
Approximate Caches for Packet Classification

http://www.cse.ogi.edu/sysl/

The Motivation:
Packet Classifiers are getting more complex and
Flow Identifiers are getting more unwieldy
(IPv4->IPv6) So Packet Classification Caches
are getting bigger and slower

The Story:
What if we give up accuracy – let’s accept some
occasional mistakes. This allows us to save
memory and increase performance!

Optimizing a Bloom filter: This is the
traditional Bloom filter equation –
minimizing misclassification probability
for a fixed # of elements.

Bloom filter caches using different
number of hash functions: The
curve is very smooth near the
optimal point.

The interesting properties of a
Bloom Filter:
1) The # of elements that we can fit
in a Bloom filter is scales linearly
with the amount of memory

The # of flows we can store, if
we use multiple Bloom filters: The
decrease in # of flows is approx.
logarithmic with # of Bloom filters

Number of flows we can fit into a
Bloom filter cache: Using different
misclassification probabilities,
compared to an exact cache.

The Payoff: The cache hit rate
comparing Bloom filter caching and
traditional exact caching.

Francis Chang, Kang Li, Wu-chang Feng {francis, kangli, wuchang}@cse.ogi.edu

OGI SCHOOL OF SCIENCE & ENGINEERING
OREGON HEALTH & SCIENCE UNIVERSITY

Behind the scenes:
A Bloom filter optimized for packet
classification can store flow identifier
signatures.

H1() H2() H3() H4() H5()

1
1

1

1

11
1

1
1

11

1

1

1
Inserting a
flow ID into a
Bloom filter

Storing Forwarding Paths:
A Bloom filter can only store 1 bit of
information – set membership. For applications
more sophisticated than firewalls, we can store more information by using multiple Bloom filters.

So, by using an approximate caching strategy, we can build a cache architecture that’s faster, and more
memory efficient than existing exact caching strategies.

Lk

icationmisclassif M
Lp

 −−= 11

)1ln(1 LpL
M −−=κ

L=# hash levels, M=amount of memory, p= probability,
k=# of elements (flows).
We prefer to maximize the # of
elements for a fixed misclassification
probability.

20

40

60

80

100

120

140

1000 10000 100000

Hi
tra

te
(%

)

Amount of cache memory (in bytes)

OGI Trace, Perfect Cache
OGI Trace, Double-Buffered

OGI Trace, Cold Cache
OGI Trace, Pure LRU (IPv4)
OGI Trace, Pure LRU (IPv6)

pL 2log−=

2) The optimal # of hash levels in
Bloom filter is dependent only on the
misclassification probability, not the
amount of memory:

3) For a misclassification probability
of 1 in a billion, optimal dimensioning
is L = 30 hash levels

Sponsored by Intel

