
Patch Scheduling for On-line Games

Chris Chambers Wu-chang Feng
Portland State University

{chambers,wuchang}@cs.pdx.edu

ABSTRACT
One of the challenges facing the on-line gaming commu-

nity is the delivery of new content to players. While the ini-

tial distribution of a game is typically done via large media

formats such as CD-ROM or DVD-ROM, consumers expect

regular updates to on-line games such as bug fixes, balance

adjustments, and new content. In this paper, we develop a

model for the bandwidth impact of patch delivery based on

the time of day of the patch release. We evaluate our model

against the Steam content delivery network and determine

the best time to release a patch to be midway between the

peak and trough of daily player load.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed Applications

General Terms
Performance, Management, Measurement

Keywords
games, updates, patches

1. INTRODUCTION
On-line games are an extremely popular form of entertain-

ment, with millions of players playing at any moment of the
day. One of the challenges in hosting on-line games is the
dynamic provisioning of servers to meet player usage [1, 2, 3,
4, 5, 6, 7, 8]. Among issues that have been addressed include
modeling the traffic to servers and developing infrastructure
to allow on-line games to leverage on-demand computing.
One unexplored provisioning challenge for game hosting is
the allocation of resources to support the release of game up-
dates. On-line gamers have come to expect periodic patches
to their games over time in order to address bugs, to prevent
cheating, to increase performance, or to provide additional
content and functionality. While the on-line dissemination

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NetGames’05,October 10–11, 2005, Hawthorne, New York, USA.
Copyright 2005 ACM 1-59593-157-0/05/0010 ...$5.00.

of patches is convenient for gamers and game developers, the
aggregate bandwidth required to host the patch can be sub-
stantial. In the case of a highly anticipated game’s beta re-
lease, the amount of data distributed can exceed a petabyte
and the instantaneous bandwidth can exceed tens of giga-
bits per second [9]. To make matters worse, such bandwidth
consumption cannot simply be throttled since players typ-
ically cannot play until their version of the game matches
the server’s version.

The two most obvious factors related to the impact of a
software release are the size of the patch and the number of
players playing the game at any given point in time. These
factors are often outside of the hosting provider’s control.
A more subtle factor that can be controlled, however, is
the timing of the software release. More specifically, player
load for on-line games is periodic on both a daily and (to
a lesser extent) a weekly time cycle. When patches are re-
leased during daily player peaks, more people are forced
to download the patch immediately, a phenomenon similar
to flash-crowds in web traffic. When patches are released
during the daily minimum, less people download the patch
immediately, however, as player load increases, the rising
number of people who need the patch causes the problem
to return. Given the variance in player populations of up to
50% between daily maximum and minimum [9], overprovi-
sioning is an unattractive alternative.

Our study proposes an inital model for patch delivery
based on the time of release and evaluates it against patches
delivered over a game-specific content delivery network called
Steam. We use, as components of our model, player session
times and interarrival times. Such data is readily available
to any on-line game provider. Using statistics obtained from
a popular Counter-Strike server, our model predicts an ideal
patch release time that varies based on the goals of the ser-
vice provider. For a service provider attempting to minimize
peak bandwidth usage, a patch release exactly at the daily
minimum is required. For a service provider attempting to
minimize the cumulative bandwidth consumption across the
first three days of the patch, a patch release occuring five
hours after the peak player load is required. Since our eval-
uation only shows a coarse match between the model and
the observed data, our results are somewhat preliminary.

Section 2 discusses our methodology and data sets. Sec-
tion 3 evaluates our model. Section 4 presents our conclu-
sions and offers discussion of our work.

cs.mshmro.com trace

Start time Tue Apr 1 2003

End time Mon May 31 2004

Total connections 2,886,992

Total unique players 493,889

Steam CDN trace

Start time Mon Sep 27 2004

End time Mon Apr 8 2005

Content transferred 6,193 TB

Average transfer rate 3.14 Gbs

Table 1: Data sets

Mon Tue Wed Thu Fri Sat Sun
Day of week

1000

2000

3000

4000

5000

M
eg

ab
its

/se
co

nd

Player count (1/51.48)
Steam bandwidth

Figure 1: Bandwidth vs. players

2. METHODOLOGY

2.1 Data sources
Studying on-line games is challenging because of the scarcity

of public data. Game companies often keep statistics about
their games private. However, we have obtained two unique
sources of on-line gaming data: a trace from the game de-
livery network Steam, and a trace from a popular Counter-
strike server cs.mshmro.com.

The Steam game delivery network provides updates for
a number of games such as Half-life, Counter-Strike, and
Day of Defeat. The Steam network continuously exports
data on the aggregate bandwidth being consumed by play-
ers as well as the number of unique players at any mo-
ment. Our data collection system records this data peri-
odically at ten minute intervals. The other trace is from
the server cs.mshmro.com, one of the busiest and longest
running Counter-Strike servers in the country [10, 11]. The
server itself is consistently among the busiest 20 servers as
ranked by ServerSpy [12] and has logged more than 60 player
years in activity since its launch in August 2001. The details
of these two data sources are shown in Table 1.

Our goal is to develop a model that accurately predicts
the aggregate bandwidth load on the patch servers based
on the timing of the patch release. In this paper, we focus
on a specific patch released Monday, May 25th. Figure 1
shows the Steam load for the week with the patch, over-
laid atop a scaled version of the player data. Note that

the Steam network is used for several distinct purposes: 1)
all current players continuously download security modules
that are used to detect cheating and 2) players and servers
download new software patches to keep the game up to
date. When patches are not being released, the bandwidth
consumed by the Steam network should be roughly propor-
tional to the number of active players. However, when new
patches are released, the additional bandwidth consumed
by patches varies over time. Initially, patch bandwidth is
proportional to the number of current players. However, as
more and more players download the patch, the bandwidth
consumed decays significantly as the patched population in-
creases. The patch in Figure 1 was released a few hours after
the afternoon peak load. Because of the significant increase
in bandwidth consumed during the release of a patch, it is
of particular interest to estimate the likely load expected by
releasing a patch at alternative times in the daily cycle.

2.2 Player bandwidth consumption
In order to determine the amount of bandwidth consumed

by each player authenticating with Steam, we use a two-week
section of the Steam bandwidth and player trace beginning
January 25th, 2005. This is the longest section in our trace
without significant patch activity. We denote the ith sam-
ple in this two-week player and bandwidth data as pi and
si respectively. To test the hypothesis that each player con-
sumes a constant amount of bandwidth, we compute the

cumulative number of players cp =

nX
i=0

pi and bandwidth

cb =

nX
i=0

si and scale the player data by the mean ratio

cb/cp. As Figure 3(a) shows, the player series follows the
bandwidth series closely. However there are significant dif-
ferences: the Steam data lags the player data by roughly an
hour and a half and has been smoothed. We hypothesize
that this is because the player data is not an instantaneous
measure of player population. In Steam, active players are
not in continuous contact with the central authentication
server and players do not notify the central authentication
server upon departure. Instead, active players only contact
the central authentication server upon joining a new game
server and upon map changes. As a result, the manner in
which Steam must estimate its instantaneous player popula-
tion is by counting the number of authentications in a sliding
window. An additional source of differences between player
count and bandwidth is the presence of server authentica-
tion data in the Steam bandwidth that is not represented
in the player count. Servers authenticate, like players, upon
startup and every map change.

The discrepancy that comes about because of this smooth-
ing, time lag, and inclusion of server authentication band-
width becomes important when we consider subtracting the
scaled player data from the bandwidth data in Figure 5. If
the Steam bandwidth and player count corresponded per-
fectly, the mean ratio line would be flat, or random noise,
with a jump upwards for the very small patches seen on days
seven and eight. Unfortunately we see a pronounced daily
variation that hides the patches instead.

20 40 60 80 100 120 140 160 180 200 220 240
minutes

1000

2000

3000

4000

5000
nu

m
be

r o
f s

es
sio

ns
Mshmro session time histogram
Curve fit

0 20 40 60 80 100 120 140 160 180 200 220 240
minutes

0

0.2

0.4

0.6

0.8

1

pe
rc

en
t

(a) PDF (b) CDF

Figure 2: Distribution of player session times at cs.mshmro.com

0 1 2 3 4 5 6 7 8 9 10 11 12 13
day

1000

1500

2000

2500

3000

3500

4000

ba
nd

w
id

th
 (m

eg
ab

its
/se

co
nd

)

Steam bandwidth
Player count (1/51.48)

0 1 2 3 4 5 6 7 8 9 10 11 12 13
day

1000

1500

2000

2500

3000

3500

4000

ba
nd

w
id

th
 (m

eg
ab

its
/se

co
nd

)
Steam bandwidth
Player count (scaled by hour)

(a) Mean scaling (b) Hourly mean scaling

Figure 3: Scaling the player data by a constant ratio versus scaling by a ratio that varies by hour of day

0 1e+05 2e+05 3e+05 4e+05
Player minutes

0

10000

20000

30000

40000

Msmro interarrival histogram
Curve fit

0 1e+07 2e+07 3e+07 4e+07 5e+07 6e+07
player minutes

0

0.2

0.4

0.6

0.8

1

pe
rc

en
t

(a) PDF (b) CDF

Figure 4: Distribution of player interarrival times at cs.mshmro.com

0 1 2 3 4 5 6 7 8 9 10 11 12 13
day

-1000

-500

0

500

1000

1500

2000

ba
nd

w
id

th
 (m

eg
ab

its
/se

co
nd

)
Steam bandwidth without player authentication (mean ratio)
Steam bandwidth without player authentication (hourly mean ratio)

Figure 5: Observed difference between player and

bandwidth data under constant and hourly scaling

In order to remove the effects of smoothing, skewing and
server authentication data we compute the ratio of players
to bandwidth per hour, for each hour of the day, as follows.

Let the player hourly average phai = 1/6

6i+5X
j=6i

pi and let the

steam hourly average shai = 1/6

6i+5X
j=6i

si. Then the hourly

mean ratio for hour i is defined as

hmri =

bn/24+1cX
j=0

sha24j+i

bn/24+1cX
j=0

pha24j+i

(1)

Figure 3(b) shows the results of scaling the player data
with an hourly mean ratio. The daily anomolies have been
removed from the Steam data, and as Figure 5 shows, the
amount of variation in the difference between the two signals
has been reduced by over 60%. Consequently, the small
patch on day seven is more clearly visible.

2.3 Modeling player behavior
While aggregate player populations can be measured over

time, the percentage of players out of the population that
need to download the patch is only known at the time of
the patch’s release when it is known that all players require
the download. The percentage of players requiring an up-
date afterwards is driven by user behavior. In particular,
player session times, player arrival rates, and the fraction of
arriving players that have previously downloaded the patch
all determine the additional bandwidth consumed by the
patch. To adequately predict the behavior of patch releases,
we model the behavior of players as groups. Key player fea-
tures of interest include the distribution of player session
times as well as the distribution of time between their play
sessions. While this information is not directly available
to us due to the closed nature of the game authentication
servers, we do have access to the data on our own game
server. We make the assumption that the aggregate gaming
population displays similar characteristics to the subset of

players on our server.
Deriving player sessions from server logs is an interest-

ing problem as only a few player events are recorded (kills,
deaths, joins, leaves, and chat). While the presence of join/leave
events seems ideal, players are observed to join and leave the
server frequently in the same time period, partially due to
game artifacts such as map changes. To construct player ses-
sions, we strip away these artifacts and are left with an event
series ES for each player i such that ES(i) = (t1, t2, ..., tk)
for a player with k time events recorded in seconds on our
server. We then define a session to be a sequence of events
(t1, t2, ..., tj) such that ti+1 − ti < 1800: events within 30
minutes of each other.

Figure 2 shows the histogram of session times recorded on
cs.mshmro.com. The distribution has a number of extremely
long sessions, which we ignore as game artifacts resulting
from the presence of reserved slots and permanent players.
Additionally we filter out sessions shorter than one minute
in length. We fit this curve to a sum of exponentials of

the form aebx + cedx with (a = 3710, b = −0.02534, c =
2970, d = −0.2917), which fits with a correlation coefficient
of 0.996. Figure 2 also shows the cumulative distribution
function (CDF) of the data. Of particular interest to us is
the ten minute mark, which tells us that 19.35% of all users
have session times of ten minutes or less. As our results
show, this estimate is one possible source of error.

We derive the estimated interarrival rate for players based
on the session data as well. Figure 4 shows the resultant
PDF and CDF. We find the best fit to the distribution
to be a power series of the form f(x) = axb where (a =
1.579e007, b = −1.016). This fit has an correlation coeffi-
cient of 0.98.

2.4 Modeling unpatched players
The data we have tells us the number of aggregate players

playing at each moment since the patch release. For time
t, we call this Pt, with time zero being the moment of the

patch release, and we define PMt =
Pi

0 Pi as the cumulative
player-minutes since the patch. In order to model the impact
of the patch release we must know, at each moment in time
after the release, the number of connected players who need
the patch. One key datum we are missing, however, is the
number of players who have already downloaded the patch,
as opposed to those who still need it. We work to derive this
quantity from our known values with the following model.

new(t) = Pt − cur(t) ∗ Pt−1 − ret(PMt) ∗ Pt (2)

where new(t) represents the number of arriving players
who need the patch, cur(t) the percentage of current play-
ers that are still playing from the previous sample Pt−1 and
ret(t) the percentage of current players who are returning
who do not need the patch. Note that while our model ap-
pears to be independent of the total player population, it is
actually implicitly included through our use of Pt from the
observed traces of player population. The model partitions
the number of players at a given moment into one of these
three categories: those arriving who need the patch, those
arriving who do not need the patch, and players who are
still playing after downloading the patch at the beginning

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour of release

10

20

30

40

Pe
ak

 B
an

dw
id

th
 (G

B/
s)

Figure 6: Peak predicted bandwidth based on mo-

ment of release.

0 1 2 3
Days since patch

0

1e+08

2e+08

3e+08

4e+08

5e+08

M
eg

ab
its

peak
Steam
trough

Figure 7: Predicted cumulative load for each 10-

minute timeslot of the day.

of their sessions. We model cur(t) as a constant percentage
of 80.65%, based on our session time CDF (Figure 2). In-
tuitively as time progresses, ret(t) should approach one, at
which point all or nearly all of the players have received the
patch. A key observation to our model of ret(t) is that the
percentage of players returning to play after t minutes or less
is the same as the percentage of players whose intersession
time is less than or equal to t (Figure 4). We calculate ret(t)
based on player-minutes instead of time alone to reflect the
impact of the daily cycle.

3. EVALUATION
We first evaluate our model’s prediction of peak bandwith

in Figure 6. Note that all times are given in the local time of
our measurements (GMT-0700). As expected, peak band-
width is minimized by a release at the minimum player load
at 22 hours, and maximixed at the 13 hour player maximum.

Next we use the model to minimize cumulative load through-
out the first three days. Figure 7 shows the predicted load
given by our model for every possible release moment dur-
ing the day the patch was released. We highlight the cu-
mulative load predicted by a patch release at the daily peak
and trough of player load, as well as the load predicted by
the actual patch release time. While all lines converge to

0 2 4 6 8 10 12 14 16 18 20 22 24
Hour of patch release

0

5

10

15

20

25

30

M
in

im
iz

ed
 lo

ad
 c

ou
nt

Figure 8: Number of times a particular release mo-

ment minimizes cumulative bandwidth

roughly the same cumulative load at the end of the three
day period, the actual patch release line appears to min-
imize bandwidth delivered along the way, suggesting that
a patch release approximately 40% of the distance between
the peak and trough is optimal. We quantify this in Fig-
ure 8 by counting the number of times a given patch release
would minimize cumulative bandwidth throughout the re-
lease. Note that all of the release times that minimize cu-
mulative bandwidth are between the 13 hour peak player
population and the 22 hour trough. The model suggests an
optimal release at nearly five hours past the peak, which is
when the patch was released.

Next we compare our model with the observed excess load
for this patch. Figure 9(a) shows our predicted load as com-
pared to the observed load. As we do not have definitive
data on the size of patches, we have scaled the predicted
model to start at the same point as the observed. The model
drops off extremely sharply compared to the data, due to the
cur(t) factor in equation 2. There are two reasons why this
is the case. The first is that our model does not include
server patching. Servers are brought up and down through-
out the day just as players join and leave throughout the
day. When servers are up, they check for software patches
every time they change maps (typically every 30 minutes).
Since the number of servers is around 20,000 at any given
point in time, our model underestimates the initial band-
width consumption by only including player downloads. We
aim to include a model for servers in future work.

Another reason for the inaccuracy of the model is that our
session data ignores all sessions less than one minute in du-
ration. Since more than 60% of all sessions last less than a
minute, our model substantially overestimates cur(t). As a
result, session times are not representative and undercount
the ratio of players with long sessions, we see the more ac-
curate prediction seen in Figure 9(b) shows a more accurate
prediction using a reduced value for cur(t).

Another discrepancy between the model and the observed
data is the increased presence of daily cycles in the data.
These cycles appear in the model, but with less impact. As
described in Section 2, this is due to the smoothing and
skewing of the player data versus the bandwidth data. Af-

0 24 48 72 96 120 144 168
Hours since patch release

-1000

0

1000

2000

3000

Ba
nd

w
id

th
 (M

B/
s)

Predicted load
Observed load

0 24 48 72 96 120 144 168
Hours since patch release

0

1000

2000

3000

Ba
nd

w
id

th
 (M

B/
s)

Observed load
Predicted load

(a) cur(t) = .81 (b) cur(t) = .10

Figure 9: Predicted load from model

0 24 48 72 96 120 144
Hours since patch

0

500

1000

1500

2000

Ba
nd

wi
dt

h
(M

b/
s)

actual
predicted

Figure 10: Predicted versus observed after 24-hour

smoothing

ter removing the cycles via windowed averaging, Figure 10
shows a much better fit.

4. CONCLUSIONS
Game companies and hosts have a significant challenge

before them: how to release content such that the band-
width deliver load is not overwhelming. This problem is
particularly urgent for games that require all players to be
synchronized on the same version. Given the cyclic nature of
player loads, the time of day of the release can significantly
impact peak bandwidth and sustained bandwidth over the
first few days.

The key contributions of this work are the presentation of
a novel problem and an initial modeling approach. We have
constructed a predictive model of bandwidth load based on
time of day using statistics about player arrivals and session
times. To minimize peak bandwidth, our model suggests
the expected release at minimum player load. To minimize
cumulative patch load in the first three days, our model sug-
gests a release of five hours after the peak player population.
Our model’s ability to predict bandwidth load after release
is relatively weak, perhaps due to inaccuracies in our player
statistics. We expect future work on the problem to improve

our prediction.

5. REFERENCES
[1] IBM Corp., “On demand business,”

http://www.ibm.com/ondemand.

[2] IDC, “HP utility data center: Enabling enhanced data
center agility,” http://www.hp.com/large/

globalsolutions/ae/pdfs/udc_enabling.pdf, May
2003.

[3] Sun Microsystems, “N1 Grid – introducing just in
time computing,” http:

//wwws.sun.com/software/solutions/n1/wp-n1.pdf,
2003.

[4] Global Grid Forum, ,” http://www.ggf.org.

[5] IBM Corp., “Tivoli intelligent thinkdynamic
orchestrator,” http://www.ibm.com/software/

tivoli/products/intell-orch, 2004.

[6] E. Manoel et al., Provisioning On Demand:
Introducing IBM Tivoli Intelligent ThinkDynamic
Orchestrator, IBM International Technical Support
Organization, December 2003,
http://www.redbooks.ibm.com.

[7] D. Saha, S. Sahu, and A. Shaikh, “A Service Platform
for On-Line Games,” in NetGames, Redwood City,
CA 2003.

[8] A. Shaikh, S. Sahu, M. Rosu, M. Shea, and D. Saha,
“Implementation of a Service Platform for Online
Games,” in NetGames, August 2004.

[9] Valve, Inc., “Steam,”
http://www.steampowered.com/, 2005.

[10] mshmro.com, ,” http://www.mshmro.com/.

[11] W. Feng, F. Chang, W. Feng, and J. Walpole,
“Provisioning On-line Games: A Traffic Analysis of a
Busy Counter-Strike Server,” in Proc. of the Internet
Measurement Workshop, November 2002.

[12] ServerSpy, “ServerSpy.Net: World Server Ranks,”
http://www.serverspy.net/site/serverranks/,
2004.

