
PlayerRating: A Reputation System for
Multiplayer Online Games

Edward Kaiser
Department of Computer Science

Portland State University
Portland, Oregon

edkaiser@cs.pdx.edu

Wu-chang Feng
Department of Computer Science

Portland State University
Portland, Oregon

wuchang@cs.pdx.edu

Abstract— In multiplayer online games, players interact with each
other using aliases which unfortunately enable antisocial behavior. Vague
rules and limited policing mean that only the very worst offenders
are ever disciplined. This paper presents PlayerRating, a distributed
reputation system specifically designed for online games. It leverages
the prior experiences of a player’s peers to determine the reputability of
all other peers, allowing well-behaved players to safely congregate and
avoid interaction with antisocial peers. The system has been implemented
as an interface add-on for the game World of Warcraft and is evaluated
theoretically and experimentally.

Index Terms— Online Games, Player Ratings, Reputation Systems.

I. INTRODUCTION

A. The Problem with Online Behavior

Like the users of many other network applications, players of
multiplayer online games interact with each other using aliases,
graphically represented by customizable avatars. An alias hides the
player’s real-world identity so they may be immersed in the virtual
world. Players invest considerable time, effort, and even money
improving the noteworthiness of their in-game persona – taking pride
in any renown that they achieve (colloquially referred to as “e-fame”).

Unfortunately, the anonymity provided by aliases leads to a number
of antisocial behaviors [1]. For example, players cheat to automate
the acquisition of wealth and items, or to misrepresent their abilities
and falsely receive recognition from their peers. Players scam their
peers (often exploiting a poorly designed facet of the user-interface)
to steal wealth or items. Sometimes powerful players “grief” weaker
players by playing in a manner that makes the game unenjoyable
for them (e.g., “corpse-camping” a victim who must resurrect at
the same location). Disgruntled players harass their peers through
in-game text or voice chat. Some players simply act selfishly with
poor sportsmanship (e.g., “rage quitting” the game when it greatly
inconveniences their peers).

Although these behaviors are against the spirit of the game and
many of its rules, limited policing resources mean that only the most
grievous infractions are ever investigated. Often the virtual commu-
nity is so large that a malicious player may negatively affect many
peers before sufficient complaints are raised to warrant developer
attention. Even then, the game rules regarding social behavior are
so vague that infringing players are given several warnings before
incurring significant repercussions. Innocent players are thus posed
with a dilemma: either they only play with peers they know and trust
“in real-life” (i.e., from outside the game) or they must risk playing
with peers they meet in-game who may behave poorly.

This material is based upon work supported by Intel Corporation under Grant 34557.
Any findings, conclusions, and recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of Intel.

978-1-4244-5604-8/09/$26.00 c© 2009 IEEE

B. Our Solution

This paper presents PlayerRating, a distributed reputation system
specifically designed for online games. It leverages the prior experi-
ences of a player’s peers to determine the reputability of other peers
they meet in-game. A player-specific reputation is bound to in-game
aliases (preserving real-world anonymity) and provides an indication
of the likely behavior one could expect from that player. This allows
well-behaved players to congregate and avoid antisocial players. The
novel features of PlayerRating are as follows:

EXPERIENCE SHARING. While some in-game mechanisms exist
for recording social relationships (e.g., friend-list and ignore-list)
that data is never propagated. PlayerRating transparently shares
player relationship data using strictly authenticated in-game channels
(avoiding Sybil attacks [2]). This allows the player to learn of their
peers’ behavior and enables them to congregate with friendly peers
and avoid known malicious peers.

PERSONAL PERSPECTIVE. Using the shared relationships, Player-
Rating locally learns the game’s social network from each player’s
perspective: players determine where they fit into the network by
rating peers that they like or dislike. The system propagates trust
through positive ratings to predict the player’s perceived reputation
of peers that they have yet to meet. The system works well without
knowing every rating, but improves as more ratings are observed.

FINE GRANULARITY. Existing mechanisms are too coarse, limit-
ing relationship data to: like, dislike, or ambivalence. In PlayerRating,
player relationships are analog meaning a player may express their
like or dislike of each peer to different degrees. The PlayerRating
system could be used to sort and better match players for group play,
or focus policing resources on the most disruptive players.

C. Related Work

EXISTING IN-GAME TOOLS. Many games offer simple tools
for tracking peers that a player likes (e.g., friend-list) or dislikes
(e.g., ignore-list). Extensions like PlayerNotes [3] add annotation
capabilities to those tools so that the player may be reminded why
they befriended or ignored peers. While these tools are easy to
implement and are present in many online games, they do not share
such preferences and thus cannot predict whether or not a player will
like a peer they meet in-game for the first time.

REPUTATION AND RECOMMENDER SYSTEMS. A common ap-
proach to improving online social interaction is the use of reputation
systems, such as eBay’s Feedback system [4] or Slashdot’s Karma
system [5]. Related to reputation systems are recommender systems
(where value is assessed for objects rather than people), the most
notable of which is the PageRank system that powers the Google
search engine [6].

The PageRank system determines the popularity or rank of a web-
page as the sum of all supporting evidence (i.e., HTML hyperlinks
pointing to it) weighted by the rank of the referring webpages and a
decay factor. The algorithm iteratively updates each webpage’s rank
through random walks of the Web, eventually reaching Web-wide
equilibrium. So long as a webpage has many references from popular
pages, it will also have a high PageRank.

Deployed reputation and recommender systems evaluate the global
perception of persons or objects, yielding rough predictions that
do not account for personal preference. For personalization, some
approaches (e.g., TrustRank [7] and Personal PageRank [8]) extend
PageRank while others (e.g., EigenTrust [9] and email filtering [10])
implement systems that operate in distributed fashion. Personalized
approaches allow people with similar interests (e.g., players who
dislike profanity) to congregate and form cliques, shown in Fig-
ure 1. Such approaches record peers that one likes or dislikes and
extrapolates personal and shared ratings to predict like and dislike
for personally unmet peers.

F1

self

F2

+

A1 F3

F4 F5A3A2

+−

Fig. 1. A small social network where the observer (self) belongs to a clique
with friends F1 and F2. Friend F1 dislikes A1 so without having met A1 the
observer will probably also dislike A1 and her clique. Friend F2 likes F3 so
without having met F3 the observer will probably also like F3. Furthermore,
the observer will probably also like F3’s friends F4 and F5, although with
less certainty.

Architecturally, our approach is similar to the PageRank system
but is computed in a distributed fashion. PlayerRating calculations
are tailored to better suit online games and direct exposure to players.
PlayerRating leverages both positive and negative ratings, as well as
bounding reputations so that they remain on a fixed scale and can be
more easily interpreted by players.

II. ARCHITECTURE

A. Definitions

This section defines the terminology used throughout this paper.
The complete set of players is denoted by Players. A rating is
the value corresponding to the opinion of one player (the rater,
i ∈ Players) about another player (the ratee, j ∈ Players) and
is denoted by ri,j ∈ [−1.0, 1.0], where a negative rating corresponds
to dislike or distrust, and a positive rating corresponds to like or trust.
A rating of 0.0 represents an unknown or neutral relationship.

The ratings for a given ratee j are combined to formulate their
reputation, denoted by Rj ∈ [−1.0, 1.0] with a similar interpretation
of affinity. Intuitively, a rater’s reputation dictates how influential their
ratings are in determining the reputation of their peers: disliked raters
will have little or no influence while liked raters will have more
influence.

B. Assumptions

An assumption underlying all reputation systems is that past
performance is a reliable indicator of future behavior, however,
players may reform and improve their conduct. The game population
forms a weighted directed graph where each vertex is an individual
player (uniquely identified by a player ID) and edges represent ratings.
The following assumptions are made:

• Ratings are subjective. Each player is allowed only one rating for
each peer. A rating encompasses the rater’s perception of every
interaction with the ratee; how they judge interactions and base
their ratings is up to them. To accommodate new interactions, a
rating may be updated or withdrawn by the rater at any time.

• Raters are authenticated. Communication is authenticated with
respect to the sender’s (i.e., rater’s) player ID by the server,
which is true in practically all online games.

• Players are self esteemed. It is assumed that players always view
themselves with highest regard (i.e., as absolutely likeable and
trustworthy); ratings where i = j are ignored and Rself = 1.0.

• Ratings are asymmetrical. It is likely that any two players will
have different opinions of each other and their peers.

• Positive ratings are transitive. Insofar as positive ratings repre-
sent trust, positive ratings and reputations are transitive. Specif-
ically, a peer trusted by a trusted peer becomes trusted, albeit
with less certainty. The opposite may not be true as the ratings
from distrusted peers are not necessarily useful.

• Ratings follow a power-law distribution. Players will self-
organize following a power-law distribution [11], like other
social systems [12], [13], [14], [15]. Much of the graph will be
sparse as most players will create few ratings – even in systems
with monetary incentive (e.g., eBay) only 60% of users ever
generate ratings [16]. However, the power-law-based “small-
world” model of Watts and Strogatz [17] indicates that a few
well-connected players will result in a short average path length
between any two players (i.e. only a few degrees of separation).
This is fundamental for the system to yield good predictions.

C. System Goals

Players compete over recognition and limited in-game resources
and will adopt tools that make the game more enjoyable or help
them outperform their peers. Any reputation system should improve
facilitate more positive player interactions yet prevent abuse:

• Incremental Deployment. As a new tool, the system must facil-
itate gradual adoption. Specifically, it must generate reputations
as accurately as possible given only partial yet frequently
updated graph information.

• Encourage Participation. Players cannot be expected to rate
every player they interact with, yet reputation systems become
more accurate with more ratings. The system must encourage
participation by being easy to use and immediately beneficial.

• Resistant to Abuse. While encouraging participation is important,
preventing abuse is equally important. Malicious players should
not be able to increase their own reputation, even through col-
lusion. Otherwise ill-gotten reputation could be used to slander
legitimate players, or worse, lure trusting players into scams.

• Minimal Overhead. As the goal of the system is to improve
the overall gameplay experience, it must not distract players at
inopportune times or degrade game performance. This means the
system should mostly operate in the background and be efficient
in terms of computation, storage, and communication.

D. System Design

Figure 2 overviews the PlayerRating system which operates in
a distributed fashion: each participating player runs a PlayerRating
agent within their game client that determines the reputation of their
peers, accounting for their personal perspective based on who they
like and dislike. This section illustrates system features using a World
of Warcraft [18] user-interface implementation [19], however, the
system can easily be adapted to other games and game genres.

PlayerRating
Agent

r R

Client without PlayerRating
Client using PlayerRating
Rating

Fig. 2. Overview of the PlayerRating distributed reputation system. Agents
calculate reputations from ratings (their own and those shared by peers).

Participation is optional in the sense that a player may choose not to
rate their peers, however, they cannot prevent their peers from rating
them. Furthermore, a player must accurately rate their peers before
their agent can accurately calculate meaningful peer reputations.

Each player rates their peers when it is convenient to do so,
presumably while socially interacting with the ratee or shortly there-
after. Ratings are shared with peers and expired periodically. Using
all currently known ratings, the PlayerRating agent calculates each
ratee’s reputation as the average of every rating about them, weighted
by the influence (a function of reputation) of the corresponding raters.
Ratings are not absolute, but instead express a ratee’s reputation
relative to that of the rater. Thus a ratee cannot be more reputable
than the most reputable rater who rated them, preventing collusion
via positive feedback loops.

1) Initialization: The initialization of a PlayerRating agent simply
involves zeroing all data (ratings, reputations, and related variables)
and fixing their own reputation Rself to 1.0.

2) Recording Ratings: The PlayerRating agent unobtrusively ex-
tends the game’s user interface (like the addition shown in Figure 3) to
enable the player to easily rate their peers. As defined earlier, ratings
run along a single dimension and represent the overall impression
about the ratee. It is possible to extend ratings to other dimensions
corresponding to criteria specific to player skills (e.g., ri,j,healer) or
behaviors (e.g., ri,j,swearing) although this would increase system
state and communication overheads. Some criteria may not be useful
enough to justify such overheads and warrants further investigation.

Fig. 3. The PlayerRating rating slide-bar added to the peer interaction menu
in World of Warcraft. The menu is only displayed when the player chooses
to interact socially with a peer.

The recording algorithm records both personally created ratings
and ratings disseminated by one’s peers. The freshness of a peer’s
rating is indicated by setting a corresponding time-to-live variable
ttli,j to the maximum value TTL MAX so that it may expire if it
later becomes irrelevant. Subsequent receipt of a peer’s rating that
had been previously recorded reaffirms the peer’s commitment to that
rating so the corresponding time-to-live value is reset to the maximum
value. By doing so, relevant ratings survive the expiration process.

3) Sharing Ratings: Ratings are disseminated transparently via
data channels which exist to support game modification (“modding”)
and operate similar to in-game chat channels. Only personally created
ratings are broadcast on the PlayerRating channels. All peers listening
to the channel may record ratings. A peer may record ratings from
an unknown rater (i.e., Ri = 0.0) with the idea that in the future
either they or someone they trust might determine that rater is also
trustworthy.

Communication is strongly-authenticated since each message must
go through the server which validates the sender’s alias. To mitigate
flooding, the server restricts message length to a couple hundred bytes
and limits senders to a few messages every 10 seconds. PlayerRating
agents may further limit ratings they accept to control the growth of
their knowledgebase.

DISSEMINATION POLICY. A game-tailored policy must share rat-
ings as quickly as possible yet minimize the required communication.
The dissemination policy must also introduce some redundancy over
time to ensure notification for peers who may have been offline
during earlier broadcasts and to reaffirm the continued conviction
in previously shared ratings otherwise they will be expired and
discarded by one’s peers. Strategies used by the World of Warcraft
implementation include: broadcasting a rating as it is created or
updated, broadcasting the rating after interacting with the ratee, and
periodically broadcasting ratings sequentially. Other strategies may
include broadcasting ratings randomly, or when joining a zone, small
server, or group.

4) Expiring Stale Peer Ratings: The persistent nature of online
games means that a lot can change while a player is offline. This
affects the PlayerRating system in that one’s peers may change or
revoke previously shared ratings, or quit playing the game (obviating
ratings created by or about them). To handle the possibility that the
PlayerRating agent may obliviously possess stale peer ratings, the
ratings collected from peers are slowly expired to ensure that the
knowledgebase only contains relevant data.

EXPIRY POLICY. Periodically with period Tdec, ratings are aged
by decrementing the associated time-to-live values. If a time-to-live
value reaches zero, the agent has not received any reaffirmation of the
peer’s conviction behind the corresponding rating, so it is expired and
removed from the knowledgebase. Players have accurate knowledge
of their own ratings so those ratings do not need to be expired. The
maximum lifetime of a peer’s outdated rating is

max lifetime = Tdec × TTL MAX (1)

As a part of the game client, the PlayerRating agent only runs while
the player is online so rating lifetime is measured in terms of played
time (referred to as “pTime” with units “pHours”, “pDays”, etc.).
While both Tdec and TTL MAX are currently set as system settings,
players could adjust them to change the maximum lifetime of ratings
and thus control the amount of state kept by their PlayerRating agent.
To be clear, a player that changes their own Tdec or TTL MAX does
not affect in any way how their peers store, use, or share ratings.

5) Calculating Reputations: The core algorithm of the PlayerRat-
ing system uses all known ratings to determine the reputations of
one’s peers, shown in Algorithm 1. The algorithm calculates the new
reputations R′ and updates R only once the entire graph has been
processed, meaning only line 10 must be atomic. As the bulk of
the algorithm is non-atomic, the algorithm may be periodically and
incrementally executed with low priority to avoid sudden computation
spikes that may result in degraded gameplay at inopportune times.

Algorithm 1 UpdateReputations()

1: R′, w ⇐ ∅
2: for all i ∈ Players do
3: w∆ ⇐ Influence(Ri)
4: for all j ∈ Players, ri,j 6= 0.0 and ¬IsSelf(j) do
5: R′∆ ⇐ (ri,j ×Ri × Decay(ttli,j))−R′j
6: wj ⇐ wj + w∆

7: R′j ⇐ R′j + (R′∆ × w∆
wj

)

8: end for
9: end for

10: R⇐ R′

One iteration of the algorithm loops over all the players (lines 2-9)
and their ratings (lines 4-8). Each rater’s influence is calculated (line
3) by a monotonically non-decreasing function of their reputation:
Influence(). In the World of Warcraft implementation, this function
is the square of positive reputation and is zero otherwise:

Influence(Ri) =

{
(Ri)

2 if Ri > 0.0
0.0 otherwise

(2)

Using this influence function, disliked and unknown peers have no
influence (all their ratings may be skipped) while liked peers have
quadraticly more influence.

For each non-zero rating where the ratee j is not the actual
player (i.e., is not self), the relative rating is decayed, weighted
and averaged (lines 5-7) with all other ratings about the ratee to
formulate the ratee’s new reputation R′j . Averaging relative ratings
(ri,j × Ri) means that a ratee cannot be more reputable than their
most reputable rater and that reputations will always fall on the same
scale as ratings (i.e., [-1.0, 1.0]). The ratings are weighted by the
rater’s influence calculated earlier.

Intuitively, more recent interactions and ratings are more important
than older ones. Since the rating’s age is already maintained via
its time-to-live value, the time relevance of the rating is logically
calculated as a function of that value: Decay(). The World of Warcraft
implementation uses a linear decay to avoid large changes when
ratings are expired and removed from the knowledgebase:

Decay(ttli,j) =
ttli,j

TTL MAX
(3)

Figure 4 numerically illustrates the example system from Figure 1
after reputations calculated by self have reached equilibrium. Before
the first iteration, Rself = 1.0 and all other reputations are 0. After
one iteration, the two peers closest to self have RF1 = RF2 = 0.5
and all other peer reputations remain at 0. In the second iteration,
the PlayerRating agent calculates the reputation for A1 by
RA1 = rF1,A1 × RF1 ×

Influence(F1)
Influence(F1)

= −0.5× 0.5× 0.25
0.25

= −0.25
and the positive reputation for F3 is calculated similarly
through F2. The reputations for F1 and F2 only remain
unchanged because of the simple numeric formulation:
RF1 =

rself,F1
×Rself×Influence(self) + rF2,F1

×RF1
×Influence(F1)

Influence(self) + Influence(F1)

= 0.5×1.0×1.0 + 1.0×0.5×0.25
1.0 + 0.25

= 0.5. In the third iteration, F4 and
F5 are discovered and none of the previously calculated reputations

A1
-0.25

F1
0.5

self
1.0

F3
0.25

F4
0.125

F5
0.125

F2
0.5

A3
0

A2
0

+0.5

+1.0

+0.5

+0.5

+0.5 +0.5

-0.5

Fig. 4. The results of iterating UpdateReputations() over the small example
social network shown in Figure 1. Labeled edges are ratings and labeled
vertices are the reputations (from the point of view of self) achieved after
reaching equilibrium in only three iterations.

change. At this point the network is discovered as fully as possible
given the two ratings self created.

6) Reputation Lookup: Looking up a peer reputation is as simple
as returning Rj (or 0.0 if the peer is completely unknown). It is
helpful to remind the player of their rating for that peer at the
same time by returning rself,j . Both lookups are inexpensive and
the information can be presented in many graphical and numerical
ways, such as on player tooltips shown in Figure 5.

Fig. 5. The PlayerRating reputation added to the World of Warcraft tooltip
displayed when the player cursors over a peer’s character.

III. EVALUATION

Through its design, the PlayerRating system facilitates incremental
deployment since one does not need to rate peers and choosing not
to participate does not prevent peers from rating oneself. The system
also encourages participation since one can only benefit from accurate
peer predictions if they first accurately rate some peers. This section
evaluates the system in terms of meeting the two measurable design
requirements: resistance to abuse and low system overhead.

For evaluation, the PlayerRating system was implemented as an
offline C++ application that was optimized for speed. This allowed
experiments to be run without impacting real players and demon-
strates how efficient the system might be if implemented directly
within a game client. When it is instead implemented as a user-
interface modification, it would be written in the game’s scripting
language. In the case of World of Warcraft that language is Lua which
uses roughly the same memory footprint but executes at roughly 1

30

of the speed of C++ for equivalent programs [20].

A. Resistance to Abuse

To demonstrate the PlayerRating system’s resistance to abuse,
experiments were performed on an emulated player population con-
structed using 30,000 identities from the Slashdot Zoo [14]. This is a
reasonable number of player identities since World of Warcraft census
indicate that realms support up to this many players [21]. Summarized
in Table I, this subset preserves power-law characteristics of the
original set.

CHARACTERISTIC VALUE

Ratees 30,000
Raters 3,919

1 ≤ outlinks ≤ 10 2,402
10 < outlinks ≤ 100 1,230

100 < outlinks 287
Ratings 101,842

positive 76,101
negative 25,741

Mean Ratings 3.4
positive 2.5
negative 0.9

Sparseness 0.000113

TABLE I
CHARACTERISTICS OF THE SLASHDOT ZOO SUBSET.

0.0100

0.1000

1.0000

R
o

o
t

M
e

a
n

 S
q

u
a

re
d

 D
if

fe
re

n
ce

1 < outlinks ≤ 10

10 < outlinks ≤ 100

100 < outlinks

Overall

0.0001

0.0010

0 10 20 30 40 50 60

R
o

o
t

M
e

a
n

 S
q

u
a

re
d

 D
if

fe
re

n
ce

Iteration

Fig. 6. The average RMSD (i.e., reputation convergence) of PlayerRating
agents as they iterate the UpdateReputation() function.

1) Convergence to Equilibrium: This experiment shows how
quickly PlayerRating agents converge to equilibrium in the worst
case: when all ratings are discovered at the same time causing max-
imum disorder. Within one agent, reputation instability is measured
as the root-mean-square-difference (RMSD) between iterations of
the UpdateReputations() function calculated by

RMSD =

√∑
i∈Players

(R′i −Ri)
2

|Players| (4)

where a value of zero means the system has completely reached
equilibrium and any other value indicates that some reputations are
still in flux.

Figure 6 shows the average RMSD for various players with
at least one rating. The results indicate that overall the average
participant system converges quickly. Players who rate fewer peers
converge faster since their connected graph is generally smaller
while players who rate many more peers converge slower since their
connected graph is larger. These results mean that malicious peers
cannot generate a number of ratings that would cause instability. The
small bump occurs at iteration 3 because that is the first iteration that
can uncover a cycle in a completely new graph, possibly propagating
trust back to a known peer.

FUNCTION
THEORETICAL EXPERIMENTAL

BOUNDS CYCLES TIME

Initialization() O(1) 473 0.2µs
RecordRating() O(1) 33,539 14.0µs
ShareRatings() O(outlinks) policy dependent
ExpireRatings() O(|r|) 30,267,923 12.7ms
UpdateRep′s() O(|r|) 18,300,514 7.7ms

process rating O(1) 300 0.1µs
process rater O(|Players|) 26,089 10.9µs
commit R′ O(|Players|) 10,047,723 4.2ms

LookupRep() O(1) 752 0.3µs

TABLE II
THE THEORETICAL BOUNDS AND EXPERIMENTAL COMPUTATION TO
EXECUTE THE VARIOUS OPERATIONS OF A PLAYERRATING AGENT.

60%

80%

100%

A
d

v
e

rs
a

ri
e

s
w

it
h

 P
o

si
ti

v
e

 R
e

p
u

ta
ti

o
n

30 Adversaries (0.1%)

300 Adversaries (1.0%)

3000 Adversaries (10.0%)

0%

20%

40%

0% 20% 40% 60% 80% 100%

A
d

v
e

rs
a

ri
e

s
w

it
h

 P
o

si
ti

v
e

 R
e

p
u

ta
ti

o
n

Ratings about Adversaries that are Accurate

Fig. 7. The percentage of colluding adversaries with positive reputation (as
viewed by good clients) vs. the percentage of accurate ratings about them.

2) Collusion Resistance: This experiment shows the ability of
PlayerRating agents to accurately identify populations of colluding
adversaries (i.e., assign them negative reputation). Initially, colluding
adversaries join the game, establish a fully connected positive rating
graph amongst themselves, and then briefly play legitimately to obtain
positive ratings from the original player population (following the
rating sparsity of the original set). Figure 7 shows that at this early
stage, all the adversaries have positive reputation because they have
not betrayed anyone’s trust yet.

As adversaries commit acts that betray their previously earned
positive reputation, they acquire negative ratings (which reverse some
previously obtained positive ratings). As the percentage of positive
ratings decreases, the percentage of negative (i.e., accurate) ratings
increases and fewer adversary reputations remain positive. Eventually,
the very last adversaries abuse their earned trust and are properly re-
identified with negative ratings, leaving no adversaries with positive
reputation.

The figure shows that larger colluding populations retain positive
reputation longer than smaller populations. This occurs because
the colluding population is fully connected meaning that the links
attributed to them grows quadratically and vastly outnumbers links
in the original data set (adversary outlinks = 3, 0002 = 9, 000, 000 =
88.4 times the original outlinks).

B. System Overhead

1) Computation: As the PlayerRating agent runs in within the
game client process which requires fast execution for playability,
speed is more important than space. To measure the speed, bench-
marks of the various PlayerRating functions were performed on an
Intel R© Core 2 Quad system (Q6600/2.4GHz). The results shown in
Table II each represent an average of 10,000 executions. Most opera-
tions are on the order of µs. The only operations on the order of ms
are ExpireRatings() and committing R′ in UpdateReputations().
Fortunately these operations are infrequently performed (≥ pHour)
and may be scheduled to occur with the next logon, loading screen,
or idle time when they will imperceptibly impact gameplay.

2) Memory: While the memory footprint is less important than
speed, PlayerRating state may be kept small. Specifically, neu-
tral/unknown ratings and ratings from peers with negative reputation
are not used and need not be stored. Thus an agent’s state is
proportional to the number of kept ratings and reputations, which
is far less than the square of the number of players:

state = |r|+ |R| � |Players|2 (5)

For example, the ratings and reputations throughout the evaluation
merely require 2.4MB of application memory.

IV. DISCUSSION

A. Applications

There are several possible PlayerRating applications. Currently the
system is publicly available as a World of Warcraft mod [19] and
may be adopted by any player willing to do so. The author as well
as in-game and real-life friends used the system for a number of
years before quitting the game. It is the author’s experience that the
system successfully warns players when first interacting with peers
who have behaved badly in the past. If implemented within the game’s
algorithms matching players for group play, weight could be placed
on the likelihood the group will get along together.

Further, developers with multiple game titles may build a recom-
mender system on top of PlayerRating to focus online marketing to
persons with friends who enjoy those titles.

PlayerRating can completely replace existing friends-list and
ignore-list tools by simply treating peers with positive ratings as
friends and ignoring peers with negative ratings.

B. Limitations

The current limitations of PlayerRating involve changes to player
account information that is not public and therefore is not readily
available to an implementation as a user-interface mod. Specifically,
a player may quit the game, transfer their character to another server,
or rename their character (although only to another unique name).
While Sybil attacks are not possible, some system inaccuracy (i.e.,
rating duplication may exist until those ratings naturally expire).
This inaccuracy could possibly be avoided (obviating the need for
rating expiration) if the system was aware of relevant changes to
peer accounts and peer ratings made while offline.

External to the game, peers sometimes sell their accounts for
profit although it is often against the Terms of Service Agreement.
Characters changing ownership in this fashion can have an abrupt
change in behavior, making existing ratings about them obsolete.
Players with positive ratings about those peers may be briefly misled
until those ratings are corrected.

Finally, adversaries may attempt Sybil attacks [2] by creating
additional game accounts. In general this is prohibitively expensive
because creating a game account involves purchasing a copy of the
game and paying a subscription fee. However, some games like World
of Warcraft offer temporary trial accounts (10-day trial accounts
are alreadly abused by “gold farmers”) which may facilitate short-
term Sybil attacks. This may be addressed by incorporating the
character’s level in the Influence() function (i.e., ratings from high-
level characters are more relevant than from low-level characters)
and would immediately mitigate trial accounts since those accounts
expire before an adversary could reach maximum character level (it
takes roughly 300 pHours to reach maximum level).

V. CONCLUSIONS

In multiplayer online games, players interact using aliases
which unfortunately enable some antisocial behaviors. This
paper presented PlayerRating, a distributed reputation system
designed specifically for online games, which empowers like-
minded players to congregate and avoid malicious peers.
By design, the system facilitates incremental deployment and
encourages participation. Experimentation shows that the system
resists abuse and requires minimal overhead.

REFERENCES

[1] M. Tresca, “The Impact of Anonymity on Disinhibitive Behavior through
Computer-Mediated Communication,” Master’s thesis, Michigan State
University, 1998.

[2] J. R. Douceur, “The Sybil Attack,” in International Workshop on Peer-
to-Peer Systems, March 2002.

[3] netherby, “Playernotes,” http://wow.curseforge.com/addons/playernotes/.
[4] eBay Inc., “Feedback Forum,” http://pages.ebay.com/services/forum/

feedback.html.
[5] Slashdot.org, “Slashdot FAQ: Karma,” http://slashdot.org/faq/com-mod.

shtml#cm700.
[6] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank Citation

Ranking: Bringing Order to the Web,” Stanford University, Tech. Rep.,
Jan 1998.

[7] Z. Gyongyi, H. Garcia-Molina, and J. Pedersen, “Combating Web Spam
with TrustRank,” in VLDB, August 2004.

[8] G. Jeh and J. Widom, “Scaling Personalized Web Search,” in WWW,
May 2003.

[9] S. D. Kamvar, M. T. Schlosser, and H. Garcia-molina, “The EigenTrust
Algorithm for Reputation Management in P2P Networks,” in WWW,
May 2003.

[10] J. Golbeck and J. Hendler, “Reputation Network Analysis for Email
Filtering,” in CEAS, July 2004.

[11] A. Adamic, “Zipf, Power-law, Pareto - a Ranking Tutorial,” HP Labs,
Tech. Rep., October 2000.

[12] P. Bak, How Nature Works: the Science of Self-Organized Criticality.
Copernicus, 1996.

[13] M. Buchanan, Ubiquity: The Science of History or Why the World is
Simpler than We Think. Crown Publishers, 2001.

[14] J. Kunegis, A. Lommatzsch, and C. Bauckhage, “The Slashdot Zoo:
Mining a Social Network with Negative Edges,” in WWW, April 2009.

[15] J. Rauch, “Seeing Around Corners: The New Science of Artificial
Societies,” The Atlantic Monthly, April 2002.

[16] C. Dellarocas, M. Fan, and C. A. Wood, “Self-Interest, Reciprocity, and
Participation in Online Reputation Systems,” MIT Sloan, Tech. Rep.,
Aug 2004.

[17] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’
networks,” Nature, June 1998.

[18] Blizzard Entertainment, “World of Warcraft,” http://www.
worldofwarcraft.com/.

[19] E. Kaiser, “PlayerRating,” http://www.curseforge.com/addons/
playerrating/.

[20] Computer Language Benchmarks, “C++ vs. Lua,” http://shootout.alioth.
debian.org/u32q/benchmark.php?test=all&=gpp&lang2=lua.

[21] Warcraft Realms, “WoW Census,” http://www.warcraftrealms.com/
realmstats.php.

