
Efficient Packet Classification with Digest
Caches

This work supported by the National Science Foundation under Grant EIA-0130344 and the generous
donations of Intel Corporation. Any opinions, findings, or recommendations expressed are those of the
author(s) and do not necessarily reflect the views of NSF or Intel.

Francis Chang, Wu-chang Feng, Wu-chi Feng
Systems Software Laboratory

OGI School of Science and Engineering at
OHSU

Beaverton, Oregon, USA
{francis, wuchang,wuchi}@cse.ogi.edu

Kang Li
Department of Computer Science

University of Georgia
Athens, Georgia, USA

kangli@acm.org

Abstract— In this paper, we propose a digest

cache-based algorithm for efficient packet
classification in network devices. The digest
cache-based algorithm classifies packets by
using a hash of the flow identifier allowing for
smaller sized cache entries at the expense of a
small amount of packet misclassification.
Experimentation will show that our technique
is superior to previous Bloom filter based
designs in all areas, including extensibility,
computational complexity, and memory
efficiency. We also discuss how to extend this
technique to improve performance for exact
caches.

Keywords—packet classification; caches;
probabilistic algorithms

I. INTRODUCTION
As the number of hosts and network traffic

continues to grow, the need to efficiently handle
packets at line speed becomes increasingly
important. Packet classification is one technique
that allows in-network devices such as firewalls,
network address translators, and firewalls to
provide differentiated service and access to
network and host resources by efficiently
determining how the packet should be processed.
These services require a packet to be classified so
that a set of rules can be applied to such network
header information as the destination address, flow
identifier, port number, or layer-4 protocol type.
The development of more efficient classification
algorithms has been the focus of many research
papers including: [2],[11],[15],[20],[29],[31].
However, the hardware requirements of
performing a full classification on each packet at

current line rates can be overwhelming [23].
Moreover, there does not appear to be a good
algorithmic solution for multiple field classifiers
containing more than two fields [3].

A classic approach to managing data streams
that exhibit temporal locality is to employ a cache
that stores recently referenced items. Packet
classification is no different [8]. Such caches have
been shown to increase the performance of route
lookups significantly [18],[32]. How well a cache
design performs is typically measured by its
performance for a given cache size. Generally, as
additional capacity is added to the cache, the hit
rates and performance of the packet classification
engine should increase. Unlike route caches that
only need to store destination address information,
packet classification caches require the storage of
full packet headers. Unfortunately, due to the
increasing size of packet headers (the eventual
deployment of IPv6 [16]), storing full header
information can be prohibitive given the cost of
the high-speed memory that would be used to
implement such a cache

Recently, we proposed a third axis for
designing packet classification algorithms:
accuracy [5]. That is, given a certain amount of
error allowed in packet classification, can packet
classification speeds be significantly increased? In
a previous paper, we proposed the use of a
modified Bloom filter [1] for packet classification.
In that approach, classified packets satisfying a
binary predicate are inserted into the filter that
caches the decision. For instance, a network bridge
would add flows that it has identified that it should
forward to the Bloom filter. Subsequent packets
then query the filter to quickly test membership

before being processed further. Packets that hit in
the filter are processed immediately, based on the
predicate, while packets that miss go through the
full packet classification lookup process.

There are three primary limitations of this
previous work. First, each Bloom filter lookup
requires N independent memory accesses, where
N is the number of hash levels of the Bloom
filter. For a Bloom filter optimized for a 1 in a
billion packet misclassification probability

30=N . Second, no mechanism exists to recover
the current elements in a Bloom filter, preventing
it from using efficient cache replacement
mechanisms such as LRU. Finally, a Bloom cache
is only effective in storing less than 256 binary
predicates. Thus, it is not an appropriate data
structure to attach an arbitrary amount of data, due
to the increasing number of Bloom filters required
to support the data.

In this paper, we propose the notion of digest
caches for efficient packet classification. The goal
of digest caches is similar to Bloom-filter caches,
in that they trade some accuracy in packet
classification in exchange for increased
performance. Digest caches, however, allow
traditional cache management policies such as
LRU to be employed to better manage the cache
over time. Instead of storing a Bloom filter
signature of a flow identifier (source and
destination IP addresses & ports and protocol
type), it is necessary only to store a hash of the
flow identifier, allowing for smaller sized cache
entries. We will also discuss how to extend this
idea to accelerate exact caching strategies by
building multi-level caches with digest caches.

Section II covers related work while Section III
outlines the design of our architecture. Section IV
evaluates the performance of our design using
sample network traces while Section V discusses
the performance overhead incurred by our
algorithm as measured on the IXP1200 network
processor platform.

II. RELATED WORK
Due to the high processing costs of packet

classification, network appliance designers have
resorted to using caches to speed up packet
processing time. Early work in network cache
design borrowed concepts from computer
architecture (LRU stacks, set-associative multi-
level caches) [18]. Some caching strategies rely on
CPU L1 and L2 cache [23] while others attempt to
map the IP address space to memory address space
to use the hardware TLB [6]. Another approach is
to add an explicit timeout to an LRU set-
associative cache to improve performance by
reducing thrashing [32]. More recently, in addition

to leveraging the temporal locality observed on
networks, approaches to improving cache
performance have applied techniques to compress
and cache IP ranges to take advantage of the
spatial locality in the address space of flow
identifiers [7],[14]. This effectively allows
multiple flows to be cached in a single cache
entry, so that the entire cache may be placed into
small high-speed memory such as a processor's
L1/L2 cache. There has been work using Bloom
Filters to accelerate exact prefix-matching
schemes [10].

Much of this work is not applicable to higher-
level flow identification that is the motivation for
our work. Additionally, all of these bodies of work
are fundamentally different from the material
presented in this paper, because they only consider
exact caching strategies. Our approach attempts to
maximize performance given constrained
resources and an allowable error rate.

III. OUR APPROACH
Network cache designs typically employ simple

set associate hash tables, ideas that are borrowed
from their traditional memory management
counterparts. The goal of the hash tables is to
quickly determine the operation or forwarding
interface that should be used, given the flow
identifier. Hashing the flow identifier allows
traditional network processors to determine what
operation or forwarding interface should be used
while examining only a couple of entries in the
cache. We believe one limitation of exact
matching caches for flow identifiers is the need to
store quite large flow identifiers (e.g. 37 bytes for
an IPv6 flow identifier) with each cache entry.
This limits the amount of information one can
cache or increases the time necessary to find
information in the cache.

In this paper, we propose the notion of digest
caches. The most important property of a digest
cache is that it stores only a hash of the flow
identifier, instead of the entire flow identifier. The
goal of the digest is to significantly reduce the
amount of information stored in the cache, in
exchange, for a small amount of error in cache
lookups. As will be described later on in this
section, digest caches can be used in two ways.
First, they can be used as the only cache for the
packet classifier, allowing the packet classifier
caches to be small. Second, they can be used as an
initial lookup in an exact classification scenario.
This allows a system to quickly partition the
incoming packets into those that are in the exact
cache and those that are not.

In the rest of this section, we will motivate
approximate algorithms for packet classification
caches. We will then focus on properties of the
digest cache, comparing it to previously proposed
Bloom-filter-based packet classifiers, and using
them to speed up exact packet classifiers.

Digest caches are superior to Bloom caches in
two ways. Cache lookups can be performed in a
single memory access, and they allow direct
addressing of elements, which can be used to
implement efficient cache eviction algorithms,
such as LRU.
A. The Case for an Approximate Algorithm

For the purposes of this study, we use a
misclassification probability of one in a billion.
Typically, TCP checksums will fail for
approximately 1 in 1100 to 1 in 32000 packets,
even when link-level CRCs should only admit
error rates of 1 in 4 billion errors. On average,
between 1 in 16 million to 1 in 10 billion TCP
packets will contain an undetectable error [30].
We contend that a misclassification probability of
this magnitude will not meaningfully degrade
network reliability. It is the responsibility of the
end system to detect and compensate for errors
that may occur in the network [26].

Errors in the network are typically self-healing
in the sense that misdirected flows will be evicted
from the cache as they age. Moreover, the network
already guards against mis-configurations and
mistakes made by the hardware. For example, the
IP TTL fields are used to protect against routing
loops in the network.

Another argument underscoring the unreliability
of the network is that TCP flows that are in
retransmission timeout (RTO) mode are of no use.
Consider a web browser. Flows that are stalled in
RTO mode often result in the user re-establishing
a web-connection. In the case that a reload is
necessary, a new ephemeral port will be chosen by
the client, and thus a new flow identifier is
constructed. If an approximate cache has
misclassified a previous flow, it will have no
impact on the classification of the new flow.

In some cases, such as firewalls, it is undesirable
for the cache systems to have errors. To “harden”
approximate caching hardware against
misclassifications, layer-4 hints, such as TCP SYN
flags can be used to force a full packet
classification pass to ensure that new flows are not
misclassified.

B. Dimensioning a Digest Cache
The idea of our work is simply the direct

comparison of hashed flow identifiers to match
cached flows. In this sense, we will trade the
accuracy of a cache for a reduced storage
requirement. We will partition memory into a
traditional, set-associative cache.

 When constructing our cache, we need to
decide how to structure our usage of memory.
Previous work has demonstrated that higher cache
associativity yields better cache hit-rates [18][21].
However, in the case of the digest cache, an
increase in the degree of associativity must be
accompanied by an increase in the size of the flow
identifier’s hash, to compensate for the additional
probability of collision.

If the digest is a c -bit hash, and we have a d -
way set associative cache, then the probability of
cache misidentification is

 c
dp 2≈ (1)

The equation can be described as follows: Each
cache line has d entries, each entry of which can
take c2 values. A misclassification occurs
whenever a new entry has coincidentally the same
hash value as any of the existing d entries. We
must employ a stronger hash to compensate for
increasing collision opportunities (associativity).

Figure 1 graphs the number of flows that a 4-
way set associative can store, assuming different
misclassification probability tolerances. The
maximum number of addressable flows increases
linearly with the amount of memory, and
decreases logarithmically with the
misclassification rate.
C. Theoretical Comparison

To achieve a misclassification probability of
one in a billion, a Bloom filter cache must use 30
independent hash functions to optimally use
memory. This allows us to store a maximum of k
flows in our cache [5],

)1ln(
)1ln(1

ML
pk

L

Bloomcache −
−= (2)

where 30=L , the number of hash functions, M ,
the amount of memory, in bits, and p , the
misidentification probability. To compare directly
with a digest cache, the maximum number of
flows that our scheme can store, independent of
the associativity, is given by

c
Mkdigest = (3)

where the required number of bits in the digest
function is given by
)/(log2 pdc = (4)

This relation is dependent on p , the
misidentification probability and d , the desired
level of cache set associativity. The derivation of
this formula follows from Equation 1.

Figure 2 compares the storage capacity of both
caching schemes. Both schemes linearly relate
storage capacity to available memory, but it is
interesting to note that simply storing a hash is
more than 35% more efficient in terms of memory
use than a Bloom filter, for this application. One
property that makes a Bloom filter a useful
algorithm is its ability to insert an unlimited
number of signatures into the data structure, at a
cost of an increased misidentification. However,
since we prefer a bounded misclassification rate,
this property is of no use to the solution to our
problem.
D. A Specific Example of a Digest Cache

To illustrate the operation of a digest cache, we
will construct an example application of a digest
cache. Suppose we have a router with 16
interfaces, and a set of classification rules, R.

We begin by assuming that we have 64KB of
memory to devote to the cache, and we wish to
have a 4-way associative cache that has a
misclassification probability of one in a billion.

These parameters can be fulfilled by a 32-bit
digest function, with 4 bits used to store per-flow
routing information. Each cache entry is then 36
bits, making each cache line 144 bits (18 bytes).

64KB of cache memory partitioned into 18-
byte cache lines, gives a total of 3640 cache lines,
which allows our cache to store 10920 distinct
entries. A visual depiction of this cache is given in
Figure 3.

Now, let us consider a sample trace of the
cache, which is initially empty. Suppose 2 distinct
flows, A and B.

1. Packet 1 arrives from flow A.
a. The flow identifier of A is hashed to

H1(A) to determine the cache line to look
up.

b. A is hashed again to H2(A), and compared
to all 4 elements of the cache line. There
is no match.

c. A is classified by a standard flow
classifier, and is found to route to
interface 3.

d. The signature H2(A), is placed in cache
line H1(A), along with its routing
information. (Interface 3)

e. The packet is forwarded through interface
3.

2. Packet 2 arrives from flow A.
a. The flow identifier of A is hashed to

H1(A) to determine the cache line to look
up.

Figure 1: Maximum number of flows that can be
addressed in a 4-way set associative digest cache,
with different misclassification probabilities, p

Figure 2: Comparison of storage capacity of various
caching schemes. The Bloom filter cache assumes a
misidentification probability of one in a billion,
which under optimal conditions is modeled by a
Bloom filter with 30 hash functions.

b. A is hashed again to H2(A), and compared
to all 4 elements of the cache line. There
is a match, and the packet is forwarded to
interface 3.

3. Packet 3 arrives from flow B.
a. The flow identifier of B is hashed to

H1(B) to determine the cache line to look
up. Coincidentally, H1(A)= H1(B)

b. B is hashed again to H2(B), and compared
to all 4 elements of the cache line.
Coincidentally, H2(A)= H2(B). There is a
match, and the packet is forwarded to
interface 3. The probability that this sort
of misclassification occurs has a
probability of 9124 32 −≈ e .

In the absence of misclassifications, this
scheme behaves exactly as a 4-way set associative
cache with 10920 entries (3640 cache lines).

Using an equivalent amount of memory (64
KB) a cache storing IPv4 flow identifiers will be
able to store 4852 entries, and a cache storing IPv6
flow identifiers will be able to store 1744 entries.

The benefit of using a digest cache is two-fold.
First, it increases the effective storage capacity of
cache memory, allowing the use of smaller, faster
memory. Second, it reduces the memory
bandwidth required to support a cache by reducing
the amount of data required to match a single
packet.

As intuition and previous studies would indicate,
a larger cache will improve cache performance
[18][21][24]. To that end, in this example, the
deployment of a digest cache would have an effect
of increasing effective cache size by a factor of 2-
6.

E. Exact Classification with Digest Caches
Digest caches can also be used to accelerate

exact caching systems, by employing a multi-level
cache (Figure 4). A digest cache is constructed, in
conjunction with an exact cache that shares the
same dimensions. While the digest cache only
stores a hash of flow identifiers, the exact cache
stores the full flow identifier. Thus, the two
hierarchies can be thought of as “mirrors” of each
other.

A c-bit, d-way set associative digest cache
implemented in a sequential memory access model
will be able to reduce the amount of exact cache
memory accessed (due to cache misses) by a factor
of

 csavingsmissp 2
1

_ = (5)

while the amount of exact cache memory accessed
by a cache hit is reduced by a factor of
 d

d
dp csavingshit

1
2
11

_
−×+= (6)

Overview of Digest Cache:
Cache Line 0 {
Cache Line 1 {

Cache Line 3639 {

Figure 3: An overview of 64KB 4-way set associative digest cache, with a misclassification probability
of 1 in a billion. This cache services a router with 16 interfaces.

entry 0 entry 1 entry 2 entry 3
entry 4 entry 5 entry 6 entry 7

entry 109116 entry 109117 entry 109118 entry 109119

Figure 4: A multi-level digest-accelerated exact
cache. The Digest cache allows you to filter
potential hits quickly, using a small amount of
faster memory.

32-bit digest 4-bit route
Contents of cache entry

Cache
Lookup Exact

Cache
Digest
Cache

The intuition behind Equation 6 is that each
cache hit must access the exact flow identifier,
while each associative cache entry has an access
probability of c−2 .

Note that the digest cache allows for multiple
entries in a cache line to share the same value
because the exact cache can resolve collisions of
this type.

Since this application relies on hashing strength
only for performance and not for correctness, it is
not necessary to have as strong a misclassification
rate.

A multi-level 8-bit 4-way set associative digest-
accelerated cache will incur a 4-byte 1st level
lookup overhead. However, it will reduce 2nd level
memory access cost of an IPv6-bit cache miss
lookup from 148 bytes to 37.4 bytes, and a cache
miss lookup from 148 bytes to .6 bytes. Assuming
a 95% hit rate, the average cost of cache lookups
is reduced to 4 bytes of 1st level cache and 35.6
bytes of 2nd level cache.

IV. EVALUATION
For evaluation purposes, we used two datasets,

each of one hour in length. The first of the datasets
was collected by Bell Labs research, Murray Hill,
NJ, at the end of May 2002. This dataset was made
available through a joint project between NLANR
PMA and Internet Traffic Research Group [25].

The trace was of a 9 Mb/s Internet link, serving
a staff of 400 people.

 The second trace was a non-anonymized trace
collected at our university OC-3c link. Our link
connects with Internet2 in partnership with the

Portland Research and Education Network
(PREN). This trace was collected on the afternoon
of July 26th, 2002.

 Table 1 presents a summary of the statistics of
these two datasets. A graph of the number of
concurrent flows is shown in Figure 5. For the
purposes of our graph, a flow is defined to be
active between the time of its first and last packet,
with a 60 second maximum inter-packet spacing.

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500 3000 3500

Nu
mb

er
of

Flo
ws

Time (seconds)

OGI Trace
Bell Trace

Figure 5: Number of concurrent flows in test data sets

Bell Trace OGI Trace
Trace Length
(seconds) 3600 3600
Number of Packets 974613 15607297
Avg. Packet Rate
(Packets Per Second) 270.7 4335.4
TCP Packets 303142 5034332
UDP Packets 671471 10572965
Number of Flows 32507 160087
Number of TCP Flows 30337 82673
Number of UDP
Flows 2170 77414
Avg. Flow Length
(seconds) 3.27 10.21
Longest Flow
(seconds) 3599.95 3600
Avg. Packets/Flow 29.98 97.49
Avg. Packets/TCP
Flow 9.99 60.89
Avg. Packets/UDP
Flow 309.43 136.58
Max # of Concurrent
Flows 268 567

Table 1: Summary statistics for the sample
traces

This number is chosen in accordance with other
measurement studies [13][22].

 A reference “perfect cache” was simulated.
We define a perfect cache to be a fully associative
cache with an infinite amount of memory. Thus, a
perfect cache only takes the compulsory cache
misses. The results are presented in Table 2. The
OGI trace captured a portion of an active Half-life
game server, whose activity is characterized by a
moderate number (~20) of long-lived UDP flows.

A. Reference Cache Implementations
A Bloom filter cache[5] was simulated, using

optimal dimensioning. Both cold caching and
double-buffered aging strategies were run on the
benchmark datasets. Optimal dimensioning for a
misclassification probability of one in a billion

requires 30 independent hash functions, meaning
that each cache look-up and insertion operation
requires 30 independent 1-bit memory accesses.

The digest cache presented in this paper was
chosen to be a four-way set associative hash table,
using 32-bit flow identifier digests. Each lookup
and insertion operation requires a single 16-byte
memory request. An LRU cache replacement
algorithm was chosen, due to its low cost
complexity and near-optimal behaviour [18].

A 4-way set associative cache was chosen,
because it performs almost as well as a fully
associative cache [21]. Figure 6 graphs the
behaviour of digest caches with different set
associativities.

We also compare our cache against a traditional
four-way set associative layer-4 IPv4 and IPv6
based hash tables. Each lookup and insertion
operation requires a single 52-byte or 148-byte
memory request, respectively.

Hashing for all results presented in this paper
was accomplished with a SHA-1 [12] hash. It is
important to note that the cryptographic strength
of the SHA-1 hash is not an important property of
an effective hashing function in this domain. It is
sufficient that it is a member of the class of
universal hash functions [4].

65

70

75

80

85

90

95

100

1000 10000 100000

BE
LL

Tr
ac

eH
itR

ate
(%

)

Amount of Cache Memory (Bytes)

35-bit Digest Cache (32-way associative)
34-bit Digest Cache (16-way associative)

33-bit Digest Cache (8-way associative)
32-bit Digest Cache (4-way associative)
31-bit Digest Cache (2-way associative)
30-bit Digest Cache (1-way associative) 0

20

40

60

80

100

1000 10000 100000

OG
IT

rac
eH

itR
ate

(%
)

Amount of Cache Memory (Bytes)

35-bit Digest Cache (32-way associative)
34-bit Digest Cache (16-way associative)

33-bit Digest Cache (8-way associative)
32-bit Digest Cache (4-way associative)
31-bit Digest Cache (2-way associative)
30-bit Digest Cache (1-way associative)

Figure 6: Hit Rates for digest caches, as a function of memory for various set associativity, assuming a
misclassification rate of 1 in a billion

Table 2: The results of simulating a perfect
cache

 Bell Trace OGI Trace
Hit Rate 0.971 0.988
Intrinsic Miss Rate 0.029 0.012
Maximum misses
(over 100ms intervals) 6 189
Variance of misses
(over 100 ms intervals) 1.3540 17.438
Average misses (over
100 ms intervals) 0.775 5.843

40

50

60

70

80

90

100

1000 10000 100000

Be
llT

rac
eH

itR
ate

(%
)

Amount of Cache Memory (Bytes)

Digest Cache (4-way associative)
Bloom Cache (Cold)

Bloom Cache(double buffered)
Exact Cache (IPv4 4-way associative)
Exact Cache (IPv6 4-way associative)

Perfect Cache

0

20

40

60

80

100

1000 10000 100000
OG

IT
rac

eH
itR

ate
(%

)

Amount of Cache Memory (Bytes)

Digest Cache (4-way associative)
Bloom Cache (Cold)

Bloom Cache(double buffered)
Exact Cache (IPv4 4-way associative)
Exact Cache (IPv6 4-way associative)

Perfect Cache

Figure 7: Cache hit rates as a function of memory, M . The Bell trace is on the left, the OGI trace is on the right

1

10

100

1000

1000 10000 100000

BE
LL

Tr
ac

e,
Va

ria
nc

eo
fM

iss
se

s

Amount of Cache Memory (Bytes)

Digest Cache (4-way associative)
Bloom Cache (Cold)

Bloom Cache(double buffered)
Exact Cache (IPv4 4-way associative)
Exact Cache (IPv6 4-way associative)

10

100

1000

10000

1000 10000 100000

OG
IT

rac
e,

Va
ria

nc
eo

fM
iss

se
s

Amount of Cache Memory (Bytes)

Digest Cache (4-way associative)
Bloom Cache (Cold)

Bloom Cache(double buffered)
Exact Cache (IPv4 4-way associative)
Exact Cache (IPv6 4-way associative)

Figure 8: Variance of cache misses as a function of memory, M (aggregate over 100ms
 time scales). The Bell trace is on the left, the OGI trace is on the right

B. Results
In evaluating the performance of the caching
systems, we must consider two criteria – we must
examine the overall hit-rate as well as the
smoothness of the cache miss rate. A cache that
gives large bursts of cache misses is of no use,
because it places strain on the packet classification
engine.

Figure 7 graphs the resulting hit rate of various
caching strategies, using the sample traces. As
expected, the digest cache scores hit-rates
equivalent to an IPv6 based cache 10 times its
size. More importantly, the digest cache still
manages to out-perform a Bloom filter cache. The
digest cache yields an equivalent hit rate of a cold-
caching Bloom filter 50-80% its size, and out-
performs a double-buffered Bloom filter cache 2-3
times its size

Figure 8 graphs the variance of cache miss rates
of the different caching approaches, aggregate
over 100ms intervals. As can be observed
from the two traces, a digest cache gives superior
performance, minimizing the variance in aggregate
cache misses.

It is interesting to note that for extremely small
cache sizes, the digest cache exhibits a greater
variance in hit rate than almost all other schemes.
This can be attributed to the fact that the other
algorithms, in this interval, behave uniformly poor
by comparison.

As the cache size increases, this hit rate
performance improves, and the variance of cache
miss rates decreases to a very small number. This

is an important observation because it implies that
cache misses, in these traces, are not dominated by
bursty access patterns.

To consider a more specific example, we have
constructed a 2600 byte 4-way set associative
digest cache. This number was chosen to be
coincidental with the amount of local memory
available to a single IXP2000 family micro-
engine.

Figure 9 presents a trace of the resulting cache
miss rate, aggregate over one second intervals.
This graph represents the number of packets a
packet classification engine must process within
one second to keep pace with the traffic load. As
can be observed from the plot, a packet
classification engine must be able to classify
roughly 60 packets per second (pps) in the worst
case for the Bell trace, and 260 pps in the worst
case for the OGI trace. Average packet load during
the entire trace is 270.7 and 4335.4 pps for the
Bell and OGI traces respectively. Peak packet rate
for the Bell trace approached 1400 pps, while the
peak rate for the OGI trace exceeded 8000 pps.

By employing a 2600 byte digest cache, the
peak stress level on the packet classification
engine has been reduced by a factor of between 20
and 30 for the observed traces.

V. HARDWARE OVERHEAD
A preliminary implementation on Intel’s

IXP1200 Network Processor [17] was constructed
to estimate the amount of processing overhead a
cache would add. The hardware tested was an
IXP1200 board, with a 200 MHz StrongARM, 6

0

20

40

60

80

100

120

0 500 1000 1500 2000 2500 3000 3500

Nu
mb

er
of

ca
ch

em
iss

es
ov

er
1s

ec
on

di
nv

erv
als

Time since start of trace (seconds)

Bell Trace

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500 3000 3500

Nu
mb

er
of

ca
ch

em
iss

es
ov

er
1s

ec
on

di
nv

erv
als

Time since start of trace (seconds)

OGI Trace

Figure 9: Cache miss rates aggregate over 1 second intervals, using a 2600 byte 4-way set associative
digest cache. The Bell trace gave a 95.9% hit rate, while the OGI trace achieved a 97.6% hit rate.

packet-processing microengines and 16 ethernet
ports.

A simple micro-engine level layer-3 forwarder
was implemented as a baseline measurement. A
cache implementation was then grafted onto the
layer-3 forwarder code base. A null-classifier was
used, so that we could isolate the overhead
associated with the cache access routines. The
cache was placed into SRAM, because scratchpad
memory does not have a pipelined memory access
queue, and the SDRAM interface does not support
atomic bit-set operations.

The simulation was written entirely in
microengine C and performance tests were run in a
simulated virtual machine. A trie-based longest
prefix match on the destination address is always
performed, regardless of the outcome of the cache
operation.
A. IXP Overhead

The performance of our implementation was
evaluated on a simulated IXP1200 system, with 16
virtual ports. The implementation’s input buffers
were kept constantly filled, and we monitored the
average throughput of the system.

 The IXP1200 has a 3-level memory hierarchy,
scratchpad, SRAM and SDRAM, each having
4KB, 16MB and 256MB respectively. Scratchpad
memory is the fastest of the three, but does not
support queued memory access – subsequent
scratchpad memory accesses block until the first
access is complete. The IXP micro-code allows for
asynchronous memory access to SRAM and
SDRAM. The typical register allocation schema
allows for a maximum of 32 bytes to be read per
memory access.

The cache implementation we constructed was
designed in a way to ensure that no flow identifier
was successfully matched, and each packet
required an insertion of its flow ID into the cache.
This was done so that the worst possible
performance of a Bloom filter cache could be

ascertained. The code was structured in a way to
disallow any shortcutting or early negative
membership confirmation. The performance
results of the IXP implementation are presented in
Table 3, using a trace composed entirely of small,
64-byte packets. By comparison, a four-way set
associative digest cache was able to maintain a
sustained average throughput of 803 Mb/s.

The IXP is far from an ideal architecture to
implement a Bloom filter, in large part due to its
lack of small, high-speed bit-addressable on-chip
memory. Ideally, a Bloom filter would be
implemented in hardware that supports parallel
access on bit-addressable memory [27].
Nevertheless, the performance results presented
here serve to underscore the flexibility of our new
cache design – specialized hardware is not
required.
B. Future Designs

The next generation IXP2000 hardware will
feature 2560 bytes of on-chip memory per micro-
engine, improving access latencies by a factor of
fifteen [9][19].

Let us consider implementing a packet
classification cache on this architecture. If we used
this memory for an exact IPv4 cache, we would be
able to store a maximum 196 flow identifiers. An
equivalent IPv6 cache would be able to store only
69 flows. Using this memory in a 32-bit 4-way set
associative digest cache will allow each micro-
engine to cache 640 flows.

If we use an 8-bit 4-way set associative exact
digest cache, we can use just 1 KB of on-chip
memory, and 38KB of SRAM, to store over 1000
flows per micro-engine.

The ability for this algorithm to reduce the
amount of memory required to store a flow
identifier is especially important in this
architecture, because of the limited nature of
memory transfer registers. Each micro-engine
thread has access to 16 32-bit memory transfer
registers, which means that fetching more than one
IPv6 flow identifier requires multiple, independent
memory accesses, which must be serialized. Since
independent memory accesses are significantly
more expensive than single, longer memory
accesses, this significantly penalizes the
performance of a traditional set-associative cache.
Coupled with the fact that these memory accesses
must be serialized (the first access must complete
before the second one can be initiated) the
performance benefit of avoiding SRAM memory
accesses becomes overwhelmingly important.

For comparison, a modern TCAM
implementation can perform 100 million lookups

Table 3: Performance of Bloom Filter caches
in worst case data flows, on a simulated

IXP1200

Number of
Hash Levels

All-Miss Cache
Throughput

0 990 Mb/s
1 868 Mb/s
2 729 Mb/s
3 679 Mb/s
4 652 Mb/s
5 498 Mb/s

per second [28]. The IXP2000 can perform 233
million local memory accesses per second [19].
Without even considering the cost or power
required to maintain a TCAM, a digest cache
becomes a promising alternative.

These arguments make our proposed
techniques a prime candidate for creating efficient
caches for use on upcoming network processors.

CONCLUSION
Typical packet classification caches trade-off

size and performance. In this paper, we have
proposed a novel cache architecture that efficiently
and effectively uses memory, given a slightly
relaxed accuracy requirement. Performance of
any existing flow caching solution that employed
exact caching can be improved dramatically by
employing our technique, at the sacrifice of a
small amount of accuracy.

Our new technique is superior to previous
Bloom filter approximate caching algorithms, in
both theoretical and practical performance while
also addressing the shortcomings in the previous
Bloom Filter cache design without introducing any
additional drawbacks.

This technique can be applied to the design of a
novel 2-level exact cache, which can take
advantage of hierarchical memory to accelerate
exact caching algorithms, with strong results.

ACKNOWLEDGMENT
We would like to thank Ed Kaiser and Chris

Chambers for their comments regarding draft
versions of this paper. We would also like to thank
our anonymous reviewers for their feedback.

REFERENCES
[1] Bloom, B. H. Space/time tradeoffs in hash coding with

allowable errors. Communications of ACM 13, 7 (July 1970),
422-426

[2] Baboescu, F. and Varghese, G., Scalable Packet Classification.
In Proceedings of ACM SIGCOMM 2001, pages 199-210,
August 2001.

[3] Baboescu, F., Singh, S. and Varghese, G., Packet Classification
for Core Routers: Is There an Alternative to CAMs?,
Proceedings of IEEE Infocom 2003.

[4] Carter, L., and Wegman, M. Universal classes of hash functions.
Journal of Computer and System Sciences (1979), 143-154.

[5] Chang, F., Li, K. and Feng, W. Approximate Packet
Classificiation, In Proceedings of IEEE INFOCOM‘04, Hong
Kong, Mach 2004.

[6] Chiueh, T. and Pradhan, P. High Performance IP Routing Table
Lookup using CPU Caching In Proc. of IEEE INFOCOMM'99,
New York, NY, March 1999

[7] Chiueh, T. and Pradhan, P. Cache Memory Design for Network
Processors, Sixth International Symposium on High-
Performance Computer Architecture (HPCA 2000)

[8] claffy, k. Internet Traffic Characterization, Ph.D. thesis,
University of California, San Diego, 1994

[9] Comer, D. Network Systems design Using Network Processors.
Prentice Hall, 2003

[10] Dharmapurikar, S., Krishnamurthy, P., and David E. Taylor
Longest Prefix Matching using Bloom Filters, In Proceedings
of ACM SIGCOMM'03, August 25-29, 2003, Karlsruhe,
Germany.

[11] Feldmann, A., and S. Muthukrishnan, Tradeoffs for Packet
Classification, IEEE INFOCOM, 2000

[12] FIPS 180-1. Secure Hash Standard. U.S. Department of
Commerce/N.I.S.T., National Technical Information Service,
Springfield, VA, April 1995

[13] Fraleigh, C., Moon, S., Diot, C., Lyles, B., and Tobagi, F.
Packet-Level Traffic Measurements from a Tier-1 IP Backbone.
Sprint ATL Technical Report TR01-ATL-110101, November
2001, Burlingame, CA

[14] Gopalan, K. and Chiueh, T. Improving Route Lookup
Performance Using Network Processor Cache. In Proceedings
of the IEEE/ACM SC2002 Conference

[15] Gupta, P., and McKeown, N. Algorithms for packet
classification, IEEE Network Special Issue, March/April 2001,
vol. 15, no. 2, pages 24-32

[16] Huitima, C. IPv6: The New Internet Protocol (2nd Edition).
Prentice Hall, 1998.

[17] Intel IXP1200 Network Processor,
http://www.intel.com/design/network/products/npfamily/ixp120
0.htm

[18] Jain, R., Characteristics of destination address locality in
computer networks: a comparison of caching schemes,
Computer Networks and ISDN Systems, 18(4), pages 243-254,
May 1990

[19] Johnson, E. and Kunze, A. IXP1200 Programming. Intel Press,
2002.

[20] Lakshman, T. V., and Stiliadis, D., High-speed policy-based
packet forwarding using efficient multi-dimensional range
matching, In Proceedings of the ACM SIGCOMM 1998, pages
203-214, August, 1998

[21] Li, K., Chang, F., and Feng W., Architecture for Packet
Classification, In Proceedings of the 11th IEEE International
Conference on Networks (ICON 2003).

[22] McCreary, S., and claffy, k. Trends in wide area IP traffic
patterns a view from Ames Internet exchange. In ITC Specialist
Seminar, Monterey, California, May 2000

[23] Partridge, C., Carvey, P., et al. A 50 GB/s IP Router.
IEEE/ACM Transactions on Networking

[24] Partridge, C. Locality and route caches. NSF Workshop on
Internet Statistics Measurement and Analysis
(http://www.caida.org/outreach/isma/9602/positions/partridge.ht
ml), 1996.

[25] Passive Measurement and Analysis Project, National Laboratory
for Applied Network Research (NLANR), available at
http://pma.nlanr.net/Traces/Traces/

[26] Saltzer, J., Reed, D., and Clark, D. End-To-End Arguments In
System Design, ACM Transactions on Computer Systems, vol
2., no. 4, pages 277-288, 1984.

[27] Sanchez, L., W. Milliken, A., Snoeren, F. Tchakountio, C.
Jones, S. Kent, C. Partridge, and W. Strayer. Hardware support
for a hash-based IP traceback. In Proceedings of the 2nd
DARPA Information Survivability Conference and Exposition,
June 2001.

[28] SiberCore Technologies, SiberCAM Ultra-4.5M SCT4502
Product Brief. 2003

[29] Srinivasan, V., Varghese, G., Suri, S. and Waldvogel, M. “Fast
and Scalable Layer Four Switching” Proceedings of ACM
SIGCOMM 1998, pages 191-202, September, 1998

[30] Stone, J., Partridge, C. When the CRC and TCP checksum
disagree, In Proceedings of the ACM SIGCOMM 2000
Conference (SIGCOMM-00), pages 309-319, August 2000

[31] Qiu, L., Varghese, G., Suri, S. Fast firewall implementations for
software and hardware-based routers. In Proceedings of ACM
SIGMETRICS 2001, Cambridge, Mass, USA, June 2001.

[32] Xu, J., Singhal, M., and Degroat, J. A novel cache architecture
to support layer-four packet classification at memory access
speeds, In Proceeding of INFOCOM 2000, pages 1445-1454,
March 2000.

