
SpotCheck: An Efficient Defense Against
Information Exposure Cheats

Sam Moffatt
moffatts@cs.pdx.edu

Portland State University

Akshay Dua
akshay@cs.pdx.edu

Portland State University

Wu-chang Feng
wuchang@cs.pdx.edu

Portland State University

Abstract—A lot of hidden information is present in client
programs of most existing online multi-player games. This hidden
information is necessary for clients to render a player’s view of
the game. However, the same hidden information can be exploited
by cheaters to gain an unfair advantage over other players.
Eliminating hidden information from the game client comes at
a significant cost to the server, since it must now send the data
required to render a client’s view on-demand. Consequently, the
burden of tracking a player’s view shifts from the client to the
server, hindering scalability and degrading game performance.
We propose SpotCheck, a more scalable approach for detecting
information exposure cheats. The key idea is that servers still
disseminate game state information on-demand, but clients retain
the burden of tracking a player’s view. After each move, clients
must submit a descriptor pertaining to the player’s view. The
server then randomly chooses to validate the descriptor and sends
back relevant game state information. Our experimental results
show, that SpotCheck can reduce the server CPU overhead by as
much as half when compared to the alternative, while still being
an effective defense against information exposure cheats.

I. INTRODUCTION

Malicious access to hidden game client data allows cheaters
to gain undue advantage in multi-player online games. Such
cheats have been classified under the term information expo-
sure [1], [2] and can be quite catastrophic. For example, in the
real-time strategy game Age of Empires, a “map hack” allows
the cheater to uncover map areas by modifying game client
memory rather than actually exploring them, and to learn about
secret resources and activities of opponents normally hidden
to the player. In the words of Matthew Pritchard [2], “this
cheating method was the next best thing to looking over the
shoulders of his [the cheater’s] opponents.”

In client–server online games, information exposure cheats
can be prevented by not introducing hidden state information
in the game client. This can be done by having the server
load game state information on-demand [11]. For example, the
server could gradually expose only those portions of the game
map a player can ’see’. Unfortunately, this method introduces
game rendering delays because clients now need to retrieve
state information from the server after each move. Further,
the computational overhead of managing, disseminating, and
maintaining consistency across views hinders server scalability
[3], [4], [11]. A more scalable approach enables the server
to perform eager loading, in which, move updates from one
player are sent to every other player as they happen. Conse-
quently, clients always have the game rendering information

available locally. Since eager loading eliminates the burden
of managing each player’s view on the server and reduces
game rendering delays, it is in widespread use by online games
today. The disadvantage is that the game client now contains
sensitive information belonging to other players that may not
even be required to render the current game view, leaving open
the potential for information exposure cheats.

In this paper, we present SpotCheck, a more balanced
defense against information exposure cheats in client–server
online games. SpotCheck enables the client, after each move,
to compute and submit a description of its game view. The
server then randomly chooses to validate the descriptor, if
so, then a valid descriptor results in response containing the
contents of the view. Like on-demand loading, SpotCheck
eliminates the need for hidden information in the game client;
and like eager loading it doesn’t require the server to store and
track a client’s view. However, information exposure cheats
can now occur by sending illegal view descriptors to the
server. The advantage with SpotCheck is that the overhead
of checking the view descriptor can be traded for improved
game performance. For example, instead of checking every
view descriptor, the server can randomly check only a fraction
of them. Although this introduces opportunities for cheating,
repeat offenders will eventually be identified. We study cheat
detection time in Section VII.

The contributions of this paper are:

• The design and implementation of SpotCheck: an efficient
and effective method for detecting information exposure
cheats via random sampling and verification of a player’s
game state.

• An evaluation of SpotCheck’s effectiveness and its re-
source requirements in the context of a toy multi-player
real-time strategy game we call Explorer.

• A formal description of the class of games that can benefit
from SpotCheck.

II. MOTIVATION

Our goal is to develop an effective and scalable solution for
detecting information exposure cheats in client–server online
games. Existing solutions are either effective and not scalable,
or vice versa. Popular games like World of WarCraft [5] and
StarCraft [6] use an anti-cheating software called Warden [7],
which runs on the client, scanning periodically for signatures

of common cheats [8]. Tools like Warden are not always effec-
tive for two reasons. First, they cannot detect new information
exposure cheats. For example, earlier map hacks were easy to
detect because they were implemented by patching the game
client, but new map hacks are harder to detect because they are
external to the game and work by reading game memory and
exposing the map areas via overlays [9]. Second, the scanning
performed by such tools is widely considered to be a risk to
personal privacy. The Electronic Frontier Foundation has even
labeled Warden as “spyware” [10]. Another solution, called
on-demand loading [11], proposes a change to the server’s
game state dissemination strategy that consequently prevents
all forms of information exposure cheats. In this method, the
server disseminates state information required to render the
game only when clients need it. Thus, on-demand loading
eliminates any hidden information in the game client, leaving
no useful information to expose. Webb et al. [12] have called
it the “most effective solution” against this form of cheating.
Unfortunately, the price of on-demand loading is excessive
server CPU overhead because the server must now track each
client’s view of the game. To avoid precisely this overhead,
existing games like World of Warcraft prefer eager-loading
[11]. Eager-loading involves sending state updates of one
player to every other player. This eliminates the burden of
tracking every player’s view on the server and allows any client
to independently render the game. However, now, each player
has state information belonging to all other players whether
or not it is needed to render their current view of the game.
As a result, the extraneous information is kept hidden in the
game client waiting to be exploited by those who know how
to bypass cheat detection tools like Warden.

SpotCheck proposes a middle ground: trust the client to
compute a description of its own view, but enable the server
to verify the description’s integrity. This approach does not
require the server to track client views, instead it only requires
the server to maintain global game state consistency and
verify view descriptors. As long as the verification process
is cheaper than tracking a client’s view, our approach will
be more scalable than on-demand loading. Additionally, like
on-demand loading, game state information is disseminated to
clients only as needed. Thus, there is no hidden information
in the game client that cheaters can exploit.

There is, however, another approach that could be used
to prevent information exposure cheats. Monch et al. [14]
propose a technique that perpetually obfuscates all game state
information stored in the client. The solution involves using
decoding and encoding functions before accessing or writing
any game state information. Also, since obfuscation does
not provide cryptographic secrecy, the hiding functions are
changed periodically via a secret channel. Thus, forcing an
adversary to constantly reverse engineer the hiding functions.

If hiding functions are efficient and can indeed be sur-
reptitiously changed faster than the time required to reverse
engineer them, then the above solution may be effective.
Unfortunately, the efficiency of the solution, the feasibility of
constantly generating and secretly transmitting strong hiding

functions, and in general the feasibility of developing tamper-
proof software is still unclear [12].

III. OVERVIEW

We analyze SpotCheck in the context of a simple real-
time strategy game we call Explorer. The game consists of
players exploring a 2D terrain consisting of walls and other
obstructions (Figure 1(a)). Multiple players can play the game
and each player can have multiple units exploring the terrain.
The map of the terrain is composed of grids and each grid can
contain either the terrain itself, part of a wall, a player’s unit, or
an obstruction. Additionally, unexplored regions of the terrain
and those that are outside a unit’s vision are kept hidden from
the player (Figure 1(b)). At any given time, a unit’s vision
consists of the contents of a 5 × 5 grid around its current
position. The only exception is that units cannot see through
walls, thus, parts of the terrain that belong inside the vision
but are blocked by walls will still be hidden. Player units can
move one grid at a time in vertical or horizontal directions
uncovering contents of unexplored regions of the terrain. In
its current state, the game defines no objectives, player unit
resources, or conditions for victory.

(a) Screenshot

View
Explored Region

Player
Unit

(b) Schematic

Fig. 1. Explorer overview

Formally though, SpotCheck is applicable to games consist-
ing of the following high-level components:

• 1 to n players
• 1 to m units per player
• Global game state St: the state of the game on the server

after move t, where t is a global move counter across
all players. The global game state for Explorer includes
location and type information about terrain, obstructions,
and player units.

• Game map M : a set of e×e square-shaped cell locations.
We assume a square-shaped map and cell for simplicity,
but SpotCheck need not be limited by the shape of the
map or the cell.

• View descriptor vi
t: the set of cell locations visible to all

units of player i after move t.
• View V i

t : view descriptor vi
t along with game state

information associated with cells in the descriptor.
• Explored Region Ei

t : game state information pertaining to
the region of the map explored by all the units of player
i after move t.

• State request U i
t : sent to the server by player i after move

t. The state request consists of the view descriptor vi
t ,unit

identifier and the new location of the player’s unit.
• State update Di

t: sent from the server to the client after
move t. The state update may contain a player’s current
view if generated in response to a state request, or it may
contain changes to the player’s current view as a result
of moves by other players.

The game progresses as players make their moves and send
corresponding state requests to the server. On receipt, the
server verifies the integrity of the state request by randomly
performing either a heuristic-based check, or a more expensive
full check. State requests for illegal cell locations, could escape
detection by heuristic-based checks, but will eventually be
detected by the full check. We evaluate this further in Section
VII. Once verification succeeds, the server sends back a state
update. The game client then uses this state update to render a
player’s current view of the game. Intermittently, move updates
from other players cause state updates to be sent to affected
players. However, these updates only include changes to a
player’s current view.

Our game, Explorer, can be configured to disseminate
state information using the three different strategies discussed
earlier: on-demand loading, eager loading, and SpotCheck’s
strategy. The state request in on-demand and eager loading
consists only of the player’s new unit location, where as for
SpotCheck, the state request contains the view descriptor as
well. The state update in on-demand loading and SpotCheck
consists of the player’s view, where as in eager loading, it
consists of information in a state request from any of the n
players.

IV. CHEAT MODEL

SpotCheck addresses application-level information exposure
cheats [12], but unlike eager loading where these cheats
are executed by accessing game client memory, SpotCheck
forces cheaters to send malformed state requests to the server.
Recall that players progress in the game by sending and
receiving responses to state requests. These state requests
contain the description of a player’s view, which is verified by
the server upon receipt. A cheater could conceivably construct
a state request with an illegal view descriptor vi

t
′ that includes

locations out of its actual view vi
t. For example, by requesting

state information for a cell across a wall, which by design
blocks a unit’s line of sight. If the server is unable to detect
such malformed requests, then cheaters could potentially learn
information about other players in any portion of the map.

In the context of SpotCheck, accessing game client memory
is not considered an information exposure cheat. Mainly be-
cause SpotCheck eliminates the need for any hidden informa-
tion in the game client. Note that hidden information is defined
as any state information associated with map cells outside the
explored region Ei

t . In the case where the player’s view V i
t

is a proper subset of the explored region Ei
t , this definition

does allow game state information Ei
t − V i

t in the client that
is not displayed to the player. However, this information is

not considered hidden because it was first displayed when the
player last visited those cells and has not been updated since.

Like on-demand loading, SpotCheck prevents infrastructure-
level information exposure cheats by design. These type of
cheats involve using a network hub and another host to sniff
one’s own game traffic and change the way it is rendered
on screen. For example, modifying the display driver on the
consorting host to render the game world with transparent
walls. In SpotCheck, since information about cells outside a
player’s view (e.g. behind walls) is never included in state
updates, it becomes futile to mount this type of cheat.

There are other ways of accessing hidden information that
are outside SpotCheck’s scope: a cheater might spoof a state
request pretending to be another player. This type of cheat
would need to be addressed by introducing appropriate au-
thentication mechanisms [12]; a cheater might snoop another
player’s communication channel with the server. This type of
cheat would need to be addressed by encrypting communica-
tions between the client and the server; a cheater might collude
with other players to gain collective information; and lastly,
a cheater might compromise the server to learn about global
game state, which is normally not exposed to clients.

V. CHEAT DETECTION

The game server detects a cheat when it can’t verify the
integrity of a client’s state request. State requests are sent to
the server each time a client moves one of its units to a new
location. The server then chooses to verify the state request
with a probability p. The randomness ensures that a cheater
does not know before hand if her state request is going to
be checked or not. Without that knowledge, a cheater risks
being detected and subsequently banned from the game. Since
cheaters cannot progress in the game without sending state
requests, they are forced to take their chances.

Notice that when p = 1, every state request is checked. The
parameter p essentially enables SpotCheck to provide game
servers the flexibility of balancing resources used for game
state management against those used for cheat detection. This
is unlike on-demand loading, where the server is forced to
track every client’s view. The trade off with SpotCheck is
that a cheater may initially get away, but with more cheat
attempts a malicious player will eventually be identified. Thus,
assuming that a player cheats during a move with probability
q, the expected number of moves in which the cheater will be
detected is:

E(T) =
∞∑

t=1

t× (1− pq)t−1 × pq =
1− pq

pq
(1)

Where T is a discrete random variable representing the
number of moves a cheater can make before getting caught. We
compare the expected outcome with the experimental result in
Section VII.

The server validates a state request by performing a full
check of its contents. A state request contains the player unit’s
new location (move), unit identity, and a view descriptor. A
move is considered valid if the unit advances to an empty

and allowed map cell (currently, our game does not support
multiple units in the same cell). A valid move results in an
update to the global game state. Then, the updated game state
information is used to construct the expected view descriptor
for the player and compared to the one that was included in
the request. Any discrepancies between the two is considered
a cheat attempt. A state request that passes the full check is
considered valid.

One disadvantage of probabilistically validating state re-
quests is that easily preventable cheat attempts can occasion-
ally escape detection. For example, a cheater may retrieve
a snapshot of the global game state by constructing a view
descriptor that includes all cell locations on the game map.
This cheat can easily be prevented by validating the size
of the view descriptor. To prevent such cheats, SpotCheck
allows game servers to perform heuristic-based checks of the
state request during those moves when the complete check
described above is not performed.

We have currently implemented two heuristic-based checks
of the state request. Each of these checks validate the range
of legal values for individual components of the state request.
The first heuristic, called distance bound, checks if the player’s
move is legal. So for example, in Explorer, units are not
allowed to move more than one cell at a time. The second
heuristic, called vision size bound, checks that the size of the
view descriptor does not exceed the possible maximum for the
player.

VI. ARCHITECTURE

The components of our game are split across the client and
server. At a high level, the game client accepts key stroke input
and renders the game, whereas the server validates the inputs
and sends back the information necessary to render the game.

A. Client Components

Game map. Stores the 2D game map. The map is composed
of cells each of which contain a wall, a player unit, an
obstruction, or the terrain itself. Information about the contents
of the map is stored in the local game state.

Game state manager. All the information about a player’s
explored region is stored in the local game state. The state
manager runs every time a move is generated and sends the
move along with the current view descriptor in a state request
to the server. The server validates the state request and sends
back a state update containing information required to render
the player’s view.

Rendering engine. Renders units, obstructions, walls, and
terrain on visible portions of the map while blacking out the
rest of the cells. After the state manager has received the
necessary information required to render the player’s view,
it is passed on to the rendering engine, which then draws the
view on the screen.

Input mechanism. Interprets key strokes as moves and
forwards them to the game state manager.

B. Server Components

Request validator. As shown in Figure 2, the validator
receives a state request from the client and chooses to either
validate it with a probability p or check it using simple
heuristics (see Section V). A state request that passes the
checks is then forwarded to the state update generator.

State update generator. Uses information in the state
request to update global game state. Then, information per-
taining to the player’s view is retrieved from the global game
state and sent as a state update.

Client Client

Heuristic
Checks

Full
Check

State
Update
Generator

RequestValidator

Game
State

p

1-p

State

Request

State

Update

(a) Current architecture

Client ClientState
Request
Logger

State
Update
Generator

Game
State

State
Request

Full
Check

GameState
Reconciler

Heuristic
Checks

State

Request
State

Update

Notification

(b) Alternative architecture: request validation in parallel

Fig. 2. SpotCheck server-side architecture

It is worth mentioning that the state request validator need
not run as part of the request processing pipeline (Figure
2(b)). The heuristic checks could still be done serially while
the full check would happen in the background. Any game
state corruption discovered during the full check may need
to be reconciled. Although we have not explicitly evaluated
this alternative, we believe that having the validator run in
parallel can reduce state update response time and lead to an
improved gaming experience with minimal impact on cheat
detection integrity or performance.

Although SpotCheck is designed to detect information expo-
sure cheats, it does not preclude including methods that detect
other classes of cheats. For example, in the future, we plan
to augment SpotCheck with code injection and entanglement
algorithms [14] that prevent bots/reflex enhancer cheats.

VII. RESULTS

We will now evaluate SpotCheck against on-demand and
eager loading while two players play a game of Explorer.
The performance of eager loading forms our baseline since
it provides no intrinsic protection against information expo-
sure cheats and is currently the most prevalent method for
disseminating game state information. On-demand loading is

very effective against protecting information exposure cheats,
but is expensive for game servers to implement.

Our goal is to significantly reduce the overhead on the
game server when compared to on-demand loading while
providing similar levels of protection against information
exposure cheats. Specifically, we will compare server CPU
overhead, message sizes, and client game rendering latency of
our approach with on-demand and eager loading. We will also
evaluate the time it takes for SpotCheck to detect information
exposure cheats.

A. Experimental Setup

The test system used to gather performance data is a
Dell Latitude E6510 configured with an Intel Core i5-M580
CPU running at 2.67 GHz with 4 GB of main memory.
Intel TurboBoost and SpeedStep were disabled through the
system BIOS. The operating system is a 32-bit Ubuntu 11.04
with Linux kernel version 2.6.38.9-generic. All experiments
were performed with the game client and server on the same
machine.

B. Evaluation

Figure 3 plots server CPU overhead of the three schemes
against units per player. Additionally, SpotCheck is plotted for
the scenarios where 100% (p = 1), 25%, and 5% of the state
requests are checked. The CPU overhead is measured as the
total CPU time required by the server to process, check, and
respond to a state request. Here, map size is held constant at
100× 100 cells and the error lines indicate a 95% confidence
interval over 200 runs per data point. Unless mentioned, the
stated constants remain the same for all future plots.

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50 60 70 80

M
e
a
n
 C

P
U

 T
im

e
 (

µ
se

c)

Units/Player

SpotCheck 100%
On Demand

SpotCheck 25%
SpotCheck 5%

Eager

Fig. 3. Server CPU overhead

The CPU overhead of SpotCheck and on-demand grows
because more units increase the size of a player’s view, which
consequently, requires more processing on the server. In eager
loading, the game client deals with views, thus the server’s
overhead remains nearly constant and less than on-demand or
SpotCheck. SpotCheck 100% incurs more overhead than on-
demand loading because checking every state request is more
expensive than tracking a player’s view. This is not surprising
because view tracking updates a stored view descriptor on the
server with every state request, where as validation involves

the more expensive operation of computing a new one from
scratch each time (see Section V). Notice though that spot
checking 5% of the requests requires nearly half the overhead
of on-demand, where as checking 25% requires slightly more.

Figure 4 plots expected (Equation 1) and observed num-
ber of moves SpotCheck requires to detect an information
exposure cheat versus various values of checking (p) and
cheating (q) frequencies. A move where no cheating takes
place is referred to as an “honest move”, while the opposite
is referred to as a “cheat move”. For this experiment, we
perform an information exposure cheat by issuing an illegal
state request, where the view descriptor contains a location
not in the player’s current view. We also ensure that the
information exposure cheat can bypass all heuristic checks.
Thus, the cheat can only be detected by a full check. We can
see that even when spot checking only 5% of the state requests,
players cheating 50% of the time are detected before their
25th cheat attempt. If players cheat less (5%) and SpotCheck
checks less (5%) then the number of moves required to detect
a cheater increase significantly, but the number cheat moves
remain small (≈ 15).

 0

 50

 100

 150

 200

 250

 300

Ex Ob Ex Ob Ex Ob Ex Ob Ex Ob

M
o
v
e
s

p,q =

Cheat Move
Honest Move

.05,.05.5,.05.2,.2.2,.05.05,.5

Fig. 4. Expected (Ex) and Observed (Ob) number of moves before a cheat
attempt is discovered. Number of cheats that escaped detection are also shown
as a portion of total moves.

Figure 5 (top) plots the size of a state update against the
percentage of occupied locations visible to a player on the
map. The size of the state update will significantly impact the
server’s outbound bandwidth requirements as players increase.
Here, we focus on the request and update sizes for only
one player with five units in the game. Additionally, 120
randomly chosen map locations are occupied by obstructions.
In Explorer, the state update contains five bytes of information
per location. We can see that under SpotCheck and on-
demand, the size of the state update depends on the occupied
locations visible to the player. Under eager loading, the server
is oblivious to a player’s view, thus it must send information
about all the locations in question, forcing the update size to
be larger than (or equal to) that of SpotCheck and on-demand.

Figure 5 (bottom) plots the size of the state request against
the percentage of locations visible to a player on the map.
Since the state request in eager and on-demand loading does
not contain a view descriptor, its size remains smaller than

 0
 100
 200
 300
 400
 500
 600
 700

 0 10 20 30 40 50 60 70 80 90 100

U
p

d
a
te

 S
iz

e
 (

B
y
te

s)

Occupied Locations (%)

Eager
SpotCheck/OnDemand

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

 0 10 20 30 40 50 60 70 80 90 100

R
e
q

u
e
st

 S
iz

e
 (

B
y
te

s)

Visible Locations (%)

Eager/OnDemand
SpotCheck

Fig. 5. State update and request message sizes

(or equal to) that of SpotCheck. Note, however, that Explorer
uses the most naive method of encoding view descriptors:
four bytes per visible location. Using better encoding schemes
should result in much smaller request sizes.

Figure 6 plots client game rendering latency for SpotCheck
(p = 0.05), on-demand, and eager loading. Rendering latency
is measured as total CPU time between sending a state request
and rendering the contents of the corresponding state update
on screen. Keep in mind that the client and server are on the
same machine hence the round-trip-time is fairly small. We
can see that rendering latency increases with units per player.
This is mainly because more resources are required to render
the larger view of all units. SpotCheck and on-demand induce
more latency than eager loading because of the additional
time the server spends verifying the state request and tracking
views respectively. Notice, however, that the latency incurred
by SpotCheck is consistently less than on-demand even though
SpotCheck requires more game processing on the client. This
is because the server is more efficient under SpotCheck than
under on-demand when responding to state requests.

 300

 320

 340

 360

 380

 400

 420

 440

 460

 0 10 20 30 40 50 60 70 80

La
te

n
cy

 (
M

ic
ro

 S
e
cs

)

Units/Player

Eager
SpotCheck 5%

On Demand

Fig. 6. Client game rendering latency for SpotCheck, on-demand, and eager
loading

VIII. CONCLUSION AND FUTURE WORK

We presented SpotCheck, an efficient defense against infor-
mation exposure cheats. SpotCheck strives to be the middle
ground between on-demand loading, which prevents this class
of cheats entirely, but is expensive for the game server to
implement; and eager loading, which provides no protection
from cheats, but is prevalent in online games today due to
its performance benefits. The key idea behind SpotCheck is
to allow the clients to track and request contents of their
game view, but randomly sample and validate their requests.
SpotCheck allows game servers to change the sampling fre-
quency, thus trading off CPU overhead for increased cheat
protection or vice versa. We have shown that SpotCheck can
reduce the server CPU overhead by as much as half when
compared to on-demand loading, while still being an effective
defense against information exposure cheats. In the future, we
plan to incorporate SpotCheck into a real-world game and
evaluate its performs with a much larger number of players.

This material is based upon work supported by the National
Science Foundation under Grant No. CNS-1017034. Any opinions,
findings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect
the views of the National Science Foundation.

REFERENCES

[1] S. Webb, S. and Soh, “A survey on network game cheats and
P2P solutions,” Australian Journal of Intelligent Information, vol. 9,
no. 4, pp. 34–43, 2008. [Online]. Available: http://computing.edu.au/
∼webbsd/webb07e.pdf

[2] M. Pritchard, “How to Hurt the Hackers:The Scoop on Internet
Cheating and How You Can Combat It,” http://www.gamasutra.com/
view/feature/3149/how to hurt the hackers the scoop .php?page=3,
July 2000, Gamasutra The Art & Business of Making Games.

[3] J. Vilches, “OnLive gets demoed, lag is a problem,” http://www.techspot.
com/news/37697-onlive-gets-demoed-lag-is-a-problem.html, Jan 2010.

[4] S. Miller II, “Beyond the hype of OnLive,” http://www.jsonline.com/
blogs/entertainment/41834997.html, Mar 2009.

[5] Blizzard Entertainment Inc., “World of Warcraft,” http://us.battle.net/
wow/en/.

[6] ——, “StarCraft II,” http://us.battle.net/sc2/en/.
[7] M. Schramm, “Blizzard’s new Warden, and our privacy,” http:

//wow.joystiq.com/2007/11/15/blizzards-new-warden-and-our-privacy/,
Nov 2007, WoW Insider.

[8] J. Thaler, “WardenNet,” http://www.ismods.com/warden/wardenfaq.php.
[9] Artek72, “[Undetected] SC2MapPro - An External Map Hack/Bot,” http:

//www.blizzhackers.cc/viewtopic.php?f=220&t=473310.
[10] Mark Ward, “Warcraft game maker in spying row,” http://news.bbc.co.

uk/2/hi/technology/4385050.stm, Oct 2005.
[11] K. Li, S. Ding, D. McCreary, and S. Webb, “Analysis of state exposure

control to prevent cheating in online games,” Proceedings of the 14th
international workshop on Network and operating systems support
for digital audio and video - NOSSDAV ’04, p. 140, 2004. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1005847.1005878

[12] S. D. Webb and S. Soh, “Cheating in networked computer games,”
Proceedings of the 2nd international conference on Digital interactive
media in entertainment and arts - DIMEA ’07, p. 105, 2007. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1306813.1306839

[13] H. Liu, M. Bowman, R. Adams, J. Hurliman, and D. Lake, “Scaling
virtual worlds: Simulation requirements and challenges.” in Winter
Simulation Conference’10, 2010, pp. 778–790.

[14] C. Mönch, G. Grimen, and R. Midtstraum, “Protecting online games
against cheating,” Proceedings of 5th ACM SIGCOMM workshop on
Network and system support for games - NetGames ’06, p. 20, 2006.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=1230040.
1230087

