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Abstract— In this paper, we propose a digest 

cache-based algorithm for efficient packet 
classification in network devices.  The digest 
cache-based algorithm classifies packets by 
using a hash of the flow identifier allowing for 
smaller sized cache entries at the expense of a 
small amount of packet misclassification. 
Experimentation will show that our technique 
is superior to previous Bloom filter based 
designs in all areas, including extensibility, 
computational complexity, and memory 
efficiency.  We also discuss how to extend this 
technique to improve performance for exact 
caches. 
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probabilistic algorithms 

I. INTRODUCTION 
As the number of hosts and network traffic 

continues to grow, the need to efficiently handle 
packets at line speed becomes increasingly 
important.  Packet classification is one technique 
that allows in-network devices such as firewalls, 
network address translators, and firewalls to 
provide differentiated service and access to 
network and host resources by efficiently 
determining how the packet should be processed.  
These services require a packet to be classified so 
that a set of rules can be applied to such network 
header information as the destination address, flow 
identifier, port number, or layer-4 protocol type.  
The development of more efficient classification 
algorithms has been the focus of many research 
papers including: [2],[11],[15],[20],[29],[31].   
However, the hardware requirements of 
performing a full classification on each packet at 

current line rates can be overwhelming [23]. 
Moreover, there does not appear to be a good 
algorithmic solution for multiple field classifiers 
containing more than two fields [3]. 

A classic approach to managing data streams 
that exhibit temporal locality is to employ a cache 
that stores recently referenced items. Packet 
classification is no different [8].  Such caches have 
been shown to increase the performance of route 
lookups significantly [18],[32].  How well a cache 
design performs is typically measured by its 
performance for a given cache size.  Generally, as 
additional capacity is added to the cache, the hit 
rates and performance of the packet classification 
engine should increase. Unlike route caches that 
only need to store destination address information, 
packet classification caches require the storage of 
full packet headers.  Unfortunately, due to the 
increasing size of packet headers (the eventual 
deployment of IPv6 [16]), storing full header 
information can be prohibitive given the cost of 
the high-speed memory that would be used to 
implement such a cache 

Recently, we proposed a third axis for 
designing packet classification algorithms: 
accuracy [5].  That is, given a certain amount of 
error allowed in packet classification, can packet 
classification speeds be significantly increased?  In 
a previous paper, we proposed the use of a 
modified Bloom filter [1] for packet classification.  
In that approach, classified packets satisfying a 
binary predicate are inserted into the filter that 
caches the decision. For instance, a network bridge 
would add flows that it has identified that it should 
forward to the Bloom filter. Subsequent packets 
then query the filter to quickly test membership 



before being processed further.  Packets that hit in 
the filter are processed immediately, based on the 
predicate, while packets that miss go through the 
full packet classification lookup process. 

There are three primary limitations of this 
previous work. First, each Bloom filter lookup 
requires N independent memory accesses, where 
N is the number of hash levels of the Bloom 
filter. For a Bloom filter optimized for a 1 in a 
billion packet misclassification probability 

30=N . Second, no mechanism exists to recover 
the current elements in a Bloom filter, preventing 
it from using efficient cache replacement 
mechanisms such as LRU. Finally, a Bloom cache 
is only effective in storing less than 256 binary 
predicates. Thus, it is not an appropriate data 
structure to attach an arbitrary amount of data, due 
to the increasing number of Bloom filters required 
to support the data. 

In this paper, we propose the notion of digest 
caches for efficient packet classification.  The goal 
of digest caches is similar to Bloom-filter caches, 
in that they trade some accuracy in packet 
classification in exchange for increased 
performance.  Digest caches, however, allow 
traditional cache management policies such as 
LRU to be employed to better manage the cache 
over time.  Instead of storing a Bloom filter 
signature of a flow identifier (source and 
destination IP addresses & ports and protocol 
type), it is necessary only to store a hash of the 
flow identifier, allowing for smaller sized cache 
entries. We will also discuss how to extend this 
idea to accelerate exact caching strategies by 
building multi-level caches with digest caches. 

Section II covers related work while Section III 
outlines the design of our architecture. Section IV 
evaluates the performance of our design using 
sample network traces while Section V discusses 
the performance overhead incurred by our 
algorithm as measured on the IXP1200 network 
processor platform. 

II. RELATED WORK 
Due to the high processing costs of packet 

classification, network appliance designers have 
resorted to using caches to speed up packet 
processing time. Early work in network cache 
design borrowed concepts from computer 
architecture (LRU stacks, set-associative multi-
level caches) [18]. Some caching strategies rely on 
CPU L1 and L2 cache [23] while others attempt to 
map the IP address space to memory address space 
to use the hardware TLB [6]. Another approach is 
to add an explicit timeout to an LRU set-
associative cache to improve performance by 
reducing thrashing [32]. More recently, in addition 

to leveraging the temporal locality observed on 
networks, approaches to improving cache 
performance have applied techniques to compress 
and cache IP ranges to take advantage of the 
spatial locality in the address space of flow 
identifiers [7],[14]. This effectively allows 
multiple flows to be cached in a single cache 
entry, so that the entire cache may be placed into 
small high-speed memory such as a processor's 
L1/L2 cache. There has been work using Bloom 
Filters to accelerate exact prefix-matching 
schemes [10]. 

Much of this work is not applicable to higher-
level flow identification that is the motivation for 
our work. Additionally, all of these bodies of work 
are fundamentally different from the material 
presented in this paper, because they only consider 
exact caching strategies. Our approach attempts to 
maximize performance given constrained 
resources and an allowable error rate.  

III. OUR APPROACH  
Network cache designs typically employ simple 

set associate hash tables, ideas that are borrowed 
from their traditional memory management 
counterparts.  The goal of the hash tables is to 
quickly determine the operation or forwarding 
interface that should be used, given the flow 
identifier.  Hashing the flow identifier allows 
traditional network processors to determine what 
operation or forwarding interface should be used 
while examining only a couple of entries in the 
cache.  We believe one limitation of exact 
matching caches for flow identifiers is the need to 
store quite large flow identifiers (e.g. 37 bytes for 
an IPv6 flow identifier) with each cache entry.   
This limits the amount of information one can 
cache or increases the time necessary to find 
information in the cache. 

In this paper, we propose the notion of digest 
caches. The most important property of a digest 
cache is that it stores only a hash of the flow 
identifier, instead of the entire flow identifier. The 
goal of the digest is to significantly reduce the 
amount of information stored in the cache, in 
exchange, for a small amount of error in cache 
lookups. As will be described later on in this 
section, digest caches can be used in two ways. 
First, they can be used as the only cache for the 
packet classifier, allowing the packet classifier 
caches to be small. Second, they can be used as an 
initial lookup in an exact classification scenario.  
This allows a system to quickly partition the 
incoming packets into those that are in the exact 
cache and those that are not. 



In the rest of this section, we will motivate 
approximate algorithms for packet classification 
caches.  We will then focus on properties of the 
digest cache, comparing it to previously proposed 
Bloom-filter-based packet classifiers, and using 
them to speed up exact packet classifiers. 

Digest caches are superior to Bloom caches in 
two ways. Cache lookups can be performed in a 
single memory access, and they allow direct 
addressing of elements, which can be used to 
implement efficient cache eviction algorithms, 
such as LRU. 
A. The Case for an Approximate Algorithm 

For the purposes of this study, we use a 
misclassification probability of one in a billion. 
Typically, TCP checksums will fail for 
approximately 1 in 1100 to 1 in 32000 packets, 
even when link-level CRCs should only admit 
error rates of 1 in 4 billion errors. On average, 
between 1 in 16 million to 1 in 10 billion TCP 
packets will contain an undetectable error [30]. 
We contend that a misclassification probability of 
this magnitude will not meaningfully degrade 
network reliability. It is the responsibility of the 
end system to detect and compensate for errors 
that may occur in the network [26]. 

Errors in the network are typically self-healing 
in the sense that misdirected flows will be evicted 
from the cache as they age. Moreover, the network 
already guards against mis-configurations and 
mistakes made by the hardware. For example, the 
IP TTL fields are used to protect against routing 
loops in the network. 

Another argument underscoring the unreliability 
of the network is that TCP flows that are in 
retransmission timeout (RTO) mode are of no use. 
Consider a web browser. Flows that are stalled in 
RTO mode often result in the user re-establishing 
a web-connection. In the case that a reload is 
necessary, a new ephemeral port will be chosen by 
the client, and thus a new flow identifier is 
constructed. If an approximate cache has 
misclassified a previous flow, it will have no 
impact on the classification of the new flow.  

In some cases, such as firewalls, it is undesirable 
for the cache systems to have errors. To “harden” 
approximate caching hardware against 
misclassifications, layer-4 hints, such as TCP SYN 
flags can be used to force a full packet 
classification pass to ensure that new flows are not 
misclassified. 

B. Dimensioning a Digest Cache 
The idea of our work is simply the direct 

comparison of hashed flow identifiers to match 
cached flows. In this sense, we will trade the 
accuracy of a cache for a reduced storage 
requirement. We will partition memory into a 
traditional, set-associative cache. 

 When constructing our cache, we need to 
decide how to structure our usage of memory. 
Previous work has demonstrated that higher cache 
associativity yields better cache hit-rates [18][21]. 
However, in the case of the digest cache, an 
increase in the degree of associativity must be 
accompanied by an increase in the size of the flow 
identifier’s hash, to compensate for the additional 
probability of collision. 

If the digest is a c -bit hash, and we have a d -
way set associative cache, then the probability of 
cache misidentification is 

 c
dp 2≈ (1) 

The equation can be described as follows: Each 
cache line has d entries, each entry of which can 
take c2 values. A misclassification occurs 
whenever a new entry has coincidentally the same 
hash value as any of the existing d entries. We 
must employ a stronger hash to compensate for 
increasing collision opportunities (associativity). 

Figure 1 graphs the number of flows that a 4-
way set associative can store, assuming different 
misclassification probability tolerances.  The 
maximum number of addressable flows increases 
linearly with the amount of memory, and 
decreases logarithmically with the 
misclassification rate. 
C. Theoretical Comparison 

To achieve a misclassification probability of 
one in a billion, a Bloom filter cache must use 30 
independent hash functions to optimally use 
memory. This allows us to store a maximum of k
flows in our cache [5], 
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where 30=L , the number of hash functions, M ,
the amount of memory, in bits, and p , the 
misidentification probability. To compare directly 
with a digest cache, the maximum number of 
flows that our scheme can store, independent of 
the associativity, is given by 
 

c
Mkdigest = (3) 



where the required number of bits in the digest 
function is given by 
  )/(log2 pdc = (4) 

This relation is dependent on p , the 
misidentification probability and d , the desired 
level of cache set associativity. The derivation of 
this formula follows from Equation 1. 

Figure 2 compares the storage capacity of both 
caching schemes. Both schemes linearly relate 
storage capacity to available memory, but it is 
interesting to note that simply storing a hash is 
more than 35% more efficient in terms of memory 
use than a Bloom filter, for this application. One 
property that makes a Bloom filter a useful 
algorithm is its ability to insert an unlimited 
number of signatures into the data structure, at a 
cost of an increased misidentification. However, 
since we prefer a bounded misclassification rate, 
this property is of no use to the solution to our 
problem. 
D. A Specific Example of a Digest Cache 

To illustrate the operation of a digest cache, we 
will construct an example application of a digest 
cache. Suppose we have a router with 16 
interfaces, and a set of classification rules, R. 

We begin by assuming that we have 64KB of 
memory to devote to the cache, and we wish to 
have a 4-way associative cache that has a 
misclassification probability of one in a billion. 

These parameters can be fulfilled by a 32-bit 
digest function, with 4 bits used to store per-flow 
routing information. Each cache entry is then 36 
bits, making each cache line 144 bits (18 bytes). 

64KB of cache memory partitioned into 18-
byte cache lines, gives a total of 3640 cache lines, 
which allows our cache to store 10920 distinct 
entries. A visual depiction of this cache is given in 
Figure 3. 

Now, let us consider a sample trace of the 
cache, which is initially empty. Suppose 2 distinct 
flows, A and B. 

1. Packet 1 arrives from flow A. 
a. The flow identifier of A is hashed to 

H1(A) to determine the cache line to look 
up. 

b. A is hashed again to H2(A), and compared 
to all 4 elements of the cache line. There 
is no match. 

c. A is classified by a standard flow 
classifier, and is found to route to 
interface 3. 

d. The signature H2(A), is placed in cache 
line H1(A), along with its routing 
information. (Interface 3) 

e. The packet is forwarded through interface 
3. 

2. Packet 2 arrives from flow A. 
a. The flow identifier of A is hashed to 

H1(A) to determine the cache line to look 
up. 

Figure 1: Maximum number of flows that can be 
addressed in a 4-way set associative digest cache, 
with different misclassification probabilities, p

Figure 2: Comparison of storage capacity of various 
caching schemes. The Bloom filter cache assumes a 
misidentification probability of one in a billion, 
which under optimal conditions is modeled by a 
Bloom filter with 30 hash functions. 



b. A is hashed again to H2(A), and compared 
to all 4 elements of the cache line. There 
is a match, and the packet is forwarded to 
interface 3. 

3. Packet 3 arrives from flow B. 
a. The flow identifier of B is hashed to 

H1(B) to determine the cache line to look 
up. Coincidentally, H1(A)= H1(B) 

b. B is hashed again to H2(B), and compared 
to all 4 elements of the cache line. 
Coincidentally, H2(A)= H2(B). There is a 
match, and the packet is forwarded to 
interface 3. The probability that this sort 
of misclassification occurs has a 
probability of 9124 32 −≈ e .

In the absence of misclassifications, this 
scheme behaves exactly as a 4-way set associative 
cache with 10920 entries (3640 cache lines). 

Using an equivalent amount of memory (64 
KB) a cache storing IPv4 flow identifiers will be 
able to store 4852 entries, and a cache storing IPv6 
flow identifiers will be able to store 1744 entries. 

The benefit of using a digest cache is two-fold. 
First, it increases the effective storage capacity of 
cache memory, allowing the use of smaller, faster 
memory. Second, it reduces the memory 
bandwidth required to support a cache by reducing 
the amount of data required to match a single 
packet. 

As intuition and previous studies would indicate, 
a larger cache will improve cache performance 
[18][21][24]. To that end, in this example, the 
deployment of a digest cache would have an effect 
of increasing effective cache size by a factor of 2-
6. 

E. Exact Classification with Digest Caches 
Digest caches can also be used to accelerate 

exact caching systems, by employing a multi-level 
cache ( Figure 4). A digest cache is constructed, in 
conjunction with an exact cache that shares the 
same dimensions. While the digest cache only 
stores a hash of flow identifiers, the exact cache 
stores the full flow identifier. Thus, the two 
hierarchies can be thought of as “mirrors” of each 
other. 

A c-bit, d-way set associative digest cache 
implemented in a sequential memory access model 
will be able to reduce the amount of exact cache 
memory accessed (due to cache misses) by a factor 
of  

 csavingsmissp 2
1

_ = (5) 

while the amount of exact cache memory accessed 
by a cache hit is reduced by a factor of  
 d

d
dp csavingshit

1
2
11

_
−×+= (6) 

Overview of Digest Cache: 
Cache Line 0       { 
Cache Line 1       { 
 

Cache Line 3639 { 

 

Figure 3: An overview of 64KB 4-way set associative digest cache, with a misclassification probability 
of 1 in a billion. This cache services a router with 16 interfaces. 

entry 0 entry 1 entry 2 entry 3 
entry 4 entry 5 entry 6 entry 7 

entry 109116 entry 109117 entry 109118 entry 109119

Figure 4: A multi-level digest-accelerated exact 
cache. The Digest cache allows you to filter 
potential hits quickly, using a small amount of 
faster memory. 
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The intuition behind Equation 6 is that each 
cache hit must access the exact flow identifier, 
while each associative cache entry has an access 
probability of c−2 .

Note that the digest cache allows for multiple 
entries in a cache line to share the same value 
because the exact cache can resolve collisions of 
this type. 

Since this application relies on hashing strength 
only for performance and not for correctness, it is 
not necessary to have as strong a misclassification 
rate. 

A multi-level 8-bit 4-way set associative digest-
accelerated cache will incur a 4-byte 1st level 
lookup overhead. However, it will reduce 2nd level 
memory access cost of an IPv6-bit cache miss 
lookup from 148 bytes to 37.4 bytes, and a cache 
miss lookup from 148 bytes to .6 bytes. Assuming 
a 95% hit rate, the average cost of cache lookups 
is reduced to 4 bytes of 1st level cache and 35.6 
bytes of 2nd level cache. 

IV. EVALUATION  
For evaluation purposes, we used two datasets, 

each of one hour in length. The first of the datasets 
was collected by Bell Labs research, Murray Hill, 
NJ, at the end of May 2002. This dataset was made 
available through a joint project between NLANR 
PMA and Internet Traffic Research Group [25]. 

The trace was of a 9 Mb/s Internet link, serving 
a staff of 400 people. 

 The second trace was a non-anonymized trace 
collected at our university OC-3c link. Our link 
connects with Internet2 in partnership with the 

Portland Research and Education Network 
(PREN). This trace was collected on the afternoon 
of July 26th, 2002. 

 Table 1 presents a summary of the statistics of 
these two datasets. A graph of the number of 
concurrent flows is shown in Figure 5. For the 
purposes of our graph, a flow is defined to be 
active between the time of its first and last packet, 
with a 60 second maximum inter-packet spacing. 
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Figure 5: Number of concurrent flows in test data sets 

Bell Trace OGI Trace 
Trace Length 
(seconds)  3600           3600 
Number of Packets 974613 15607297 
Avg. Packet Rate 
(Packets Per Second)  270.7        4335.4 
TCP Packets 303142   5034332 
UDP Packets 671471 10572965 
Number of Flows   32507     160087 
Number of TCP Flows   30337       82673 
Number of UDP 
Flows  2170       77414 
Avg. Flow Length 
(seconds)  3.27             10.21 
Longest Flow 
(seconds)  3599.95         3600 
Avg. Packets/Flow         29.98             97.49 
Avg. Packets/TCP 
Flow  9.99             60.89 
Avg. Packets/UDP 
Flow  309.43           136.58 
Max # of Concurrent 
Flows  268           567 

Table 1: Summary statistics for the sample 
traces 



This number is chosen in accordance with other 
measurement studies [13][22]. 

 A reference “perfect cache” was simulated. 
We define a perfect cache to be a fully associative 
cache with an infinite amount of memory. Thus, a 
perfect cache only takes the compulsory cache 
misses. The results are presented in Table 2. The 
OGI trace captured a portion of an active Half-life 
game server, whose activity is characterized by a 
moderate number (~20) of long-lived UDP flows. 

A. Reference Cache Implementations 
A Bloom filter cache[5] was simulated, using 

optimal dimensioning. Both cold caching and 
double-buffered aging strategies were run on the 
benchmark datasets. Optimal dimensioning for a 
misclassification probability of one in a billion 

requires 30 independent hash functions, meaning 
that each cache look-up and insertion operation 
requires 30 independent 1-bit memory accesses. 

The digest cache presented in this paper was 
chosen to be a four-way set associative hash table, 
using 32-bit flow identifier digests. Each lookup 
and insertion operation requires a single 16-byte 
memory request. An LRU cache replacement 
algorithm was chosen, due to its low cost 
complexity and near-optimal behaviour [18]. 

A 4-way set associative cache was chosen, 
because it performs almost as well as a fully 
associative cache [21]. Figure 6 graphs the 
behaviour of digest caches with different set 
associativities. 

We also compare our cache against a traditional 
four-way set associative layer-4 IPv4 and IPv6 
based hash tables. Each lookup and insertion 
operation requires a single 52-byte or 148-byte 
memory request, respectively. 

Hashing for all results presented in this paper 
was accomplished with a SHA-1 [12] hash. It is 
important to note that the cryptographic strength 
of the SHA-1 hash is not an important property of 
an effective hashing function in this domain. It is 
sufficient that it is a member of the class of 
universal hash functions [4].  
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misclassification rate of 1 in a billion 

Table 2: The results of simulating a perfect 
cache 

 Bell Trace OGI Trace 
Hit Rate  0.971     0.988 
Intrinsic Miss Rate  0.029     0.012 
Maximum misses 
(over 100ms intervals)  6 189 
Variance of misses 
(over 100 ms intervals)  1.3540   17.438 
Average misses (over 
100 ms intervals)  0.775      5.843 
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B. Results 
In evaluating the performance of the caching 
systems, we must consider two criteria – we must 
examine the overall hit-rate as well as the 
smoothness of the cache miss rate.  A cache that 
gives large bursts of cache misses is of no use, 
because it places strain on the packet classification 
engine. 

Figure 7 graphs the resulting hit rate of various 
caching strategies, using the sample traces. As 
expected, the digest cache scores hit-rates 
equivalent to an IPv6 based cache 10 times its 
size. More importantly, the digest cache still 
manages to out-perform a Bloom filter cache. The 
digest cache yields an equivalent hit rate of a cold-
caching Bloom filter 50-80% its size, and out-
performs a double-buffered Bloom filter cache 2-3 
times its size 

Figure 8 graphs the variance of cache miss rates 
of the different caching approaches, aggregate    
over    100ms   intervals.   As   can be observed 
from the two traces, a digest cache gives superior 
performance, minimizing the variance in aggregate 
cache misses. 

It is interesting to note that for extremely small 
cache sizes, the digest cache exhibits a greater 
variance in hit rate than almost all other schemes. 
This can be attributed to the fact that the other 
algorithms, in this interval, behave uniformly poor 
by comparison. 

As the cache size increases, this hit rate 
performance improves, and the variance of cache 
miss rates decreases to a very small number. This 

is an important observation because it implies that 
cache misses, in these traces, are not dominated by 
bursty access patterns. 

To consider a more specific example, we have 
constructed a 2600 byte 4-way set associative 
digest cache. This number was chosen to be 
coincidental with the amount of local memory 
available to a single IXP2000 family micro-
engine. 

Figure 9 presents a trace of the resulting cache 
miss rate, aggregate over one second intervals. 
This graph represents the number of packets a 
packet classification engine must process within 
one second to keep pace with the traffic load. As 
can be observed from the plot, a packet 
classification engine must be able to classify 
roughly 60 packets per second (pps) in the worst 
case for the Bell trace, and 260 pps in the worst 
case for the OGI trace. Average packet load during 
the entire trace is 270.7 and 4335.4 pps for the 
Bell and OGI traces respectively. Peak packet rate 
for the Bell trace approached 1400 pps, while the 
peak rate for the OGI trace exceeded 8000 pps. 

By employing a 2600 byte digest cache, the 
peak stress level on the packet classification 
engine has been reduced by a factor of between 20 
and 30 for the observed traces. 

V. HARDWARE OVERHEAD 
A preliminary implementation on Intel’s 

IXP1200 Network Processor [17] was constructed 
to estimate the amount of processing overhead a 
cache would add. The hardware tested was an 
IXP1200 board, with a 200 MHz StrongARM, 6 
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Figure 9: Cache miss rates aggregate over 1 second intervals, using a 2600 byte 4-way set associative 
digest cache. The Bell trace gave a 95.9% hit rate, while the OGI trace achieved a 97.6% hit rate. 



packet-processing microengines and 16 ethernet 
ports. 

A simple micro-engine level layer-3 forwarder 
was implemented as a baseline measurement. A 
cache implementation was then grafted onto the 
layer-3 forwarder code base. A null-classifier was 
used, so that we could isolate the overhead 
associated with the cache access routines. The 
cache was placed into SRAM, because scratchpad 
memory does not have a pipelined memory access 
queue, and the SDRAM interface does not support 
atomic bit-set operations. 

The simulation was written entirely in 
microengine C and performance tests were run in a 
simulated virtual machine. A trie-based longest 
prefix match on the destination address is always 
performed, regardless of the outcome of the cache 
operation. 
A. IXP Overhead 

The performance of our implementation was 
evaluated on a simulated IXP1200 system, with 16 
virtual ports. The implementation’s input buffers 
were kept constantly filled, and we monitored the 
average throughput of the system. 

 The IXP1200 has a 3-level memory hierarchy, 
scratchpad, SRAM and SDRAM, each having 
4KB, 16MB and 256MB respectively. Scratchpad 
memory is the fastest of the three, but does not 
support queued memory access – subsequent 
scratchpad memory accesses block until the first 
access is complete. The IXP micro-code allows for 
asynchronous memory access to SRAM and 
SDRAM. The typical register allocation schema 
allows for a maximum of 32 bytes to be read per 
memory access. 

The cache implementation we constructed was 
designed in a way to ensure that no flow identifier 
was successfully matched, and each packet 
required an insertion of its flow ID into the cache. 
This was done so that the worst possible 
performance of a Bloom filter cache could be 

ascertained. The code was structured in a way to 
disallow any shortcutting or early negative 
membership confirmation. The performance 
results of the IXP implementation are presented in 
Table 3, using a trace composed entirely of small, 
64-byte packets. By comparison, a four-way set 
associative digest cache was able to maintain a 
sustained average throughput of 803 Mb/s. 

The IXP is far from an ideal architecture to 
implement a Bloom filter, in large part due to its 
lack of small, high-speed bit-addressable on-chip 
memory. Ideally, a Bloom filter would be 
implemented in hardware that supports parallel 
access on bit-addressable memory [27].  
Nevertheless, the performance results presented 
here serve to underscore the flexibility of our new 
cache design – specialized hardware is not 
required. 
B. Future Designs 

The next generation IXP2000 hardware will 
feature 2560 bytes of on-chip memory per micro-
engine, improving access latencies by a factor of 
fifteen [9][19].  

Let us consider implementing a packet 
classification cache on this architecture. If we used 
this memory for an exact IPv4 cache, we would be 
able to store a maximum 196 flow identifiers. An 
equivalent IPv6 cache would be able to store only 
69 flows. Using this memory in a 32-bit 4-way set 
associative digest cache will allow each micro-
engine to cache 640 flows. 

If we use an 8-bit 4-way set associative exact 
digest cache, we can use just 1 KB of on-chip 
memory, and 38KB of SRAM, to store over 1000 
flows per micro-engine. 

The ability for this algorithm to reduce the 
amount of memory required to store a flow 
identifier is especially important in this 
architecture, because of the limited nature of 
memory transfer registers. Each micro-engine 
thread has access to 16 32-bit memory transfer 
registers, which means that fetching more than one 
IPv6 flow identifier requires multiple, independent 
memory accesses, which must be serialized.  Since 
independent memory accesses are significantly 
more expensive than single, longer memory 
accesses, this significantly penalizes the 
performance of a traditional set-associative cache. 
Coupled with the fact that these memory accesses 
must be serialized (the first access must complete 
before the second one can be initiated) the 
performance benefit of avoiding SRAM memory 
accesses becomes overwhelmingly important. 

For comparison, a modern TCAM 
implementation can perform 100 million lookups 

 

Table 3: Performance of Bloom Filter caches 
in worst case data flows, on a simulated 

IXP1200 

Number of 
Hash Levels 

All-Miss Cache 
Throughput 

0 990 Mb/s 
1 868 Mb/s 
2 729 Mb/s 
3 679 Mb/s 
4 652 Mb/s 
5 498 Mb/s 



per second [28]. The IXP2000 can perform 233 
million local memory accesses per second [19]. 
Without even considering the cost or power 
required to maintain a TCAM, a digest cache 
becomes a promising alternative. 

These arguments make our proposed 
techniques a prime candidate for creating efficient 
caches for use on upcoming network processors. 

CONCLUSION 
Typical packet classification caches trade-off 

size and performance.  In this paper, we have 
proposed a novel cache architecture that efficiently 
and effectively uses memory, given a slightly 
relaxed accuracy requirement.  Performance of 
any existing flow caching solution that employed 
exact caching can be improved dramatically by 
employing our technique, at the sacrifice of a 
small amount of accuracy. 

Our new technique is superior to previous 
Bloom filter approximate caching algorithms, in 
both theoretical and practical performance while 
also addressing the shortcomings in the previous 
Bloom Filter cache design without introducing any 
additional drawbacks.  

This technique can be applied to the design of a 
novel 2-level exact cache, which can take 
advantage of hierarchical memory to accelerate 
exact caching algorithms, with strong results. 
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