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Abstract 

 
Multi-field packet classification is frequently per-
formed by network devices such as edge routers and 
firewalls – such devices can utilize programmable 
network processors to perform this compute-intensive 
task at nearly line speeds.  The architectures of pro-
grammable network processors are typically highly 
parallel and a single algorithm can be mapped in dif-
ferent ways onto the hardware. In this paper, we study 
the performance of two different design mappings of 
the Bit Vector packet classification algorithm on the 
Intel® IXP1200 network processor. We show that: (i) 
Overall, the parallel mapping has better packet proc-
essing rate (25% more) than the pipelined mapping; 
(ii) In the parallel mapping, a processing element’s 
utilization can be considerably affected by code com-
plexity, in terms of branching, because of significant 
time wasted (as much as 40% more) due to aborting 
instruction execution pipelines; (iii) In the pipelined 
mapping, multiple memory reads per packet can lower 
the overall performance. 

1. Introduction 

Network devices such as firewalls, intrusion de-
tection systems and edge routers utilize packet classi-
fication based on multiple fields to detect anomalous 
traffic, determine attack patterns and provide differen-
tiated services. There are several algorithms that can 
be utilized for multi-dimensional packet classification. 
Many of the best ones are based on the Bit Vector [1], 
a highly parallel classification algorithm that was 
originally implemented using a custom ASIC.  

Programmable network processors are emerging 
platforms that aim to offer sophisticated packet proc-
essing capabilities for use in high-speed networks. 
Such network processors (NPs) can be utilized by 
network devices such as edge routers, firewalls, etc. to 
perform compute-intensive tasks such as packet classi-
fications at nearly line speeds. The architecture of NPs 
typically consists of multiple processing elements that 

can execute in parallel to facilitate fast-path packet 
processing [12, 13, 14]. Each processing element (PE) 
has multiple hardware thread contexts that enable 
thread context switches that have zero or minimal 
overhead.  

The binary image that is executed on a particular 
PE is pre-determined at compile/load time and we can 
map a single algorithm in different ways onto the PEs. 
This mapping needs to be determined prior to imple-
mentation, i.e. at design time and we call it a design 
mapping. Since different mappings could result in dif-
ferent performance/packet-processing speed, it is im-
perative that given an algorithm, the best possible 
mapping is chosen so that the network device that util-
izes this does not become a bottleneck. 

In this paper, we examine the impact that different 
design mappings (parallel and pipelined) of the Bit 
Vector have on performance, while implementing on 
the Intel® IXP1200 network processor [12]. Our pre-
liminary results show that the parallel design mapping 
has better packet processing rate than the pipelined 
mapping, primarily due to the multiple memory reads 
required per packet in the latter. 

The remainder of this paper is organized as fol-
lows: Section 2 presents the background concepts of 
the Bit Vector algorithm and IXP1200 processor. Sec-
tion 3 describes the two design mappings of the algo-
rithm and implementation details. The experiments, 
detailed results and analysis are presented in Section 4. 
We discuss related and future work in Section 5. Sec-
tion 6 presents the summary and conclusion. 

2. Background 

In this section, we describe background material 
relevant to the study presented in this paper. We first 
describe the hardware architecture of the IXP1200 and 
follow with a description of the Bit Vector algorithm. 

2.1. Intel® IXP1200 

The Intel® Internet Exchange Architecture (IXA) 
network processor family [15] is provided to universi-



ties through the Intel® IXA University program [18], 
along with the required development environment, for 
use in research projects. Hence, we choose the 
IXP1200, which is part of the IXA family, as our plat-
form for study. Complete description of the hardware 
architecture is available from other sources [10, 11] 
and we present here details that are relevant to our 
study. The IXP1200 is an integrated network proces-
sor, comprised of a single StrongARM processor, six 
microengines (individual processing elements), stan-
dard memory interfaces and high-speed bus interfaces. 
Figure 1 shows the block diagram of the IXP1200 ar-
chitecture [20]. 

On the microengines, instructions are executed in 
a five-stage pipeline. Each microengine has four 
hardware-assisted threads of execution. All threads in 
a particular microengine execute code from the same 
instruction store on that microengine. Communication 
between threads in a microengine is done using regis-
ters; communication across microengines is done us-
ing the shared SRAM and SDRAM.  

There are two basic programming choices in the 
Intel® Software Developer Kit – programming in mi-
crocode/assembly language using the microACE 
architecture [19] or programming in Microengine C 
(also known as microC) [17]. The latter is a C-like 
language that includes features for programming on 
the IXP1200. The code that we use in this study im-
plements microblocks (that run on microengines) us-
ing microC. This SDK was provided by Intel on a lim-
ited basis. 

 
Figure 1 (from [20]): Block diagram of the In-

tel® IXP1200 network processor  

2.2. Bit Vector algorithm 

As is typical with NPs, the hardware architecture 
of the IXP1200 is highly parallel. Hence, an algorithm 
that is capable of performing the various stages of 
classifying a packet in parallel is well suited for im-
plementation on the IXP1200. Several packet classifi-

cation algorithms [4, 5, 7, 8, 9] exist in current litera-
ture, each with different space-time tradeoffs [6]. 
From figures 1 and 2, we note the striking similarity of 
the architecture of an implementation of this algorithm 
and that of hardware architecture of a network proces-
sor. Thus, it is natural that the Bit Vector algorithm 
can be mapped onto an NP such as the IXP1200 eas-
ily. Hence, we consider the Bit Vector algorithm in 
this paper. A key feature of the IXP1200 is asynchro-
nous memory access. A microengine thread can issue 
a memory request and continue processing. The com-
pletion of the request can be asynchronously reported 
back to the microengine thread. This facilitates hiding 
memory latency – while one thread is waiting for a 
memory request to complete, another thread on the 
same microengine can execute. 

3. Design Mappings 

This section presents the implementation details 
of the Bit Vector algorithm and the two design map-
pings studied in this paper. While there are various 
possible mappings, we limit our study to two that are 
significantly different from each other in terms of mi-
croengine allocation for individual tasks. 

3.1. Bit Vector implementation 

Packet classification algorithms typically consist 
of two phases: a pre-processing phase, which com-
putes and builds the data structures in memory from 
input rules; and a classification phase, in which the 
data structures are looked up with the packet header 
values to determine the matching rule. For purposes of 
this study, we do not consider the performance of the 
pre-processing phase since this is not done in the fast 
path, but rather by the slower core processor.  

For our implementation, we choose the following 
data structures. The set of non-overlapping intervals of 
the range of values in the input rules are represented 
by binary tries for each dimension. A two-dimensional 
byte array represents the bit vector where each ele-
ment contains the matching rules for each range for 
each dimension. Complete explanation of the algo-
rithm’s working can be found from other sources [1, 
22]. While it is possible to use different data structures 
that will produce code with different performance 
characteristics, for our preliminary analysis, we use 
the data structures mentioned here and keep them con-
stant in both the design mappings to obtain a relative 
performance comparison. This is further discussed in 
section 4. 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.2. Mapping the algorithm to the IXP1200 

Recall that the code executed by each microen-
gine is pre-determined at compile and link time. 
Hence, we need to partition the responsibilities prior to 
implementing and running the code on the IXP1200. 
The two standard functions that will be required are 
receiving and transmitting packets. In all our imple-
mentations, we allocate microengine 0 and microen-
gine 5 for receiving and transmitting packets respec-
tively. That gives us four microengines to use in the 
classification phase. The implementation of the classi-
fication phase can be done in different ways. The fol-
lowing sections list two such mappings. We use the 
following terminology: microengines that perform 
classification, receive and transmit functions are called 
cls, rcv and xmit microengines respectively. 
 
3.2.1. Parallel Design Mapping. In this approach, all 
the classification steps for a single packet are per-
formed by a single hardware thread in one microen-
gine, as illustrated in Figure 3. We call this the parallel 
mapping or simply parallel. 

The detailed division of responsibility and inter-
microengine communication is as follows. Microengi-
nes 0 and 5 receive and transmit packets respectively. 
We reuse the code from the microC microACE sample 
for these, with minor modifications. Each of the four 
hardware threads on microengine 0 receives packets 
from a single port and queues them for use by micro-
engines 1 through 4. The queues used for this are cir-
cular and are placed in SRAM. Since there are four cls 
engines and all four perform the full classification for 

a packet, we create a queue for each of the cls hard-
ware threads. Each of the four rcv threads rotates 
through the four queue numbers sequentially. There 
are 128 entries in each queue and each entry occupies 
2 words or 8 bytes of SRAM memory. The threads in 
the cls microengines wait for a new entry in their re-
spective queue. Once an entry is available, it reads the 
appropriate packet headers, performs the classification 
and queues it for transmission by one of the xmit 
threads. Similar to the rcv threads, there are 4 xmit 
threads that service the 16 cls threads. Hence, each 
xmit thread rotates through transmitting packets from 
the 4 queues that are allocated to it.   
 
3.2.2. Pipelined Design Mapping. This design map-
ping is illustrated in Figure 4. The first step (lookup in 
the P-set) of classification for a packet is done by mul-
tiple microengines. 

Each microengine performs the lookup for one 
particular dimension. For example, microengine 1 de-
termines the range in the P-set for dimension 1; mi-
croengine 2 determines the same for dimension 2 and 
so on. At any given time, a single cls engine can per-
form a 1-dimension P-set lookup for 4 packets. The 
results of these lookups are sent to a different micro-
engine, which then retrieves the appropriate bit vectors 
and performs the logical AND operation. We call this 
the pipelined mapping or simply pipelined.   

3.3. Verification of the implementations  

We first implemented and verified the algorithm 
in C and then ported it to microC, applying the two di- 

Figure 2: Block diagram of a parallel implementation of the  
Bit Vector algorithm (from [1]) 
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Figure 3: Parallel design mapping of the Bit Vector algorithm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Pipelined design mapping of the Bit Vector algorithm 
 

-fferent design mappings. To verify correctness of the 
implementation on the IXP1200, we gradually in-
creased the number of threads and microengines exe-
cuting the code until all the microengines were being 
utilized. We tested the code with sample rulesets and 
packets and verified the correctness of the output 
packets using the logging facility provided by the 
IXP1200 simulator. The code was then run continu-
ously in the simulator for 8 hours and we verified that 
the simulator did not crash and that packets were re-
ceived and transmitted at steady rates.  

3.4. Other considerations 

3.4.1. Management application. In this paper, we 
study only the performance of the algorithm on the 
microengines which are the main components in the 
IXP1200 that offer the capability to perform wire-
speed packet processing. When implementing for real-
world use, there is the existence of a management ap-
plication that runs on the main processor of the host 
system. The presence of such an application has impli-
cations for the overall performance of the IXP1200 
system since there will be contention to shared data 
structures in memory. This paper does not consider the 
performance implications due to the introduction of a 
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management application or any other source of up-
dates to data structures in memory. 
 
3.4.2. Simulator. The algorithm is implemented in 
microC and is tested and run in the IXP1200 Devel-
oper Workbench which offers a cycle-accurate simula-
tor of the IXP1200. This environment provides access 
to several performance metrics that reflect the actual 
IXP1200 hardware. The code implemented for this 
study can be made to run on the actual IXP1200 hard-
ware. However, running microC microACE code on 
the hardware was not supported by Intel at the time of 
this study and hence we limit our study to using the 
simulator. 
 
3.4.3. Scalability of the Bit Vector algorithm. The 
size of rulesets used for packet classification varies 
depending on its purpose. For example, corporate 
intranets have approximately 150 rules, whereas large 
ISPs may have around 2400 rules [5]. The Bit Vector 
algorithm is well-suited for medium sized rulesets [1], 
with around 512 rules. From preliminary study of the 
basic Bit Vector algorithm, it is evident that it does not 
scale well for large rulesets due to the large memory 
requirement for such rulesets. Several optimizations 
have been proposed [1, 7] to the basic algorithm that 
enable more efficient use of the data structures in 
memory. This paper deals only with the basic Bit Vec-
tor algorithm since it studies the behavior and the rela-
tive performance of different design mappings of a 
particular algorithm. Also, the same fundamental idea 
of parallelism is present in the extended versions of 
the algorithm. Since this does not affect the perform-
ance evaluation in this study, we do not attempt to 
modify the basic algorithm to achieve better scalabil-
ity. 

4. Experiments and Results 

This section presents the performance data, col-
lected using the IXP1200 Developer Workbench, from 
executing the two design mappings of the Bit Vector 
algorithm. 

4.1. Ruleset 

We use a ruleset (shown in Table 1) with 4 rules, 
each rule specifies a 3-dimensional criteria and the 
width of each dimension is 4 bits. All the rules have 
the action set to “Allow”, to measure worst-case per-
formance. (For real world rulesets, the number of di-
mensions ranges from 1 to 5; number of rules ranges 
from 100s to 1000s; the width of the field takes values 
4 (for port numbers) and 128 (for IP addresses)).  

 

Table 1: Ruleset used in this study 
Rule Field 1 

(source IP 
address) 

Field 2 
(desti-
nation 
IP ad-
dress) 

Field 3 
(desti-
nation 
TCP 
port) 

Action 

R1 (10, 11) (2, 4) (8, 11) Allow 
R2 (4, 6) (8, 11) (1, 4) Allow 
R3 (9, 11) (5, 7) (12, 14) Allow 
R4 (6, 8) (1, 3) (5, 9) Allow 
 
While the performance of the algorithm will vary 

depending on the size and characteristics of the ruleset 
and the traffic being classified, this paper studies the 
comparison of two design mappings, given that these 
factors are constant. The results presented here (the 
performance of the Bit Vector algorithm itself) cannot 
be directly generalized and further study will be 
needed to observe the performance of the Bit Vector 
algorithm for a large input ruleset against various traf-
fic patterns. This would require implementing and 
studying Bit Vector algorithm using incremental reads 
[1], which scales better for large rulesets.  

 

4.2. Simulator configuration 

The IXP1200 Developer Workbench allows the 
user to specify different system configuration parame-
ters that are used by the simulator. For the experiments 
presented here, we use the basic configuration avail-
able – an IXP1200 chip with 1K microstore that has a 
core speed frequency of 165.890 MHz. We can also 
specify configuration settings for the IX Bus Device 
simulator which controls how packets are sent and re-
ceived from the simulator. For our use, we choose a 
device with 8 ports, each with a data rate of 100 Mbps 
and receive and transmit buffer sizes of 256 each. 
Since we have only one microengine (4 hardware 
threads) performing the receive operation, we support 
only four ports. Hence, we configure the simulator to 
send packet streams to only ports 0 through 3 of the 
device. We use 4 independent streams of 64-byte 
TCP/IP packets for the experiment. Each of these 
streams has packet header values that match one of the 
rules in the input ruleset. To compare the performance 
of the different mappings, we run each of the imple-
mentations in the simulator, until 75000 packets have 
been received by the IXP1200 from the bus. We then 
record the various performance metrics and use them 
for our analysis.  



4.3. Performance results 

We collected and observed several metrics such 
as total number of microengine cycles and total num-
ber of IX bus cycles spent to process all the packets, 
total throughput of the IXP1200, individual microen-
gine utilization (% time executing, aborted, idle) and 
the memory access rates. Figures 8 through 10 show 
the comparison of key metrics between the two design 
mappings.  

4.4. Analysis 

While comparing the performances of the two de-
sign approaches, it is important to keep in mind the al-
location of the microengines in each:  
• In both mappings, microengines 0 and 5 perform 

the receive and transmit functions respectively. 
• In parallel, microengines 1, 2, 3 and 4 perform 

the full classification functions. 
• In pipelined, microengines 1 and 2 perform 

lookup for IP addresses; microengine 3 performs 
lookup for the transport layer port number (or pro-
tocol); microengine 4 performs the step 2 of the 
algorithm – it combines the results from the pre-
vious lookups to determine the matching rule. 

Overall Analysis 
Figure 6 shows the receive and transmit rates of 

the IXP1200 for the two design mappings; Figure 7 
shows the packets sent/received ratio. In pipelined, we 
split the various steps in processing a packet across 
microengines, since it seems to be an ideal mapping 
for the algorithm. But the packet processing speed is 
reduced by 25% in pipelined than in parallel (seen in 
Figure 7). This is primarily because: (i) In parallel, the 
SDRAM access to read the packet header for classifi-
cation occurs only once, by a single hardware thread 
of the microengine that is performing the entire classi-
fication for that packet; (ii) In pipelined, splitting the 
lookups in step 1 of the algorithm across microengines 
for a single packet, causes three hardware threads on 
different microengines (1, 2 and 3) to access the 
packet header in SDRAM for that packet, thus increas-
ing the memory access time required to process one 
packet by three times. In network processor architec-
tures that have alternate faster mechanisms for inter-
processing element communication (such as next-
neighbor registers in the IXP2xxx family [12]); these 
can be utilized to avoid the multiple memory reads. 

As mentioned in Section 3.1, it is possible to use 
different data structures while implementing the Bit 
Vector algorithm. For example, instead of using binary 
tries for the P-sets, we could use multibit tries. The 
impact of such a data structure will depend on the 
characteristics of the input ruleset. We expect that 

there will be some extent of branching in the code, al-
though it may be lower than when using binary tries. 
Although multibit tries reduce the number of memory 
lookups required, they increase the overall memory 
required. On a network processor platform, fast mem-
ory is scarce and large memory available is much 
slower. Hence, such a data structure may not be suit-
able for use, depending on the size of the input ruleset. 
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Figure 6: Receive and transmit rates 
 
 

Microengine Utilization 
We focus here on one aspect of the microengine 

utilization: the microengine aborted time. This is the 
percentage of a microengine’s total time that was 
wasted due to instructions in its pipeline being 
aborted.  
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Figure 7: Packets sent/receive ratio 

 



From Figure 8, we see that the aborted time for 
the classification engines is lower in pipelined than 
that of parallel. It was observed from the simulator 
that microengine aborted time is typically due to 
branch instructions. This is reflected in the results. In 
particular, the aborted time for microengine 4 (which 
performs the full classification in parallel and only 
step 2 of the classification in pipelined) in pipelined is 
approximately 60% that of parallel. This is because in 
step 2 of the algorithm, we perform simple operations 
such as reading the bit vector from memory and per-
forming an AND operation. 

Thus, choosing simpler algorithms or designing 
algorithms that result in lower number of branch in-
structions is important in improving microengine utili-
zation. While programs are typically optimized to hide 
memory latency (facilitated by the underlying hard-
ware) to increase microengine utilization, this is an 
additional factor to consider while implementing on 
network processors.  
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Figure 8: Microengines aborted time 
 

The classification engines in pipelined exhibit more 
idle time than those in parallel (Figure 9). In pipe-
lined, a new packet cannot be handled by microengi-
nes earlier in the pipeline until there are available in-
ter-microengine buffer entries. These entries are freed 
only when the entire processing for that packet is 
completed by all microengines and the packet has 
been queued for transmission by microengine 4.  

We summarize our analysis by saying that overall, 
parallel performs better than pipelined. Depending on 
implementation factors in each mapping, the microen-
gines aborted and idle times vary affecting overall mi-
croengine utilization. 

5. Related Work 

There has been a recent study aimed towards de-
signing packet classification algorithms specifically 
for use on NPs [3]. It presents a detailed analysis of ty-  
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Figure 9: Microengines idle time 
 
-pical rulesets characteristics. Such analyses can b ex-
tremely useful for designing the input ruleset used for 
performance evaluation of an algorithm’s implementa-
tion. Guidelines for designing classification algorithms 
for network processors have also been presented [3] 
and it will be interesting to study the performance of 
different design mappings of such algorithms and ob-
serve the variance.  

Other studies [16, 20] have focused on using pro-
grammable network processors to implement network-
ing services. NP-Click [21] has been proposed as a 
programming model for the IXP1200. The effect of 
design mappings on the programming model is a pos-
sible topic for further study. 

6. Conclusion 

Multi-dimensional packet classification is an im-
portant function performed by network devices such as 
edge routers, firewalls and intrusion detection systems. 
Such devices can utilize programmable network proc-
essors to implement a multi-dimensional classification 
algorithm and perform this compute-intensive task at 
line speeds. The fact that a single algorithm can be 
mapped in different ways onto a network processor 
yielding different performance results motivates the 
study presented in this paper. The highly parallel na-
ture of the hardware architecture of the IXP1200 is 
well suited for a parallel search packet classification 
algorithm. Hence, we study the performance and be-
havior of such an algorithm - the Bit Vector algorithm. 
While actually implementing an algorithm on network 
processors, we deal with details such as queuing and 



memory accesses that vary depending on the design 
mapping. Thus, choosing the best possible design 
mapping of an algorithm is critical for achieving opti-
mal performance.  

We have presented performance results and 
analysis from running two different design mappings 
(parallel and pipelined) of the Bit Vector algorithm on 
the IXP1200 network processor. Several other design 
mappings of the algorithm are possible. For example, 
a single packet can be completely processed within a 
single microengine, with different functions performed 
by multiple threads.  

The parallel design mapping has a higher packet 
processing rate than the pipelined mapping, primarily 
due to multiple memory reads per packet in the latter. 
We observe that an important performance metric to 
be considered is the microengine aborted time, which 
occurs typically due to branch instructions in the code. 
One observation is that the aborted time of a microen-
gine which performs simpler operations in the pipe-
lined mapping than the corresponding one in the paral-
lel mapping is 60% lower. This indicates that algo-
rithms which have frequent complex branch decisions 
will perform worse than those that have simple in-
structions. These results can be used while designing 
packet classification algorithms or other class of algo-
rithms for implementation on programmable network 
processors. 
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