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As the number of hosts and network traffic continues to grow, the need to efficiently handle packets at 
line speed becomes increasingly important.  Packet classification is one technique that allows in-network 
devices such as firewalls, network address translators, and firewalls to provide differentiated service and 
access to network and host resources by efficiently determining how the packet should be processed. 
These services require a packet to be classified so that a set of rules can be applied to such network header 
information as the destination address, flow identifier, port number, or layer-4 protocol type. The 
development of more efficient classification algorithms has been the focus of many research papers 
including: [2],[11],[15],[20],[29],[31]. However, the hardware requirements of performing a full 
classification on each packet at current line rates can be overwhelming [23]. Moreover, there does not 
appear to be a good algorithmic solution for multiple field classifiers containing more than two fields [3]. 
A classic approach to managing data streams that exhibit temporal locality is to employ a cache that 
stores recently referenced items. Packet classification is no different [8].  Such caches have been shown to 
increase the performance of route lookups significantly [18],[32].  How well a cache design performs is 
typically measured by its hit rate for a given cache size.  Generally, as additional capacity is added to the 
cache, the hit rates and performance of the packet classification engine should increase. Unlike route 
caches that only need to store destination address information, packet classification caches require the 
storage of full packet headers. Unfortunately, due to the increasing size of packet headers (the eventual 
deployment of IPv6 [16]), storing full header information can be prohibitively expensive given the high-
speed memory that would be required to implement such a cache. 
Recently, we proposed a third axis for designing packet classification algorithms: accuracy [5]. That is, 
given a certain amount of error allowed in packet classification, can packet classification speeds be 
significantly increased?  In a previous paper, we proposed the use of a modified Bloom filter [1] for 
packet classification.  In that approach, classified packets satisfying a binary predicate are inserted into 
the filter that caches the decision. For instance, a network bridge would add flows that it has identified 
that it should forward to the Bloom filter. Subsequent packets then query the filter to quickly test 
membership before being processed further.  Packets that hit in the filter are processed immediately, 
based on the predicate, while packets that miss go through the slower full packet classification lookup 
process. 
There are three primary limitations of this Bloom filter cache design. First, each Bloom filter lookup 
requires N  independent memory accesses, where N  is the number of hash levels of the Bloom filter. For 
a Bloom filter optimized for a 1 in a billion packet misclassification probability 30=N . Second, no 
mechanism exists to recover the current elements in a Bloom filter, preventing it from using efficient 
cache replacement mechanisms such as LRU. Finally, a Bloom cache is only effective in storing less than 
256 binary predicates. Thus, it is not an appropriate data structure to attach an arbitrary amount of data, 
due to the increasing number of Bloom filters required to support the data. 
In this work, we propose the notion of digest caches for efficient packet classification.  The goal of digest 
caches is similar to Bloom-filter caches in that they trade some accuracy in packet classification in 
exchange for increased performance.  Digest caches, however, allow traditional cache management 
policies such as LRU to be employed to better manage the cache over time.  Instead of storing a Bloom 
filter signature of a flow identifier (source and destination IP addresses & ports and protocol type), it is 
necessary only to store a hash of the flow identifier, allowing for smaller sized cache entries. We will also 
discuss how to extend this idea to accelerate exact caching strategies by building multi-level caches with 
digest caches. 
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Section 3.1 covers related work while Section 3.2 outlines the design of our architecture. Section 3.3 
evaluates the performance of our design using sample network traces while Section 3.4 discusses the 
performance overhead incurred by our algorithm as measured on the IXP1200 network processor 
platform. 

3.1 RELATED WORK 
Due to the high processing costs of packet classification, network appliance designers have resorted to 
using caches to speed up packet processing time. Early work in network cache design borrowed concepts 
from computer architecture (LRU stacks, set-associative multi-level caches) [18]. Some caching strategies 
rely on CPU L1 and L2 caches [23] while others attempt to map the IP address space to memory address 
space in order to take advantage of the hardware TLB [6]. Another approach is to add an explicit timeout 
to an LRU set-associative cache to improve performance by reducing thrashing [32]. More recently, in 
addition to leveraging the temporal locality of packets observed on networks, approaches to improving 
cache performance have applied techniques to compress and cache IP ranges to take advantage of the 
spatial locality in the address space of flow identifiers as well [7],[14]. This effectively allows multiple 
flows to be cached in a single cache entry, so that the entire cache may be placed into small high-speed 
memory such as a processor's L1/L2 cache. There has been work using Bloom Filters to accelerate exact 
prefix-matching schemes [10]. 
Much of this work is not applicable to higher-level flow identification that is the motivation for our work. 
Additionally, all of these bodies of work are fundamentally different from the material presented in this 
chapter, because they only consider exact caching strategies. Our approach attempts to maximize 
performance given constrained resources and an allowable error rate.  

3.2 OUR APPROACH  
Network cache designs typically employ simple set associative hash tables, ideas that are borrowed from 
their traditional memory management counterparts.  The goal of the hash tables is to quickly determine 
the operation or forwarding interface that should be used, given the flow identifier.  Hashing the flow 
identifier allows traditional network processors to determine what operation or forwarding interface 
should be used while examining only a couple of entries in the cache.  We believe one limitation of exact 
matching caches for flow identifiers is the need to store quite large flow identifiers (e.g. 37 bytes for an 
IPv6 flow identifier) with each cache entry.   This limits the amount of information one can cache or 
increases the time necessary to find information in the cache. 

In this chapter, we propose the notion of digest caches. The most important property of a digest cache is 
that it stores only a hash of the flow identifier instead of the entire flow identifier. The goal of the digest is 
to significantly reduce the amount of information stored in the cache, in exchange, for a small amount of 
error in cache lookups. As will be described later in this section, digest caches can be used in two ways. 
First, they can be used as the only cache for the packet classifier, allowing the packet classifier caches to 
be small. Second, they can be used as an initial lookup in an exact classification scenario.  This allows a 
system to quickly partition the incoming packets into those that are in the exact cache and those that are 
not. 

In the rest of this section, we will motivate approximate algorithms for packet classification caches.  We 
will then focus on properties of the digest cache, comparing it to previously proposed Bloom-filter-based 
packet classifiers, and using them to speed up exact packet classifiers. 

Digest caches are superior to Bloom caches in two ways. Cache lookups can be performed in a single 
memory access, and they allow direct addressing of elements, which can be used to implement efficient 
cache eviction algorithms, such as LRU. 

3.2.1 The Case for an Approximate Algorithm 
For the purposes of this study, we use a misclassification probability of one in a billion. Typically, TCP 
checksums will fail for approximately 1 in 1100 to 1 in 32000 packets, even when link-level CRCs should 
only admit error rates of 1 in 4 billion errors. On average, between 1 in 16 million to 1 in 10 billion TCP 
packets will contain an undetectable error [30]. We contend that a misclassification probability of this 
magnitude will not meaningfully degrade network reliability. It is the responsibility of the end system to 
detect and compensate for errors that may occur in the network [26]. 
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Errors in the network are typically self-healing in the sense that misdirected flows will be evicted from 
the cache as they age. Moreover, the network already guards against mis-configurations and mistakes 
made by the hardware. For example, the IP TTL fields are used to protect against routing loops in the 
network. 

Another argument underscoring the unreliability of the network is that TCP flows that are in 
retransmission timeout (RTO) mode are of no use. Consider a web browser. Flows that are stalled in RTO 
mode often result in the user re-establishing a web-connection. In the case that a reload is necessary, a 
new ephemeral port will be chosen by the client, and thus a new flow identifier is constructed. If an 
approximate cache has misclassified a previous flow, it will have no impact on the classification of the 
new flow.  

In some cases, such as firewalls, it is undesirable for the cache systems to have errors. To “harden” 
approximate caching hardware against misclassifications, layer-4 hints, such as TCP SYN flags can be 
used to force a full packet classification pass to ensure that new flows are not misclassified. 

3.2.2 Dimensioning a Digest Cache 
The idea of our work is simply the direct comparison of hashed flow identifiers to match cached flows. In 
this sense, we will trade the accuracy of a cache for a reduced storage requirement. We will partition 
memory into a traditional, set-associative cache. 
 When constructing our digest cache, we need first need to decide how to allocate memory. Previous work 
has demonstrated that higher cache associativity yields better cache hit-rates [18][21]. However, in the 
case of the digest cache, an increase in the degree of associativity must be accompanied by an increase in 
the size of the flow identifier’s hash, to compensate for the additional probability of collision. 
If the digest is a c -bit hash, and we have a d -way set associative cache, then the probability of cache 
misidentification is 

 
c

d
p

2
≈  (3.1) 

The equation can be described as follows: Each cache line has d  entries, each entry of which can take 2c 
values. A misclassification occurs whenever a new entry has coincidentally the same hash value as any of 
the existing d  entries. We must employ a stronger hash to compensate for increasing collision 
opportunities (associativity). 

Figure 3.1 Maximum number of flows that can be 
addressed in a 4-way set associative digest cache, 
with different misclassification probabilities, p . 

Figure 3.2 Comparison of storage capacity of 
various caching schemes. The Bloom filter cache 
assumes a misidentification probability of one in a 
billion, which under optimal conditions is modeled 
by a Bloom filter with 30 hash functions. 
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Figure 3.1 graphs the number of flows that a 4-way set associative can store, assuming different 
misclassification probability tolerances.  The maximum number of addressable flows increases linearly 
with the amount of memory and decreases logarithmically with the packet misclassification rate. 

3.2.3 Theoretical Comparison 
To achieve a misclassification probability of one in a billion, a Bloom filter cache must use 30 
independent hash functions to optimally use memory. This allows us to store a maximum of k  flows in 
our cache [5], 

 
)1ln(
)1ln( 1

ML
pk

L

Bloomcache −
−=  (3.2) 

where 30=L , the number of hash functions, M , the amount of memory, in bits, and p , the 
misidentification probability. To compare directly with a digest cache, the maximum number of flows that 
our scheme can store, independent of the associativity, is given by 

 
c
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where the required number of bits in the digest function is given by 

  )/(log2 pdc =  (3.4) 

This relation is dependent on p , the misidentification probability and d , the desired level of cache set 
associativity. The derivation of this formula follows from Equation 3.1. 
Figure 3.2 compares the storage capacity of both caching schemes. Both schemes linearly relate storage 
capacity to available memory, but it is interesting to note that simply storing a hash is more than 35% 
more efficient in terms of memory use than a Bloom filter, for this application. One property that makes a 
Bloom filter a useful algorithm is its ability to insert an unlimited number of signatures into the data 
structure, at the cost of increased misidentification. However, since we prefer a bounded misclassification 
rate, this property is of no use to the solution to our problem. 

3.2.4 A Specific Example of a Digest Cache 
To illustrate the operation of a digest cache, we will construct an example application of a digest cache. 
Suppose we have a router with 16 interfaces and a set of classification rules, R. 
We begin by assuming that we have 64KB of memory to devote to the cache and wish to have a 4-way 
associative cache that has a misclassification probability of one in a billion. 
These parameters can be fulfilled by a 32-bit digest function, with 4 bits used to store per-flow routing 
information. Each cache entry is then 36 bits, making each cache line 144 bits (18 bytes). 
64KB of cache memory partitioned into 18-byte cache lines, gives a total of 3640 cache lines, which 
allows our cache to store 14560 distinct entries. A visual depiction of this cache is given in Figure 3.3. 
Now, let us consider a sample trace of the cache, which is initially empty. Suppose 2 distinct flows, A and 
B. 

1. Packet 1 arrives from flow A. 
a. The flow identifier of A is hashed to H1(A) to determine the cache line to look up. That is, H1 is a 

map from flow identifier to cache line 
b. A is hashed again to H2(A), and compared to all 4 elements of the cache line. There is no match. 

The result H2(A) is the digest of the flow identifier that is stored. 
c. A is classified by a standard flow classifier, and is found to route to interface 3. 
d. The signature H2(A), is placed in cache line H1(A), along with its routing information. (Interface 

3) 
e. The packet is forwarded through interface 3. 

2. Packet 2 arrives from flow A. 
a. The flow identifier of A is hashed to H1(A) to determine the cache line to look up. 
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b. A is hashed again to H2(A), and compared to all 4 elements of the cache line. There is a match, 
and the packet is forwarded to interface 3. 

3. Packet 3 arrives from flow B. 
a. The flow identifier of B is hashed to H1(B) to determine the cache line to look up. Coincidentally, 

H1(A)= H1(B) 
b.B is hashed again to H2(B), and compared to all 4 elements of the cache line. Coincidentally, 

H2(A)= H2(B). There is a match, and the packet is forwarded to interface 3. The probability that 
this sort of misclassification occurs has a probability of 932 1024 −≈ . 

In the absence of misclassifications, this scheme behaves exactly as a 4-way set associative cache with 
14560 entries (3640 cache lines). 
Using an equivalent amount of memory (64 KB) a cache storing IPv4 flow identifiers will be able to store 
4852 entries, and a cache storing IPv6 flow identifiers will be able to store 1744 entries. 
The benefit of using a digest cache is two-fold. First, it increases the effective storage capacity of cache 
memory, allowing the use of smaller, faster memory. Second, it reduces the memory bandwidth required 
to support a cache by reducing the amount of data required to match a single packet. 
As intuition and previous studies would indicate, a larger cache will improve cache performance 
[18][21][24]. To that end, in this example, the deployment of a digest cache would have an effect of 
increasing the effective cache size by a factor of 2 to 6. 

3.2.5 Exact Classification with Digest Caches 
Digest caches can also be used to accelerate exact caching systems, by employing a multi-level cache ( 
Figure 3.4). A digest cache is constructed, in conjunction with an exact cache that shares the same 
dimensions. While the digest cache only stores a hash of flow identifiers, the exact cache stores the full 
flow identifier. Thus, the two hierarchies can be thought of as “mirrors” of each other. 
 A c-bit, d-way set associative digest cache implemented in a sequential memory access model will be 
able to reduce the amount of exact cache memory accessed (due to cache misses) by a factor of 
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while the amount of exact cache memory accessed by a cache hit is reduced by a factor of  
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Overview of Digest Cache: 

Cache Line 0       { 

Cache Line 1       { 

 

 

Cache Line 3639 { 

 

 

Figure 3.3 An overview of 64KB 4-way set associative digest cache, with a misclassification 
probability of 1 in a billion. This cache services a router with 16 interfaces. 
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The intuition behind Equation 3.6 is that each cache hit must access the exact flow identifier, while each 
associative cache entry has an access probability of c−2 . 
Note that the digest cache allows for multiple entries in a cache line to share the same value because the 
exact cache can resolve collisions of this type. 

Since this application relies on hashing strength only for performance and not for correctness, it is not 
necessary to have as strong a misclassification rate. 

A multi-level 8-bit 4-way set associative digest-accelerated cache will incur a 4-byte 1st level lookup 
overhead. However, it will reduce 2nd level memory access cost of an IPv6-bit cache miss lookup from 
148 bytes to 37.4 bytes, and a cache miss lookup from 148 bytes to .6 bytes. Assuming a 95% hit rate, the 
average cost of cache lookups is reduced to 4 bytes of 1st level cache and 35.6 bytes of 2nd level cache. 

3.3 EVALUATION  
For evaluation purposes, we used two datasets, each of one hour in length. The first of the datasets was 
collected by Bell Labs research, Murray Hill, NJ, at the end of May 2002. This dataset was made 
available through a joint project between NLANR PMA and Internet Traffic Research Group [25]. The 
trace was of a 9 Mb/s Internet link, serving a staff of 400 people. 

 The second trace was a non-anonymized trace collected at our university OC-3c link. Our link connects 
with Internet2 in partnership with the Portland Research and Education Network (PREN). This trace was 
collected on the afternoon of July 26th, 2002. 

 

 Bell Trace OGI Trace 
Trace Length (seconds)     3600           3600 
Number of Packets 974613 15607297 
Avg. Packet Rate (Packets Per Second)     270.7        4335.4 
TCP Packets 303142   5034332 
UDP Packets 671471 10572965 
Number of Flows   32507     160087 
Number of TCP Flows   30337       82673 
Number of UDP Flows     2170       77414 

Avg. Flow Length (seconds)       3.27             10.21 
Longest Flow (seconds)     3599.95         3600 
Avg. Packets/Flow         29.98             97.49 
Avg. Packets/TCP Flow           9.99             60.89 
Avg. Packets/UDP Flow       309.43           136.58 

Max # of Concurrent Flows       268           567 

Table 3.1 Summary statistics for the sample traces. 

 
 
 
 
 
 

 Figure 3.4 A multi-level digest-accelerated exact cache. The Digest cache allows you to filter potential 
hits quickly, using a small amount of faster memory. 
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Table 3.1 presents a summary of the statistics of these two datasets. A graph of the number of concurrent 
flows is shown in Figure 3.5. For the purposes of our graph, a flow is defined to be active between the 
time of its first and last packet, with a 60 second maximum inter-packet spacing. This number is chosen in 
accordance with other measurement studies [13][22]. 

  Bell Trace OGI Trace 
Hit Rate    0.971     0.988 
Intrinsic Miss Rate    0.029     0.012 
Maximum misses (over 100ms intervals)    6 189 
Variance of misses (over 100 ms intervals)    1.3540   17.438 
Average misses (over 100 ms intervals)    0.775      5.843 

Table 3.2: The results of simulating a perfect cache. 

A reference “perfect cache” was simula ted. We define a perfect cache to be a fully associative cache with 
an infinite amount of memory. Thus, a perfect cache only takes compulsory cache misses. The results are 
presented in Table 3.2. The OGI trace captured a portion of an active Half-life game server, whose 
activity is characterized by a moderate number (~20) of long-lived UDP flows. 

3.3.1 Reference Cache Implementations 
A Bloom filter cache[5] was simulated, using optimal dimensioning. Both cold caching and double-
buffered aging strategies were run on the benchmark datasets. Optimal dimensioning for a 
misclassification probability of one in a billion requires 30 independent hash functions, meaning that each 
cache look-up and insertion operation requires 30 independent 1-bit memory accesses. 

The digest cache presented in this chapter was chosen to be a four-way set associative hash table, using 
32-bit flow identifier digests. Each lookup and insertion operation requires a single 16-byte memory 
request. An LRU cache replacement algorithm was chosen, due to its low cost complexity and near-
optimal behaviour [18]. 

A 4-way set associative cache was chosen, because it performs almost as well as a fully associative cache 
[21].  Figure 3.6 graphs the behaviour of digest caches with different set associativities. 

We also compare our cache against a traditional four-way set associative layer-4 IPv4 and IPv6 based 
hash tables. Each lookup and insertion operation requires a single 52-byte or 148-byte memory request, 
respectively. 
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Figure 3.5 Number of concurrent flows in test data sets. 
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Hashing for all results presented here was accomplished with a SHA-1 [12] hash. It is important to note 
that the cryptographic strength of the SHA-1 hash is not an important property of an effective hashing 
function in this domain. It is sufficient that it is a member of the class of universal hash functions [4].  

3.3.2 Results 
In evaluating the performance of the caching systems, we must consider two criteria – we must examine 
the overall hit-rate as well as the smoothness of the cache miss rate.  A cache that has large bursts of 
cache misses is of no use, because it places strain on the packet classification engine. 

Figure 3.7 graphs the resulting hit rate of various caching strategies, using the sample traces. As expected, 
the digest cache scores hit-rates equivalent to an IPv6 based cache 10 times its size. More importantly, the 
digest cache still manages to out-perform a Bloom filter cache. The digest cache yie lds an equivalent hit 
rate of a cold-caching Bloom filter 50-80% its size, and out-performs a double-buffered Bloom filter 
cache 2-3 times its size  
Figure 3.8 graphs the variance of cache miss rates of the different caching approaches, aggregate    over    
100ms   intervals.   As   can be observed from the two traces, a digest cache gives superior performance, 
minimizing the variance in aggregate cache misses. 
It is interesting to note that for extremely small cache sizes, the digest cache exhibits a greater variance in 
hit rate than almost all other schemes. This can be attributed to the fact that the other algorithms, in this 
interval, behave uniformly poor by comparison. 
As the cache size increases, this hit rate performance improves, and the variance of cache miss rates 
decreases to a very small number. This is an important observation because it implies that cache misses, 
in these traces, are not dominated by bursty access patterns. 
To consider a more specific example, we have constructed a 2600 byte 4-way set associative digest cache. 
This number was chosen to be coincidental with the amount of local memory available to a single 
IXP2000 family micro-engine. 
Figure 3.9 presents a trace of the resulting cache miss rate, aggregate over one second intervals. This 
graph represents the number of packets a packet classification engine must process within one second to 
keep pace with the traffic load. As can be observed from the plot, a packet classification engine must be  
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Figure 3.6 Hit Rates for digest caches, as a function of memory for various set associativity, assuming 
a misclassification rate of 1 in a billion. 
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Figure 3.7 Cache hit rates as a function of memory, M . The Bell trace is on the left, the OGI trace is on the right. 
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Figure 3.8 Variance of cache misses as a function of memory, M (aggregate over 100ms 

      time scales). The Bell trace is on the left, the OGI trace is on the right. 



 3-10 

able to classify roughly 60 packets per second (pps) in the worst case for the Bell trace, and 260 pps in the 
worst case for the OGI trace. Average packet load during the entire trace is 270.7 and 4335.4 pps for the 
Bell and OGI traces respectively. Peak packet rate for the Bell trace approached 1400 pps, while the peak 
rate for the OGI trace exceeds 8000 pps. 
By employing a 2600 byte digest cache, the peak stress level on the packet classification engine has been 
reduced by a factor of between 20 and 30 for the observed traces. 

3.4 HARDWARE OVERHEAD 
A preliminary implementation on Intel’s IXP1200 Network Processor [17] was constructed to estimate 
the amount of processing overhead a cache would add. The hardware tested was an IXP1200 board, with 
a 200 MHz StrongARM, 6 packet-processing microengines and 16 ethernet ports. 
A simple micro-engine level layer-3 forwarder was implemented as a baseline measurement. A cache 
implementation was then grafted onto the layer-3 forwarder code base. A null-classifier was used, so that 
we could isolate the overhead associated with the cache access routines. The cache was placed into 
SRAM, because scratchpad memory does not have a pipelined memory access queue, and the SDRAM 
interface does not support atomic bit-set operations. 
The simulation was written entirely in microengine C and performance tests were run in a simulated 
virtual machine. A trie -based longest prefix match on the destination address is always performed, 
regardless of the outcome of the cache operation. 

3.4.1 IXP Overhead 
The performance of our implementation was evaluated on a simulated IXP1200 system, with 16 virtual 
ports. The implementation’s input buffers were kept constantly filled, and we monitored the average 
throughput of the system. 
The IXP1200 has a 3-level memory hierarchy, scratchpad, SRAM and SDRAM, each having 4KB, 16MB 
and 256MB respectively. Scratchpad memory is the fastest of the three, but does not support queued 
memory access – subsequent scratchpad memory accesses block until the first access is complete. The 
IXP micro-code allows for asynchronous memory access to SRAM and SDRAM. The typical register 
allocation schema allows for a maximum of 32 bytes to be read per memory access. 
The cache implementation we constructed was designed in a way to ensure that no flow identifier was 
successfully matched, and each packet required an insertion of its flow ID into the cache. This was done 
so that the worst possible performance of a Bloom filter cache could be ascertained. The code was 
structured in a way to disallow any shortcutting or early negative membership confirmation. The 
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Figure 3.9 Cache miss rates aggregate over 1 second intervals, using a 2600 byte 4-way set associative 
digest cache. The Bell trace gave a 95.9% hit rate, while the OGI trace achieved a 97.6% hit rate. 
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performance results of the IXP implementation are presented in Table 3.3, using a trace composed 
entirely of small, 64-byte packets. By comparison, a four-way set associative digest cache was able to 
maintain a sustained average throughput of 803 Mb/s. 
The IXP is far from an ideal architecture to implement a Bloom filter, in large part due to its lack of 
small, high-speed bit-addressable on-chip memory. Ideally, a Bloom filter would be implemented in 
hardware that supports parallel access on bit-addressable memory [27].  Nevertheless, the performance 
results presented here serve to underscore the flexibility of our new cache design – specialized hardware 
is not required. 

3.4.2 Future Designs 
The next generation IXP2000 hardware will feature 2560 bytes of on-chip memory per micro-engine, 
improving access latencies by a factor of fifteen [9][19].  
Let us consider implementing a packet classification cache on this architecture. If we used this memory 
for an exact IPv4 cache, we would be able to store a maximum 196 flow identifiers. An equivalent IPv6 
cache would be able to store only 69 flows. Using  this memory in a 32-bit 4-way set associative digest 
cache will allow each micro-engine to cache 640 flows. 
If we use an 8-bit 4-way set associative exact digest cache, we can use just 1 KB of on-chip memory, and 
38KB of SRAM, to store over 1000 flows per micro-engine. 
The ability for this algorithm to reduce the amount of memory required to store a flow identifier is 
especially important in this architecture, because of the limited nature of memory transfer registers. Each 
micro-engine thread has access to 16 32-bit memory transfer registers, which means that fetching more 
than one IPv6 flow identifier requires multiple, independent memory accesses, which must be serialized.  
Since independent memory accesses are significantly more expensive than single, longer memory 
accesses, this significantly penalizes the performance of a traditional set-associative cache. Coupled with 
the fact that these memory accesses must be serialized (the first access must complete before the second 
one can be initiated) the performance benefit of avoiding SRAM memory accesses becomes 
overwhelmingly important. 
For comparison, a modern TCAM implementation can perform 100 million lookups per second [28]. The 
IXP2000 can perform 233 million local memory accesses per second [19]. Without even considering the 
cost or power required to maintain a TCAM, a digest cache becomes a promising alternative. 
These arguments make our proposed techniques a prime candidate for creating efficient caches for use on 
future network processors. 

3.5 CONCLUSION 
Typical packet classification caches trade-off size and performance.  In this chapter, we have proposed a 
novel cache architecture that efficiently and effectively uses memory, given a slightly relaxed accuracy 
requirement.  Performance of any existing flow caching solution that employ exact caching algorithms 
can be improved dramatically by employing our technique, at the sacrifice of a small amount of accuracy. 
Our new technique is superior to previous Bloom filter approximate caching algorithms, in both 
theoretical and practical performance while also addressing the shortcomings in the previous Bloom Filter 
cache design without introducing any additional drawbacks.  

 

Table 3.3: Performance of Bloom Filter caches in worst case data 
flows, on a simulated IXP1200. 

Number of Hash Levels  All-Miss Cache Throughput 
0 990 Mb/s 
1 868 Mb/s 
2 729 Mb/s 
3 679 Mb/s 
4 652 Mb/s 
5 498 Mb/s 
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This technique can be applied to the design of a novel 2-level exact cache, which can take advantage of 
hierarchical memory to accelerate exact caching algorithms, with strong results. 
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