
Stealth Measurements for Cheat Detection
in On-line Games

Wu-chang Feng
Portland State University

Ed Kaiser
Portland State University

Travis Schluessler
Intel

ABSTRACT
As a result of physically owning the client machine, cheaters
in network games currently have the upper-hand when it
comes to avoiding detection by anti-cheat software. To ad-
dress this problem and turn the tables on cheaters, this pa-
per examines an approach for cheat detection based on the
use of stealth measurements via tamper-resistant hardware.
To support this approach, we examine a range of cheat meth-
ods and a number of measurements that such hardware could
perform to detect them.

1. INTRODUCTION
When it comes to cheating in on-line games, the adversary

holds all the cards. With complete control over the client,
cheaters can hide their presence by modifying the operating
system, disabling or spoofing anti-cheat software, and even
removing their cheat from the system just before anti-cheat
software runs. On top of these techniques, the cheater can
employ anti-debugging, obfuscation, and evasion techniques
that prevent game developers from deploying appropriate
counter-measures in anti-cheat systems. This paper exam-
ines a new approach for tackling the cheating problem by
employing hardware-based, stealth measurements. In this
approach, a tamper-resistant processor resident on a client
and isolated from the system’s primary processor is used
to perform measurements “underneath” the host’s software
stack. As a result of the processor’s isolation, it is much
more difficult for a cheater to disable or modify the mea-
surements, or determine what is being measured and when.

2. MOTIVATION
Since cheaters own the machines they play on, they can

currently tamper with any part of the operating system, the
target game, and the anti-cheat software in order to both
cheat and evade detection. The crux of our approach is to
utilize a hardware component within the system as a means
for providing tamper-resistant“ground-truth”measurements
of a remote game system. Specifically, such hardware must

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission from the authors.
NetGames ’08 Worcester, Massachusetts USA
Copyright 2008 ACM 978-1-60558-132-3-10/21/2008 ...$5.00.

Figure 1: Functional location of one instance of Intel
AMT’s Manageability Engine (ME).

be isolated from the host processor, cannot be affected by
the system owner, must run only code signed by a trusted
third party, and must have sufficient access to the running
system. Given these attributes, the hardware component
can perform measurements that enable an observer to de-
termine if cheat software has compromised a game.

As an example of one possible instantiation, Figure 1
shows the current architecture of Intel’s Active Management
Technology platform [7] that has been used to detect rootk-
its in operating systems [3] and automation cheats in on-line
games [10]. As the figure shows, AMT’s trusted processor,
the Manageability Engine (ME), has access to the contents
of physical memory, all network traffic going to and from
the host, and all I/O going to and from peripherals. One
important limitation of this instance of the ME is that its
placement outside of the CPU precludes measurement of im-
portant hardware registers such as the Interrupt Descriptor
Table Register, the debug registers (DR0-DR7), the control
registers (CR0-CR4), and the instruction pointer. As a re-
sult, the focus in this paper will go beyond the measurements
that current platforms can perform and examine what mea-
surements future trusted hardware platforms should perform
in order to reliably detect cheating.

There are two significant advantages that hardware-based
measurements provide against game hackers writing cheat
software: they do not reveal what is being measured and
they do not reveal when the measurements are being per-
formed. As a result, the developers of cheat software do not
know whether their cheats will escape undetected and are
unable to determine when measurements are taken so that
they cannot hide their cheats. This fear of the unknown
has been shown to be an effective deterrent for cheats in-
volving World of Warcraft, the most popular MMORPG

being played today [5]. Note that while a stealth, hardware-
based approach is necessary to gain the upper-hand against
cheaters, it clearly is a double-edged sword that prevents
users from knowing that their privacy is not being compro-
mised [4]. Key to any approach is the ability to ensure that
while the exact measurement being made is unknown, its
scope is. That is, one must ensure that measurements don’t
extend to sensitive information outside the game.

3. METHODS
To understand what measurements could reliably reveal

the presence of cheat software, it is important to survey
methods that are currently being used to cheat. Note that
many methods are used in conjunction with each other to
implement a particular cheat.

3.1 Authorized, Automated Data Read
This method automates the collection of information that

is presented and available to the player. Such cheats typi-
cally use legitimate APIs to learn game data without directly
interacting with the game process. Because the APIs serve
legitimate purposes (mostly for accessibility), their abuse is
difficult to detect. A common technique is:

• Using the Graphics Device Interface API (specifically
BitBlt() and GetPixel()) to dump pixel information
from the screen and discern game state.

This method is typically used when implementing bots
that automate actions, like fishing bots (such as FishBuddy)
for World of Warcraft.

3.2 Unauthorized Data Read
This method, also known as information exposure, ac-

cesses hidden game data that should not be revealed to the
player. Specific techniques include:

• Using a packet sniffer to extract game data from un-
encrypted network traffic.

• Using APIs (such as ReadProcessMemory()) to remotely
read the memory of the game process.

• Using an injected or hijacked thread (see Section 3.5)
to directly access memory from within the game pro-
cess.

Cheats that employ this method include map-hacks that
reveal the location of enemy units behind the “fog of war”
in Warcraft III, wall-hacks that reveal the exact locations of
enemy players behind walls in Counter-Strike, and Kick-Ass
Map that reveals mob locations beyond the player’s view in
World of Warcraft.

3.3 Unauthorized Data Write
One of the simplest methods to alter game behavior is to

directly modify data within the game process. By changing
the data that the game uses, cheaters can gain abilities that
their opponents cannot. Techniques for performing unau-
thorized data writes include:

• Using APIs (like WriteProcessMemory()) to remotely
write to the memory of the game process.

• Using an injected or hijacked thread (see Section 3.5)
to modify memory from within the game process.

Cheats that use static data writes include modifying the
gravity constant so that players can climb walls in World
of Warcraft and modifying memory-mapped wall textures
to make them transparent in Counter-Strike. While these
examples are easy to detect since they modify data to invalid
values for the duration of the cheat, other cheats dynamically
toggle data between valid values in an illegitimate way. For
example, a cheat for Battlefield 2 continuously changes the
team a player is on in order to trick the game client into
revealing enemy locations via the radar.

Cheat Engine [1] is a tool that uses this method to locate
and dynamically modify game data. In particular, it modi-
fies the player’s coordinates and direction to implement tele-
port cheats, Z-hack cheats (where the player is kept a fixed
distance from the opponent during battle), and direction
cheats (where the player is made to face the opponent at
all times). This method is also used to illegally modify a
character’s attributes such as experience or health level.

3.4 Code Injection
Many cheats change the operation of the game by altering

the game code or running their own code within the game
process. To achieve this, cheaters can inject their code into
the process during the loading of the game or from an exter-
nal process while the game is running. There are a myriad
of ways that code can be injected including:

• Using WriteProcessMemory() to hot patch (i.e. over-
write) game code to implement new functionality or
make particular game operations always or never hap-
pen. For example, one can disable flash grenade blind-
ing effects in Counter-Strike by changing jump instruc-
tions that call the flash effect into NOPs. Hot patching
is feasible if the changes can be done within the size
constraints of the original function.

• Using WriteProcessMemory() to write to code-caves,
pockets of allocated but unused memory between ex-
isting game functions. The use of code-caves provides
some stealth if the anti-cheat only scans the game’s
original code locations.

• Allocating new memory using VirtualAllocEx() and
writing to it using WriteProcessMemory(). This is not
stealthy, but facilitates injecting an arbitrary amount
of cheat code into the game process.

• Loading a Dynamic Link Library (DLL) containing the
cheat payload by either using LoadLibrary(), by hook-
ing LoadLibrary() as it is called for other game DLLs,
or by modifying registry entries such as AppInit_DLL

to have the cheat DLL loaded automatically with the
game. Tools that support this technique include Win-
ject and INJLIB.

Cheats that inject code are prevalent and include Black-
Omega for Battlefield 2, Ecstatic for Counter-Strike, and
HL2 Hook for Half-Life 2.

3.5 Thread Manipulation
Once cheat code is injected into the game, it must be ex-

ecuted. The most common techniques involve manipulating
threads within the game process by:

• Using detours (or trampolines) to temporarily hijack an
existing game thread [6]. The detour redirects game

function calls to injected cheat code by hot patching
a handful of bytes at the beginning of game functions.
The overwritten bytes include a jump instruction that
points to previously injected cheat code. Depending
on the intention, some detours will execute the game
function after executing the cheat code.

• Injecting a new thread via CreateRemoteThread() to
execute cheat code alongside the game’s normal threads.

3.6 Direct Function Calls
Many cheats change the operation of the game by directly

calling operating system or game functions as needed for
the desired behavior. This is especially true for automation
bots which take input from authorized or unauthorized reads
(Sections 3.1 & 3.2), make decisions, and then directly call
game code to make actions. Techniques include:

• Using I/O APIs (keybd_event() or mouse_event())
directly instead of from the keyboard/mouse interrupt
handler.

• Using an injected or hijacked thread (see Section 3.5)
to directly call functions from within the game process.

Use of direct function calls is prevalent in bots and is a key
component of Hoglund’s World of Warcraft Implant bot [5].

3.7 Function Pointer Hooks
Since function pointers are part of a program’s data they

are typically unmeasured by static cheat detection measure-
ments. Cheaters can take advantage of this by loading a
cheat into memory and modifying function pointers in the
game or operating system in order to invoke the cheat. Func-
tion pointers are prevalent in any running process whether
it is within the game’s code, the libraries it uses or the op-
erating system. By overwriting function pointers in order
to execute injected cheat code rather than overwriting the
functions themselves, this method allows the game to still
pass integrity checks that only examine the game’s code.
Examples include:

• Return address hooks that modify pointers stored in
the stack so that functions return to injected code
rather than their caller. Such a method is the basis
for return-to-libc attacks [11].

• Overwriting function pointers in game code that im-
plement run-time binding of operations or jump table
implementations of switch statements in C and C++.

• Import Address Table (IAT) hooks that replace the
game process’s table of function pointers for functions
exported by loaded DLLs.

• Interrupt Descriptor Table (IDT) hooks that replace
entries in the table which stores interrupt handler func-
tion pointers.

• System Service Dispatch Table (SSDT) hooks that re-
place pointers in the system call table.

• I/O Request Packet (IRP) Function Table hooks that
replace functions in the kernel’s I/O processing chain.

• Structured Exception Handler (SEH) hooks that re-
place exception handler pointers on the stack with ad-
dresses for cheat code.

• Windows message hooks that use the Windows API
to hook function handlers across all running processes
via SetWindowsHookEx().

Function pointer hooks are prevalent in bots across all
game genres such as HL2Hook/CSHook and speed hacks
implemented using Cheat Engine [1].

3.8 External Processes
In this method, the cheater employs an external process

that modifies or tampers with the game process. Instances
of this method include:

• Using standard APIs described previously to access
and tamper with the game process (ReadProcessMem-
ory(), WriteProcessMemory(), CreateRemoteThread(),
and VirtualAllocEx()).

• Sending Windows messages such as mouse and key-
board events to the game process via APIs like SendMes-
sage(). For example, in first-person shooters, auto-
mated events are sent in order to perform recoil sup-
pression (e.g. WM_MOUSEMOVE).

• Using DebugActiveProcess() to attach to the game
process as a debugger and completely control its exe-
cution. This technique can be used to either change
the game code itself or to hijack game process threads
to load cheat code from libraries.

Examples include recoil suppression cheats in first-person
shooters that inject mouse events from a remote process and
any cheats that use the debugger interface to gain control of
the game process.

3.9 File Replacement
In this method, the cheater modifies the game binary, the

game’s data files, the libraries the game uses, and/or ker-
nel modules on disk. While this method has been used in
the past, file integrity checks by anti-cheat software have
rendered this less popular. Specific examples include wall
hacks in first-person shooters that replace game texture files
with transparent alternatives.

3.10 Hardware Facilities
Because of the difficulty in correctly measuring hardware

state from software, cheats that tamper with hardware fea-
tures are some of the most difficult to detect. Such cheats
span a wide-range and include:

• Tampering with the Interrupt Descriptor Table Reg-
ister (IDTR) of the CPU which stores the pointer to
where the Interrupt Descriptor Table (IDT) resides.
As described previously, cheats can modify the IDT
in order to replace interrupt handler function point-
ers with pointers to cheat code. Since checking the
integrity of the pointers in this table can detect such
tampering, a stealthier method would be to keep the
original table intact, but instead change the IDTR so
that it points to a completely different table containing
pointers to cheat code.

• Processors typically support hardware debug registers
that stop execution and cause an exception to occur
whenever particular code locations are reached or when

particular memory locations are accessed. These ex-
ceptions allow the debugger to run. By using this fa-
cility, cheat software can hijack execution without ex-
plicitly injecting debugger interrupt instructions into
the original game code.

• To gain access to memory, cheats can tamper with the
memory management subsystem of a processor includ-
ing its control and segment registers. For example,
tampering with IA-32 control registers (CR0-CR3) can
allow a cheat to modify read-only code pages and to
hide the memory pages where their code resides.

• Model Specific Registers (MSRs) can also be used to
tamper with the game and operating system in a va-
riety of ways. One specific example is the SYSEN-
TER EIP MSR register on IA-32 CPUs that holds the
address of the “fast” system call function. By modify-
ing this register, a cheat can hook essential system calls
underneath a game.

• Another way for a cheat to maintain stealth is to have
the game run virtualized and to implement the cheat
in the virtual machine code or hypervisor. With hard-
ware support for virtualization, such an approach can
make detection extremely difficult [13].

Cheat Engine and Hoglund’s Implant are two examples of
cheating systems that use hardware-based methods.

4. MEASUREMENTS
In order to tackle the problem of cheating, our approach is

to enable randomly-timed measurements of the target game
process that will eventually reveal the presence of individual
cheats. The key difference of this hardware measurement
approach from current approaches is that these checks are
more difficult to circumvent than if the checks were done by
a software based cheat detection system. This is because the
hardware entity performing the checks is tamper-resistant,
and cannot be disabled or circumvented by the platform
using software-based attacks.

4.1 CPU Registers and Execution Behavior
One of the key measurements that could be used to detect

cheating methods is to measure the CPU state and its exe-
cution history. While current implementations of Intel’s ME
preclude the direct measurement of CPU state, it is useful
to examine what could be measured if such a facility were
placed within the processor.

• Instruction Counts: By tampering with the execution
of the game, cheats inevitably perturb instruction us-
age. Instruction counts, whether done in aggregate or
done per assembly instruction opcode can provide an
indirect measure of code integrity. For example, hot
patches to running code using detours likely use a far
JMP instruction since the new code is often loaded in
an area of memory far from the original code. Since
such an opcode would not be used in the original game,
consistent and persistent use of this form of the jump
instruction would indicate tampering. Another ex-
ample would be the anomalous use of floating point
instructions for calculating character movements for
bots. By measuring histograms of opcode usage, a

skew towards extra floating point operations would in-
dicate cheating. Finally, several cheats tamper with
the game by injecting debugger instructions (i.e. INT
1 or INT 3) into the game code in order to trap ex-
ecution to a debugger. Since a debugger should not
be attached to the running game, the use of either in-
struction would immediately indicate game tampering.

• EIP Behavior: By virtue of owning the code, game de-
velopers know exactly what code should be executed
and how it should be run on the client. One key aspect
of execution is the virtual address of each instruction a
game client might execute either as part of the original
executable or in any of the numerous dynamic link li-
braries. For IA-32, these instructions are fetched based
on the instruction pointer EIP register. By injecting
code into the memory space of the game process, cheat
software will force instructions to execute from unex-
pected locations in memory. One way to detect such
injection would be to measure and report the ranges
that the EIP takes on and to compare it against known
valid ranges for the game process. Such a measurement
could be sampled randomly or recorded before/after
every branch, jump, function call, or return call.

• System Call Behavior: Another measurement that could
be used to validate proper execution is system call
traces. This is especially useful for kernel-based cheats
that redefine particular system calls in order to execute
injected code. Similar to existing tools such as Sebek
and Snare, one could examine system call sequences
and frequencies in order to detect particular cheats.

• Code Timing: Whether it is attaching through the de-
bugger or injecting code into the event loop of a game
client, cheats often perturb the execution time of a
game. In many cases, cheats add consistent and persis-
tent delay to particular code paths. Consider a detour
that injects code before every execution of a particular
function call. By measuring the execution time of that
function, it can become evident that additional code
is always being executed.

• Exception/Interrupt Counts: Some cheats force a game
to run injected code within overwritten exception and
interrupt handlers. Consider Hoglund’s Supervisor cheat
for World of Warcraft that uses an implant in the ker-
nel and uses hardware debugger breakpoints to trig-
ger its code. In Intel’s IA-32 architecture, hardware
breakpoints are set via registers DR0-DR7 and throw
a debug exception that is handled by the debug inter-
rupt handler (INT 1). By measuring the quantity and
type of exceptions and interrupts being generated, one
could detect the persistent and anomalous use of such
debugger exceptions in the game process.

• Register Monitoring: One way cheats avoid detection
is by modifying hardware registers so that they point
to injected code, leaving the original code unmodified
to foil simple integrity checks. However, measuring
changes to registers such as the Interrupt Descriptor
Table Register (IDTR), the Control Registers (CR0-
CR3), and the Debug Registers (DR0-DR7) provides
a means for detecting such cheats.

4.2 Memory
Another class of measurements for detecting cheats is the

measurement of memory and I/O state. Such a facility can
be provided by the current instantiation of Intel’s ME by
virtue of its location in the memory controller. Specifically,
measurements of interest include:

• Code Integrity: Since cheats can modify the original
instructions after they have been loaded into memory,
random integrity checks on the code that is being exe-
cuted can reveal tampering. In particular, code in the
game’s “.text” segment, from loaded DLLs, and in the
operating system [12] can be checked for tampering in
order to reveal hot patches and detours.

• Scanning for Injected Code: Rather than modify the
original code, some cheats inject a library into the
memory space of a process and then overwrite the
value of a function pointer or return address in order to
get the game process to execute the injected code. One
way to detect this method is to scan the game process’
executable memory pages for either known cheat code
or for unauthorized code. Such a method is used in
Warden, the anti-cheat system that is used by World
of Warcraft [8], but is prone to false-positives since it
is difficult to differentiate a legitimate library from an
illegitimate one.

• Stack Validation: Code injection attacks are often im-
plemented by hijacking existing threads or creating
new threads in the game process. One measurement
that can be used to detect such attacks is to validate
the game process’ stack. For example, a detour imple-
mented as a far JMP instruction can be detected by
examining the current stack frame’s return address,
finding the argument of the last CALL instruction (to
locate the address of the function the game process
should be in), and comparing against the current value
of the instruction pointer. For a function that has been
detoured, the instruction pointer will fall outside the
range of the original function. Stack validation can
also detect attempts by cheats to hijack the game pro-
cess via rewriting return addresses on the stack. Sim-
ilar to examining EIP behavior, given an inventory of
the location of the game’s code and libraries, any re-
turn address outside of valid ranges could be flagged.
Finally, stack validation is also useful for cheats that
inject new threads of execution that directly call game
functions such as those used in Hoglund’s Supervisor
where the stack trace will form an invalid call path
when compared against what should be possible from
the original code.

• Function Pointer Validation: To pass integrity checks,
some cheats avoid modifications to code segments and
instead modify commonly used function pointers in or-
der to run. One way to detect such tampering is to
selectively validate function pointers in the game pro-
cess. By examining the addresses contained in these
pointers and ensuring that they point to locations con-
taining legitimate game or library code, one can de-
tect function pointer tampering. Such validation is
commonly done by anti-virus and anti-cheat systems
especially for critical function tables such as Import

Address Tables, the Interrupt Descriptor Table, and
the System Services Dispatch Table.

• Static Game Data Validation: It is often computation-
ally too expensive to validate all of the data a game
uses. As a result, many cheats target a game process’
data sections. For cheats that modify static game data
from valid values to invalid ones, checking the integrity
of invariant data at run-time can reveal illegal modifi-
cation. Specific examples include invariants such as a
game’s gravity constant or memory mapped textures.

• Memory Watchpoints: While validating memory loca-
tions for cheats that change game data persistently is
effective, there are subtle forms of memory tamper-
ing that require a more powerful means of detection.
Information exposure cheats that do not modify mem-
ory contents and team switching cheats that dynam-
ically toggle a memory location between valid values
are extremely difficult to catch. Memory watchpoints
are one way of detecting such subtle forms of tamper-
ing. Although they don’t currently exist in the In-
tel ME, memory watchpoints could capture the time,
source, and frequency of access to specific memory lo-
cations throughout a game process’ lifetime. For ex-
ample, a watchpoint could log the address of each in-
struction (i.e. the value of the EIP) that reads or
writes from a specific memory location. This would
reveal some information exposure cheats where data is
read from memory from unexpected locations such as
via the Windows ReadProcessMemory() API. In addi-
tion, a memory watchpoint that tracked the number
of changes to a particular memory location or page
would be useful in detecting temporary modifications
to code pages, cheats that toggle data locations be-
tween valid values, or the number of times a debugger
has attached to a process. Note that one potential ob-
stacle that must be overcome with this technique is
the use of registers and caches for temporary storage
of data.

4.3 File and I/O System
Measuring the file system and peripherals can also detect

certain types of cheats. Measurements could include:

• File Integrity: Ensuring the integrity of the game bi-
nary, game data, common libraries, and operating sys-
tem via cryptographic checksums can detect any cheats
that involve replacing original game or system files
with those that implement the cheat.

• Registry/Environment Validation: Cheats can modify
system registry settings or environment variables as-
sociated with the game. For example, by changing
library search paths, a cheat can cause its libraries to
be loaded before the legitimate game libraries. Scan-
ning registry settings that affect the game can detect
such cheats.

• I/O Path Validation: As shown previously [10], one
way to detect automation cheats is to compare the raw
I/O signals coming from the hardware to the actual in-
put being given to the game engine. Another example
for detecting wall-hacks is to take remote screenshots
of a game client to visually inspect what is being dis-
played by the game client [2].

Cheat Detection Method

Authorized Data Read Memory Watch Points
Unauthorized Data Read Memory Watch Points
Unauthorized Data Write Static Game Data Validation

Memory Watch Points
Code Injection Stack Validation

Code Integrity
Scanning for Injected Code
Registry Validation
Instruction Counts
Code Timing

Thread Manipulation Stack Validation
Code Integrity
EIP Behavior

Direct Function Call Stack Validation
EIP Behavior
System Call Behavior
I/O Path Validation

Function Pointer Hook Function Pointer Validation
Stack Validation
EIP Behavior
Memory Watch Points

File Modification File Integrity
Code Integrity

Hardware Facilities Register Monitoring
Exception/Interrupt Counts

Table 1: Cheats and the methods that detect them.

4.4 External Processes
Another useful measurement would be to look outside of

the game and inspect external files and processes that poten-
tially affect the game process. This method is difficult and
dangerous. Several anti-cheat systems such as Warden [4]
and Punkbuster [2] inspect the file system and the memory
image of all other running processes for known cheats. This
has dire consequences regarding personal privacy if sensi-
tive information is read and leaked. Another problem is the
danger of false positives. Since it is infeasible for such a
method to know the structure of every possible application
running on a client machine, the technique is left to scan for
signatures that identify cheat code. In one case involving
Punkbuster, a devious hacker issued a broadcast IRC mes-
sage to a large number of players containing a binary pattern
matching a cheat signature that Punkbuster was checking.
As a result, more than 300 members of the IRC channel were
incorrectly banned [9].

5. THREAT ANALYSIS
The usefulness of the hardware measurement based ap-

proach can be assessed by examining how effective it is at
detecting the cheating methods currently in use and compar-
ing this to the cost faced by cheaters seeking to circumvent
the approach. The un/authorized read methods for cheat-
ing could potentially be captured with memory watchpoints.
Some forms of unauthorized write attacks could be detected
by simple integrity checks, however, subtle forms that do
not change memory locations to invalid values remain un-
detected unless finer-grained memory watchpoints are sup-
ported. Direct function call cheats are detected by stack
validation while the code injection attacks are detected us-

ing measurement methods for stack validation and code in-
tegrity. Hooks on function pointers that have known “good”
values are detected using integrity checks of pointers in mem-
ory and the code they point to. File modification attacks
are addressed by the I/O system protections while cheats
exercising hardware facilities could be detected if the hard-
ware supported a register monitoring capability. Table 1
summarizes the cheat methods and the potential hardware
measurements that can be used to detect them.

6. CONCLUSION
This paper has examined an approach for detecting cheats

using stealth hardware-based measurements. Towards this
end, we have examined a range of methods that hackers
use to compromise games as well as a range of measure-
ments that hardware might support in order to detect these
methods in a resilient manner. Cheaters willing to expend
resources to wage a hardware modification attack could suc-
cessfully circumvent the system, however the system detects
cheats in a manner that would be much more expensive
to circumvent than existing solutions due to the tamper-
resistant nature of the measurement hardware.

7. REFERENCES
[1] Cheat Engine Developers. Cheat Engine.

http://cheatengine.org.

[2] Even Balance, Inc. PunkBuster Online
Countermeasures. http://evenbalance.com.

[3] J. Evers. Taking on Rootkits with Hardware,
December 2005. http://news.cnet.com/
Taking-on-rootkits-with-hardware/2008-1029_

3-5992309.html.

[4] G. Hoglund. Keeping Blizzard Honest - Announcing
the Release of ’The Governor’, 2005.
http://www.rootkit.com/.

[5] G. Hoglund. Hacking World of Warcraft: An Exercise
in Advanced Rootkit Design. In Black Hat, 2006.

[6] G. Hunt and D. Brubacher. Detours: Binary
Interception of Win32 Functions. In USENIX
Windows NT Symposium, July 1999.

[7] Intel. Intel Active Management Technology.
http://www.intel.com/technology/

platform-technology/intel-amt/.

[8] Lavish Software. On Warden Blog.
http://onwarden.blogspot.com/.

[9] netCoders. The Unerring Punkbuster...
http://forum.netcoders.cc/announcements/

14061-unerring-punkbuster.html.

[10] T. Schluessler, E. Johnson, and S. Goglin. Is a Bot at
the Controls - Detecting Input Data Attacks. In
NetGames, October 2007.

[11] Solar Designer. Getting Around Non-executable Stack
(and Fix), August 1997. Bugtraq Mailing List.

[12] T. Schluessler et. al. Runtime Integrity and Presence
Verification for Software Agents. In Technology@Intel
Magazine, December 2005.

[13] D. Zovi. Hardware Virtualization-Based Rootkits. In
Black Hat, 2006.

