSP. Attached to it, is a Parani-ESD Bluetooth module. The
mobile proxy application communicates with the TSP using a local, intermediary
Python relay service called foslisten. foslisten communicates locally using
TCP sockets, while with the TSP, it uses a serial-over-Bluetooth channel (Figure
4).

7.2 Online Portal

The online portal is responsible for tasking the TSP, verifying the TSP’s platform
integrity and the integrity of any data received from it, requesting the mobile proxy
to aggregate data if necessary, and pseudo-randomly challenging the mobile proxy

Fig. 4. Data producers on the mobile proxy communicate with the TSP via a Python relay service

called ’foslisten’.
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to prove its trustworthiness when aggregated data is received. The portal runs
as a standard multi-threaded TCP server on a 2.2 GHz Intel(R) Core(TM)2 Duo
platform with 1.9 GB of memory running Linux kernel version 2.6.32.10.

7.3 Mobile Proxy

The service running on the mobile proxy is responsible for receiving a task from the
portal, in turn tasking the TSP via the Bluetooth channel using our custom RPC
protocol, retrieving data from the TSP, and forwarding that data to the portal.
The mobile proxy is a Nokia N800 tablet with 128 MB of memory running Linux
kernel version 2.6.21 on an ARMv6 processor. Although we use the N800, a widely
popular tablet, our work is applicable to any smartphone or tablet device.

7.4 Secure Tasking and Aggregation

The details of STAP are shown in Figure 2. Here, we limit our discussion to
how the TSP is tasked. The portal first sends a task description [S, c, t, f ] to the
mobile proxy, where, S is the set of sensors to collect data from, c is the number
of data samples to collect, and t is the time (in seconds) within which to collect
the c samples (sampling interval is thus t/c seconds). S is expressed using a 16-bit
mask, allowing sixteen sensors to be tasked simultaneously with the same sampling
interval. Each set of data samples are reported in an attested response message
signed using AIKpriv (see Figure 4), and can be verified by the portal using AIKpub.
A mobile proxy modifying the task description will be detected when the portal
verifies the one echoed back by the TSP in the first attested response.

8. EVALUATION

We first evaluate the performance of the TSP, and then evaluate STAP in Section
8.2.

8.1 TSP Performance

We analyze the performance of the TSP in terms of time and energy required to
perform and transmit data attestations. Then, we discuss other costs involved in
building the TSP: code size, memory usage, and monetary cost. The TSP runs on
three 1.5 V batteries with a 2500 mAh capacity each, and is configured with two
sensors: an on-board temperature sensor, and an attached GPS sensor (Figure 3).

8.1.1 Timing Measurements. The TSP is made to repeatedly perform and re-
turn forty attestations, each over a set of temperature data samples varying in size
from 2 to 92 bytes at 10 byte intervals. Average time spent performing attestations,
along with the 95% confidence interval, is shown in Table I. The small confidence
interval due to the dominant RSA signature operation that is always performed over
a fixed size SHA-1 digest of the data. Table I also shows the average transmission
time of the signed data samples. As we can see, the TSP can only sample, attest,
and report data at intervals greater than ≈ 2 seconds. This lower limit on sampling
and reporting is more than acceptable for existing crowd-sourced mobile embedded
sensing systems, most of which, require data samples less frequently than that [Hull
et al. 2006; Reddy et al. 2007; Eisenman et al. 2007; Agapie et al. 2008].
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Task Compute Time Transmit Time
(sec) (sec)

Single
Attestation 1.72 (± 0.01) 0.3 (± 0.1)

Table I. Average time required to perform and transmit an attestation.

8.1.2 Energy Measurements. We measured the TSP’s current draw in different
energy states using an oscilloscope with an internal resistance of 10MΩ across a 1Ω
resistor placed in series with the TSP. Table II shows the average current drawn by
the TSP while it was idle, performing attestations, and performing transmissions.

(a) TSP battery life. (b) TSP energy usage.

Fig. 5. TSP Energy Requirements

Using the timing and current draw measurements, we computed the energy con-
sumed by the TSP while collecting, attesting and transmitting a 2 byte sample of
data at various intervals. Figure 5(b) compares energy consumption of the TSP
with the TPM, without any security, and when the TPM’s operations are performed
in software [Hu et al. 2009]. Hardware attestations end up being half as expensive
as those performed in software, because, although they draw more current, they
can be computed much faster. However, the TPM requires three times more energy
than if there were no security at all.

We also computed an estimate of the TSP’s battery life. Figure 5(a) shows that
when tasked with sampling, attesting, and transmitting a 2 byte sample every 30
seconds and remaining idle in-between, the TSP can achieve a battery life of over 80
days. This is quite sufficient for crowd-sourced mobile embedded sensing systems,
where participants will carry and eventually recharge these platforms. Also, notice
that battery life is nearly double than when all security is in software.

Energy State Current Draw
Idle 80 µA
Attesting 50 mA
Transmitting 42 mA

Table II. Average current drawn in various TSP energy states.
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8.1.3 Other Costs. Figure 6 compares compiled code sizes of various software
components running on the TSP. The code size of our application is smaller than
both the TPM library and the FleckOS. Memory (RAM) used by the firmware is
approximately 4.2 KBytes, which is a little over half the available memory (8
KBytes) on the current version of the Fleck. Monetary costs involved are currently
high: the cost of the TSP hardware is approximately 300 USD. The TPM chip itself
is inexpensive, about 6 USD when purchased in large quantities (≥ 1000).These
monetary costs are higher due to the limited scale at which our TSP is currently
produced; with economies of scale we believe that the cost could be brought down
to lower than 50 USD.

Fig. 6. Compiled code size comparison of various software components on the TSP.

8.2 Secure Tasking and Aggregation Protocol

We conducted experiments to answer the following questions about our protocol:
1) How many fabricated aggregate values are accepted by the portal before a lying
mobile proxy is detected? 2) How long does it take for the portal to find a lying
proxy? and, 3) What is the overhead of detection?

In each experiment, the mobile proxy is configured to randomly fabricate (or lie
about) an aggregate with probability ranging between 1/10 to 1/2 (or 10% to 50%
of aggregates). The online portal then pseudo-randomly challenges the integrity
of a received aggregate with the same probabilities. Aggregations are performed
on every 10 two-byte samples of temperature data. The aggregation function f
performed by the proxy is a mean of those samples. An experiment continues until
the portal detects the first fabricated aggregate value. When necessary for clarity,
we omit data points that don’t add significantly to the information conveyed by
the graphs.

Figure 7(a) shows that the portal can quickly and efficiently detect a lying proxy.
While pseudo-randomly challenging only 20% of the aggregates, the malicious proxy
is detected within the first six fabrications received — no matter how much it lies.
The advantage of challenging more than 20% of the aggregates is not significant,
thus, this threshold reasonably trades off the integrity of aggregates with the over-
head of challenging.

Figure 7(c) shows how long it takes the portal to detect the malicious proxy in
terms of the number of aggregates (false or otherwise) accepted before detection.
Not surprisingly, the less a proxy lies the longer it takes to detect it. We also plotted
Equation (1) with the portal’s checking probability q set to 1/5 (or 20% of the
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(a) Damage to data integrity

(b) Overhead of detection (c) Aggregates accepted before detection

Fig. 7. Performance of the secure aggregation protocol STAP

aggregates). It can be seen that the analytical plot closely matches the experimental
one. Notice also, the large drop in aggregates accepted when challenging 20%,
rather than 10% of them.

Figure 7(b) shows the detection overhead in terms of the number of challenges
issued before detecting a lying proxy. Surprisingly, the overhead largely depends
only on how often the proxy lies. Figure 7(c) provides an intuitive explanation:
although the number of aggregates accepted before detection varies significantly,
the number of challenges issued does not. This result works in favor of the portal,
which can now minimize the number of challenges based on factors like reducing
the number of fabrications accepted.

Currently, the portal issues challenges to the proxy uniformly at random. This
is because the protocol is currently designed to be general, work for any applica-
tion or data type, and all data is assumed to be equally important. We believe
that more efficient variants of the STAP protocol can be designed by leveraging
domain-specific knowledge when deciding who, when and how frequently to chal-
lenge in large systems. These decisions can be cast in terms of a Stackleberg security
framework[Korzhyk et al. 2011].

While outside the scope of this paper, we point the readers to recent relevant work
that we believe might be applied fruitfully to our problem. Algorithmically, we be-
lieve that our problem is similar to An et al’s [An et al. 2013] recent work on solving
the problem of optimizing coast guard patrols, given finite patrolling resources and
adversaries that can observe security measures before deciding to attack. An et
al[An et al. 2013] have used Stackelberg Security Games to model the interaction
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between attackers and a security provider. In the Stackelberg security game frame-
work, the security provider (defender) is modeled as the leader and the attacker
is modeled as the follower. An et al find that the optimal defensive strategies to
these games are mixed strategies over different patrolling actions, making optimal
decisions unpredictable to the attacker while accounting for varying importance of
different targets and the strategic behavior of attackers. They model adversaries
using Quantal Response (QR) Theory wherein individuals respond stochastically
in games, selecting non-optimal strategies when the cost of such error decreases.

9. THREAT ANALYSIS

We now revisit our threat model and describe how our system addresses those
threats to the TSP and mobile proxy.

9.1 Threats to the TSP

A majority of the threats are addressed as a consequence of the TPM’s special
capabilities, namely, a sealed private key and the property of being infeasible to
replicate.

—Software modification. Such attacks are mitigated by building the TSP using a
modified harvard-architecture based platform that provides strict isolation be-
tween program and data memory, and permanently disabling all methods that
can possibly alter the TSP’s firmware.

—Sybil attack. The TPM’s sealed private key ties the identity of the TSP (rep-
resented by that key) with the hardware platform. Since the TPM cannot be
cloned, and its private key cannot be extracted, the adversary has no way to
masquerade as a TSP.

—Communications Compromise. The portal can detect modification or injection
of data because an adversary without the TSP cannot fabricate its signatures.
Replay attacks can be detected because each data sample generated by the TSP
has an incremental sequence number.

9.2 Threats to the Mobile Proxy

The portal uses STAP to detect a mobile proxy fabricating aggregates. The key
idea is that a mobile proxy commits to the aggregate value by the very act of
sending it to the portal. The portal then pseudo-randomly verifies the integrity of
that commitment. A lying mobile proxy may be able to publish some fabricated
aggregates (see Figure 7(a)), but will eventually get caught.

10. LIMITATIONS AND FUTURE WORK

We recognize the use of the TPM cannot protect against all failure modes. For
example, sensor measurements may be inherently corrupt, sensors maybe damaged,
or a sensor’s environment may be doctored. It is also likely that not every user has
a Trusted Sensing Peripheral. In this case, the crowd-sourced mobile embedded
sensing systems system could still collect data from untrusted sensing platforms,
but then use the data from trusted peripherals to calibrate or validate the untrusted
data. We plan to address a solution along these lines in future work.
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The types of aggregation functions addressed in this paper work on discrete
windows of data. Thus, calculating metrics like the median would require a different
aggregation protocol. Nonetheless, such a protocol could easily be integrated within
our current framework.

The TSP may duplicate some functionality of in-built smartphone sensors such
as audio and GPS, however, it also enables the addition of a wide range of new
sensors such as CO, CO2, humidity, temperature, seismic, and medical sensors.
For example, carbon monoxide studies in Ghana, Accra used an additional device
attached to the phone [Paulos et al. ]. Furthermore, the TSP can be connected to
a legacy mobile device, as such it is possible to deploy a trustworthy crowd-sourced
sensing application without the cooperation of smartphone OEMs such as Apple or
Nokia.

11. CONCLUSION

This paper presented the design and implementation of a Trusted Sensing Periph-
eral (TSP) to provide data authenticity and integrity for crowd-sourced mobile
embedded sensing systems. The TSP has built-in sensors, and a Trusted Platform
Module (TPM) that helps it resist software and Sybil attacks to its platform. The
TPM attests to the integrity of published data at the source, and this attestation is
verified at a remote server. The TSP is energy-efficient, with a battery life of over
80 days when collecting a temperature sample every 30 seconds.

Our secure data aggregation protocol STAP allows an untrusted intermediate
mobile proxy to aggregate the TSP’s raw signed sensor readings, while allowing
the data portal to detect a malicious proxy that fabricates those aggregates. The
portal can detect a lying proxy with little overhead and within the first six fabricated
aggregates received.

To the best of our knowledge, this is the first work to present a practical imple-
mentation of a trusted platform based approach, using an physical TPM device,
to the data integrity problem in crowd-sourced sensing, and a secure and trusted
data aggregation protocol. This paper shows that such an approach is practical,
computationally feasible and energy-efficient.
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