
 Performance Analysis of Multi-dimensional Packet Classification on
Programmable Network Processors

Deepa Srinivasan
IBM Corporation

RTP, North Carolina, USA
deepas@us.ibm.com

Wu-chang Feng
Portland State University
Portland, Oregon, USA
wuchang@cs.pdx.edu

Abstract

Multi-field packet classification is frequently per-
formed by network devices such as edge routers and
firewalls – such devices can utilize programmable
network processors to perform this compute-intensive
task at nearly line speeds. The architectures of pro-
grammable network processors are typically highly
parallel and a single algorithm can be mapped in dif-
ferent ways onto the hardware. In this paper, we study
the performance of two different design mappings of
the Bit Vector packet classification algorithm on the
Intel® IXP1200 network processor. We show that: (i)
Overall, the parallel mapping has better packet proc-
essing rate (25% more) than the pipelined mapping;
(ii) In the parallel mapping, a processing element’s
utilization can be considerably affected by code com-
plexity, in terms of branching, because of significant
time wasted (as much as 40% more) due to aborting
instruction execution pipelines; (iii) In the pipelined
mapping, multiple memory reads per packet can lower
the overall performance.

1. Introduction

Network devices such as firewalls, intrusion de-
tection systems and edge routers utilize packet classi-
fication based on multiple fields to detect anomalous
traffic, determine attack patterns and provide differen-
tiated services. There are several algorithms that can
be utilized for multi-dimensional packet classification.
Many of the best ones are based on the Bit Vector [1],
a highly parallel classification algorithm that was
originally implemented using a custom ASIC.

Programmable network processors are emerging
platforms that aim to offer sophisticated packet proc-
essing capabilities for use in high-speed networks.
Such network processors (NPs) can be utilized by
network devices such as edge routers, firewalls, etc. to
perform compute-intensive tasks such as packet classi-
fications at nearly line speeds. The architecture of NPs
typically consists of multiple processing elements that

can execute in parallel to facilitate fast-path packet
processing [12, 13, 14]. Each processing element (PE)
has multiple hardware thread contexts that enable
thread context switches that have zero or minimal
overhead.

The binary image that is executed on a particular
PE is pre-determined at compile/load time and we can
map a single algorithm in different ways onto the PEs.
This mapping needs to be determined prior to imple-
mentation, i.e. at design time and we call it a design
mapping. Since different mappings could result in dif-
ferent performance/packet-processing speed, it is im-
perative that given an algorithm, the best possible
mapping is chosen so that the network device that util-
izes this does not become a bottleneck.

In this paper, we examine the impact that different
design mappings (parallel and pipelined) of the Bit
Vector have on performance, while implementing on
the Intel® IXP1200 network processor [12]. Our pre-
liminary results show that the parallel design mapping
has better packet processing rate than the pipelined
mapping, primarily due to the multiple memory reads
required per packet in the latter.

The remainder of this paper is organized as fol-
lows: Section 2 presents the background concepts of
the Bit Vector algorithm and IXP1200 processor. Sec-
tion 3 describes the two design mappings of the algo-
rithm and implementation details. The experiments,
detailed results and analysis are presented in Section 4.
We discuss related and future work in Section 5. Sec-
tion 6 presents the summary and conclusion.

2. Background

In this section, we describe background material
relevant to the study presented in this paper. We first
describe the hardware architecture of the IXP1200 and
follow with a description of the Bit Vector algorithm.

2.1. Intel® IXP1200

The Intel® Internet Exchange Architecture (IXA)
network processor family [15] is provided to universi-

ties through the Intel® IXA University program [18],
along with the required development environment, for
use in research projects. Hence, we choose the
IXP1200, which is part of the IXA family, as our plat-
form for study. Complete description of the hardware
architecture is available from other sources [10, 11]
and we present here details that are relevant to our
study. The IXP1200 is an integrated network proces-
sor, comprised of a single StrongARM processor, six
microengines (individual processing elements), stan-
dard memory interfaces and high-speed bus interfaces.
Figure 1 shows the block diagram of the IXP1200 ar-
chitecture [20].

On the microengines, instructions are executed in
a five-stage pipeline. Each microengine has four
hardware-assisted threads of execution. All threads in
a particular microengine execute code from the same
instruction store on that microengine. Communication
between threads in a microengine is done using regis-
ters; communication across microengines is done us-
ing the shared SRAM and SDRAM.

There are two basic programming choices in the
Intel® Software Developer Kit – programming in mi-
crocode/assembly language using the microACE
architecture [19] or programming in Microengine C
(also known as microC) [17]. The latter is a C-like
language that includes features for programming on
the IXP1200. The code that we use in this study im-
plements microblocks (that run on microengines) us-
ing microC. This SDK was provided by Intel on a lim-
ited basis.

Figure 1 (from [20]): Block diagram of the In-

tel® IXP1200 network processor

2.2. Bit Vector algorithm

As is typical with NPs, the hardware architecture
of the IXP1200 is highly parallel. Hence, an algorithm
that is capable of performing the various stages of
classifying a packet in parallel is well suited for im-
plementation on the IXP1200. Several packet classifi-

cation algorithms [4, 5, 7, 8, 9] exist in current litera-
ture, each with different space-time tradeoffs [6].
From figures 1 and 2, we note the striking similarity of
the architecture of an implementation of this algorithm
and that of hardware architecture of a network proces-
sor. Thus, it is natural that the Bit Vector algorithm
can be mapped onto an NP such as the IXP1200 eas-
ily. Hence, we consider the Bit Vector algorithm in
this paper. A key feature of the IXP1200 is asynchro-
nous memory access. A microengine thread can issue
a memory request and continue processing. The com-
pletion of the request can be asynchronously reported
back to the microengine thread. This facilitates hiding
memory latency – while one thread is waiting for a
memory request to complete, another thread on the
same microengine can execute.

3. Design Mappings

This section presents the implementation details
of the Bit Vector algorithm and the two design map-
pings studied in this paper. While there are various
possible mappings, we limit our study to two that are
significantly different from each other in terms of mi-
croengine allocation for individual tasks.

3.1. Bit Vector implementation

Packet classification algorithms typically consist
of two phases: a pre-processing phase, which com-
putes and builds the data structures in memory from
input rules; and a classification phase, in which the
data structures are looked up with the packet header
values to determine the matching rule. For purposes of
this study, we do not consider the performance of the
pre-processing phase since this is not done in the fast
path, but rather by the slower core processor.

For our implementation, we choose the following
data structures. The set of non-overlapping intervals of
the range of values in the input rules are represented
by binary tries for each dimension. A two-dimensional
byte array represents the bit vector where each ele-
ment contains the matching rules for each range for
each dimension. Complete explanation of the algo-
rithm’s working can be found from other sources [1,
22]. While it is possible to use different data structures
that will produce code with different performance
characteristics, for our preliminary analysis, we use
the data structures mentioned here and keep them con-
stant in both the design mappings to obtain a relative
performance comparison. This is further discussed in
section 4.

3.2. Mapping the algorithm to the IXP1200

Recall that the code executed by each microen-
gine is pre-determined at compile and link time.
Hence, we need to partition the responsibilities prior to
implementing and running the code on the IXP1200.
The two standard functions that will be required are
receiving and transmitting packets. In all our imple-
mentations, we allocate microengine 0 and microen-
gine 5 for receiving and transmitting packets respec-
tively. That gives us four microengines to use in the
classification phase. The implementation of the classi-
fication phase can be done in different ways. The fol-
lowing sections list two such mappings. We use the
following terminology: microengines that perform
classification, receive and transmit functions are called
cls, rcv and xmit microengines respectively.

3.2.1. Parallel Design Mapping. In this approach, all
the classification steps for a single packet are per-
formed by a single hardware thread in one microen-
gine, as illustrated in Figure 3. We call this the parallel
mapping or simply parallel.

The detailed division of responsibility and inter-
microengine communication is as follows. Microengi-
nes 0 and 5 receive and transmit packets respectively.
We reuse the code from the microC microACE sample
for these, with minor modifications. Each of the four
hardware threads on microengine 0 receives packets
from a single port and queues them for use by micro-
engines 1 through 4. The queues used for this are cir-
cular and are placed in SRAM. Since there are four cls
engines and all four perform the full classification for

a packet, we create a queue for each of the cls hard-
ware threads. Each of the four rcv threads rotates
through the four queue numbers sequentially. There
are 128 entries in each queue and each entry occupies
2 words or 8 bytes of SRAM memory. The threads in
the cls microengines wait for a new entry in their re-
spective queue. Once an entry is available, it reads the
appropriate packet headers, performs the classification
and queues it for transmission by one of the xmit
threads. Similar to the rcv threads, there are 4 xmit
threads that service the 16 cls threads. Hence, each
xmit thread rotates through transmitting packets from
the 4 queues that are allocated to it.

3.2.2. Pipelined Design Mapping. This design map-
ping is illustrated in Figure 4. The first step (lookup in
the P-set) of classification for a packet is done by mul-
tiple microengines.

Each microengine performs the lookup for one
particular dimension. For example, microengine 1 de-
termines the range in the P-set for dimension 1; mi-
croengine 2 determines the same for dimension 2 and
so on. At any given time, a single cls engine can per-
form a 1-dimension P-set lookup for 4 packets. The
results of these lookups are sent to a different micro-
engine, which then retrieves the appropriate bit vectors
and performs the logical AND operation. We call this
the pipelined mapping or simply pipelined.

3.3. Verification of the implementations

We first implemented and verified the algorithm
in C and then ported it to microC, applying the two di-

Figure 2: Block diagram of a parallel implementation of the
Bit Vector algorithm (from [1])

Packet OutputPacket Input Temp Storage

AND

Processing
Element 1

Intervals

Bitmaps

Processing
Element 2

Intervals

Bitmaps

Processing
Element N

Intervals

Bitmaps

………..

Figure 3: Parallel design mapping of the Bit Vector algorithm

Figure 4: Pipelined design mapping of the Bit Vector algorithm

-fferent design mappings. To verify correctness of the
implementation on the IXP1200, we gradually in-
creased the number of threads and microengines exe-
cuting the code until all the microengines were being
utilized. We tested the code with sample rulesets and
packets and verified the correctness of the output
packets using the logging facility provided by the
IXP1200 simulator. The code was then run continu-
ously in the simulator for 8 hours and we verified that
the simulator did not crash and that packets were re-
ceived and transmitted at steady rates.

3.4. Other considerations

3.4.1. Management application. In this paper, we
study only the performance of the algorithm on the
microengines which are the main components in the
IXP1200 that offer the capability to perform wire-
speed packet processing. When implementing for real-
world use, there is the existence of a management ap-
plication that runs on the main processor of the host
system. The presence of such an application has impli-
cations for the overall performance of the IXP1200
system since there will be contention to shared data
structures in memory. This paper does not consider the
performance implications due to the introduction of a

Receive
packets

Transmit
packets

Transmit
packets

Receive
packets Classify packets

…
…
…

SRAM, SDRAM

Each thread does the
following:
- Lookup dim 1.. d in

P-sets
- Determine the bit

vector for each di-
mension

- AND all bit vectors
- Queue packet for

transmission/drop

Each thread does the
following:
- Lookup dim 1.. d in

P-sets
- Determine the bit

vector for each di-
mension

- AND all bit vectors
- Queue packet for

transmission/drop

Classify packets

SRAM, SDRAM

Each thread does the
following:
- Lookup dim x in

P-sets
- Determine the bit

vector for each
dimension

- Transmit packet
and result to step-2
µEngine

…
…
…

Each thread does the
following:
- Lookup dim x in

P-sets
- Determine the bit

vector for each
dimension

- Transmit packet
and result to step-2
µEngine

Each thread does the
following:
- Receive results

and packet from
other uEngines

- Find correspond-
ing bit vectors
and perform
AND

- Queue packet for
transmission/
other action

management application or any other source of up-
dates to data structures in memory.

3.4.2. Simulator. The algorithm is implemented in
microC and is tested and run in the IXP1200 Devel-
oper Workbench which offers a cycle-accurate simula-
tor of the IXP1200. This environment provides access
to several performance metrics that reflect the actual
IXP1200 hardware. The code implemented for this
study can be made to run on the actual IXP1200 hard-
ware. However, running microC microACE code on
the hardware was not supported by Intel at the time of
this study and hence we limit our study to using the
simulator.

3.4.3. Scalability of the Bit Vector algorithm. The
size of rulesets used for packet classification varies
depending on its purpose. For example, corporate
intranets have approximately 150 rules, whereas large
ISPs may have around 2400 rules [5]. The Bit Vector
algorithm is well-suited for medium sized rulesets [1],
with around 512 rules. From preliminary study of the
basic Bit Vector algorithm, it is evident that it does not
scale well for large rulesets due to the large memory
requirement for such rulesets. Several optimizations
have been proposed [1, 7] to the basic algorithm that
enable more efficient use of the data structures in
memory. This paper deals only with the basic Bit Vec-
tor algorithm since it studies the behavior and the rela-
tive performance of different design mappings of a
particular algorithm. Also, the same fundamental idea
of parallelism is present in the extended versions of
the algorithm. Since this does not affect the perform-
ance evaluation in this study, we do not attempt to
modify the basic algorithm to achieve better scalabil-
ity.

4. Experiments and Results

This section presents the performance data, col-
lected using the IXP1200 Developer Workbench, from
executing the two design mappings of the Bit Vector
algorithm.

4.1. Ruleset

We use a ruleset (shown in Table 1) with 4 rules,
each rule specifies a 3-dimensional criteria and the
width of each dimension is 4 bits. All the rules have
the action set to “Allow”, to measure worst-case per-
formance. (For real world rulesets, the number of di-
mensions ranges from 1 to 5; number of rules ranges
from 100s to 1000s; the width of the field takes values
4 (for port numbers) and 128 (for IP addresses)).

Table 1: Ruleset used in this study
Rule Field 1

(source IP
address)

Field 2
(desti-
nation
IP ad-
dress)

Field 3
(desti-
nation
TCP
port)

Action

R1 (10, 11) (2, 4) (8, 11) Allow
R2 (4, 6) (8, 11) (1, 4) Allow
R3 (9, 11) (5, 7) (12, 14) Allow
R4 (6, 8) (1, 3) (5, 9) Allow

While the performance of the algorithm will vary

depending on the size and characteristics of the ruleset
and the traffic being classified, this paper studies the
comparison of two design mappings, given that these
factors are constant. The results presented here (the
performance of the Bit Vector algorithm itself) cannot
be directly generalized and further study will be
needed to observe the performance of the Bit Vector
algorithm for a large input ruleset against various traf-
fic patterns. This would require implementing and
studying Bit Vector algorithm using incremental reads
[1], which scales better for large rulesets.

4.2. Simulator configuration

The IXP1200 Developer Workbench allows the
user to specify different system configuration parame-
ters that are used by the simulator. For the experiments
presented here, we use the basic configuration avail-
able – an IXP1200 chip with 1K microstore that has a
core speed frequency of 165.890 MHz. We can also
specify configuration settings for the IX Bus Device
simulator which controls how packets are sent and re-
ceived from the simulator. For our use, we choose a
device with 8 ports, each with a data rate of 100 Mbps
and receive and transmit buffer sizes of 256 each.
Since we have only one microengine (4 hardware
threads) performing the receive operation, we support
only four ports. Hence, we configure the simulator to
send packet streams to only ports 0 through 3 of the
device. We use 4 independent streams of 64-byte
TCP/IP packets for the experiment. Each of these
streams has packet header values that match one of the
rules in the input ruleset. To compare the performance
of the different mappings, we run each of the imple-
mentations in the simulator, until 75000 packets have
been received by the IXP1200 from the bus. We then
record the various performance metrics and use them
for our analysis.

4.3. Performance results

We collected and observed several metrics such
as total number of microengine cycles and total num-
ber of IX bus cycles spent to process all the packets,
total throughput of the IXP1200, individual microen-
gine utilization (% time executing, aborted, idle) and
the memory access rates. Figures 8 through 10 show
the comparison of key metrics between the two design
mappings.

4.4. Analysis

While comparing the performances of the two de-
sign approaches, it is important to keep in mind the al-
location of the microengines in each:
• In both mappings, microengines 0 and 5 perform

the receive and transmit functions respectively.
• In parallel, microengines 1, 2, 3 and 4 perform

the full classification functions.
• In pipelined, microengines 1 and 2 perform

lookup for IP addresses; microengine 3 performs
lookup for the transport layer port number (or pro-
tocol); microengine 4 performs the step 2 of the
algorithm – it combines the results from the pre-
vious lookups to determine the matching rule.

Overall Analysis
Figure 6 shows the receive and transmit rates of

the IXP1200 for the two design mappings; Figure 7
shows the packets sent/received ratio. In pipelined, we
split the various steps in processing a packet across
microengines, since it seems to be an ideal mapping
for the algorithm. But the packet processing speed is
reduced by 25% in pipelined than in parallel (seen in
Figure 7). This is primarily because: (i) In parallel, the
SDRAM access to read the packet header for classifi-
cation occurs only once, by a single hardware thread
of the microengine that is performing the entire classi-
fication for that packet; (ii) In pipelined, splitting the
lookups in step 1 of the algorithm across microengines
for a single packet, causes three hardware threads on
different microengines (1, 2 and 3) to access the
packet header in SDRAM for that packet, thus increas-
ing the memory access time required to process one
packet by three times. In network processor architec-
tures that have alternate faster mechanisms for inter-
processing element communication (such as next-
neighbor registers in the IXP2xxx family [12]); these
can be utilized to avoid the multiple memory reads.

As mentioned in Section 3.1, it is possible to use
different data structures while implementing the Bit
Vector algorithm. For example, instead of using binary
tries for the P-sets, we could use multibit tries. The
impact of such a data structure will depend on the
characteristics of the input ruleset. We expect that

there will be some extent of branching in the code, al-
though it may be lower than when using binary tries.
Although multibit tries reduce the number of memory
lookups required, they increase the overall memory
required. On a network processor platform, fast mem-
ory is scarce and large memory available is much
slower. Hence, such a data structure may not be suit-
able for use, depending on the size of the input ruleset.

0

50

100

150

200

250

300

350

400

450

Parallel Pipelined

Design Mapping
R

ec
ei

ve
 a

nd
 tr

an
sm

it
ra

te
s

(M
bp

s)

Receive rate Transmit rate

Figure 6: Receive and transmit rates

Microengine Utilization
We focus here on one aspect of the microengine

utilization: the microengine aborted time. This is the
percentage of a microengine’s total time that was
wasted due to instructions in its pipeline being
aborted.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Parallel Pipelined

Algorithm

Pa
ck

et
s

se
nt

/re
ce

iv
e

ra
tio

Figure 7: Packets sent/receive ratio

From Figure 8, we see that the aborted time for
the classification engines is lower in pipelined than
that of parallel. It was observed from the simulator
that microengine aborted time is typically due to
branch instructions. This is reflected in the results. In
particular, the aborted time for microengine 4 (which
performs the full classification in parallel and only
step 2 of the classification in pipelined) in pipelined is
approximately 60% that of parallel. This is because in
step 2 of the algorithm, we perform simple operations
such as reading the bit vector from memory and per-
forming an AND operation.

Thus, choosing simpler algorithms or designing
algorithms that result in lower number of branch in-
structions is important in improving microengine utili-
zation. While programs are typically optimized to hide
memory latency (facilitated by the underlying hard-
ware) to increase microengine utilization, this is an
additional factor to consider while implementing on
network processors.

0

5

10

15

20

25

0 (rcv) 1(cls) 2 (cls) 3 (cls) 4 (cls) 5
(xmit)

Microengine

Ab
or

te
d

(%
 ti

m
e)

Parallel mapping Pipelined mapping

Figure 8: Microengines aborted time

The classification engines in pipelined exhibit more
idle time than those in parallel (Figure 9). In pipe-
lined, a new packet cannot be handled by microengi-
nes earlier in the pipeline until there are available in-
ter-microengine buffer entries. These entries are freed
only when the entire processing for that packet is
completed by all microengines and the packet has
been queued for transmission by microengine 4.

We summarize our analysis by saying that overall,
parallel performs better than pipelined. Depending on
implementation factors in each mapping, the microen-
gines aborted and idle times vary affecting overall mi-
croengine utilization.

5. Related Work

There has been a recent study aimed towards de-
signing packet classification algorithms specifically
for use on NPs [3]. It presents a detailed analysis of ty-

0

5

10

15

20

25

30

35

0 (rcv) 1(cls) 2 (cls) 3 (cls) 4 (cls) 5 (xmit)

Microengine

Id
le

 (%
 ti

m
e)

Parallel Pipelined

Figure 9: Microengines idle time

-pical rulesets characteristics. Such analyses can b ex-
tremely useful for designing the input ruleset used for
performance evaluation of an algorithm’s implementa-
tion. Guidelines for designing classification algorithms
for network processors have also been presented [3]
and it will be interesting to study the performance of
different design mappings of such algorithms and ob-
serve the variance.

Other studies [16, 20] have focused on using pro-
grammable network processors to implement network-
ing services. NP-Click [21] has been proposed as a
programming model for the IXP1200. The effect of
design mappings on the programming model is a pos-
sible topic for further study.

6. Conclusion

Multi-dimensional packet classification is an im-
portant function performed by network devices such as
edge routers, firewalls and intrusion detection systems.
Such devices can utilize programmable network proc-
essors to implement a multi-dimensional classification
algorithm and perform this compute-intensive task at
line speeds. The fact that a single algorithm can be
mapped in different ways onto a network processor
yielding different performance results motivates the
study presented in this paper. The highly parallel na-
ture of the hardware architecture of the IXP1200 is
well suited for a parallel search packet classification
algorithm. Hence, we study the performance and be-
havior of such an algorithm - the Bit Vector algorithm.
While actually implementing an algorithm on network
processors, we deal with details such as queuing and

memory accesses that vary depending on the design
mapping. Thus, choosing the best possible design
mapping of an algorithm is critical for achieving opti-
mal performance.

We have presented performance results and
analysis from running two different design mappings
(parallel and pipelined) of the Bit Vector algorithm on
the IXP1200 network processor. Several other design
mappings of the algorithm are possible. For example,
a single packet can be completely processed within a
single microengine, with different functions performed
by multiple threads.

The parallel design mapping has a higher packet
processing rate than the pipelined mapping, primarily
due to multiple memory reads per packet in the latter.
We observe that an important performance metric to
be considered is the microengine aborted time, which
occurs typically due to branch instructions in the code.
One observation is that the aborted time of a microen-
gine which performs simpler operations in the pipe-
lined mapping than the corresponding one in the paral-
lel mapping is 60% lower. This indicates that algo-
rithms which have frequent complex branch decisions
will perform worse than those that have simple in-
structions. These results can be used while designing
packet classification algorithms or other class of algo-
rithms for implementation on programmable network
processors.

7. Acknowledgments

We are grateful to Erik J. Johnson, Senior Net-
work Software Engineer, Intel Corporation for provid-
ing the microengine C code libraries used in this study
and for providing technical advice as we progressed in
our research.

8. References

[1] T.V Lakshman, D. Stiliadis. “High-speed policy-based
Packet Forwarding Using Efficient Multi-dimensional Range
Matching”. Proceedings of ACM Sigcomm, pages 191-202,
September 1998.
[2] P. Gupta and N. McKeown. “Algorithms for Packet
Classification”. IEEE Network Magazine, 2001.
[3] M. Kounavis, A. Kumar, H. Vin, R. Yavatkar and A.
Campbell. “Directions in Packet Classification for Network
Processors”. 9th International Symposium on High-
Performance Computer Architecture, February 2003.
[4] V. Srinivasan, G.Varghese, S.Suri and M. Waldvogel.
“Fast and Scalable Layer Four Switching”. Proceedings of
ACM Sigcomm, pages 203-14, September 1998.
[5] M.M. Buddhikot, S. Suri, M. Waldvogel. “Space De-
composition Techniques for Fast Layer-4 Switching”. Pro-

ceedings of Conference on Protocols for High Speed Net-
works, pages 25-41, August 1999.
[6] A. Feldmann and S. Muthukrishnan. “Tradeoffs for
Packet Classification”. Proceedings of Infocom, vol. 3,
pages 1193-202, March 2000.
[7] P. Gupta and N. McKeown. “Packet Classification on
Multiple Fields”. Proc. Sigcomm, Computer Communication
Review, vol. 29, no. 4, pp 147-60, September 1999, Harvard
University
[8] P. Gupta and N. McKeown. “Packet Classification using
Hierarchical Intelligent Cuttings”. Proceedings of Hot Inter-
connects VII, August 99, Stanford. This paper is also avail-
able in IEEE Micro, pp 34-41, vol. 20, no. 1, Janu-
ary/February 2000.
[9] F. Baboescu and G. Varghese. “Scalable Packet Classifi-
cation”. Proceedings of ACM Sigcomm, pages 199-210,
August, 2001.
[10] IXP1200 Hardware Reference Manual, published by In-
tel Corporation.
[11] E. Johnson and A. Kunze. “IXP1200 Programming”,
published by Intel Press, ISBN 0-9702846-7-5.
[12] Intel Corporation. Intel Network Processors product in-
formation.
http://www.intel.com/design/network/products/npfamily.
[13] IBM Corporation. IBM PowerNP™ product informa-
tion. http://www-
3.ibm.com/chips/products/wired/products/network_processo
rs.html.
[14] Motorola Inc. C-Port™ Network Processors
http://www.motorola.com/networkprocessors.
[15] P.N. Glaskowsky. “Intel beefs up networking line”. Mi-
croprocessor Report, March 2002.
[16] T. Spalink, S. Karlin, L. Peterson. “Evaluating network
processors in IP forwarding”. Technical report 626-00,
Princeton University, November 2000.
17] Intel Corporation. “Intel Microengine C Compiler Lan-
guage Support Reference Manual”, March 2002.
[18] Intel Corporation. “Intel IXA University Program”.
http://www.ixaedu.com.
[19] Intel Corporation. “Developing ACE for Intel IXP1200
Reference Manual”, March 2002.
[20] T. Spalink, S. Karlin, L. Peterson, Y. Gottlieb. “Build-
ing a Robust Software-based Router using Network Proces-
sors”. Proceedings of the 18th ACM Symposium on Operat-
ing Systems Principles, pages 216 – 229, October 2001.
[21] N. Shah, W. Plishker, K. Keutzer. “Np-Click: A Pro-
gramming Model for the Intel IXP1200”. 9th International
Symposium on High-Performance Computer Architecture,
February 2003.
[22] D. Srinivasan. “Performance Analysis of Packet Classi-
fication Algorithms on Network Processors”. Masters The-
sis, Department of Computer Science & Engineering,
OHSU, May 2003

Intel is a trademark or registered trademark of Intel Corporation or
its subsidiaries in the United States and other countries. Other
brands and names are the property of their respective owners.

