Computer Systems Programming

Practice Midterm

Name:

1. (4 pts) (K\&R Ch 1-4)

What is the output of the following C code?

```
main()
{
    int i = 6;
    int j = -35;
    printf("%d %d\n",i++, ++j);
    i = i << 3;
    j = j >> 4;
    printf("%d %d\n",i,j);
}
\[
\begin{array}{cc}
6 & -34 \\
56 & -3
\end{array}
\]
```

2. (2 pts) (B\&O Ch. 1,7)
a) What style of linking produces binaries that are self-contained and contain no references to code in the file system?
static
b) Which step in the compilation process will take C progams and produce expanded C programs for the compiler?
pre-processor

3. (4 pts) (B\&O Ch. 7, Problem 7.1)

Consider the following program:

```
int init=5;
int x;
main() {
    int y=0;
    y = x+init;
    return y;
}
```

a. What section of the binary would contain variable x ?

$$
B S S
$$

b. What section of the binary would contain the code for main?

4. (4 pts) (B\&O Ch. 2.1, Problem 2.4)
a) $0 \times 637 \mathrm{a}+0 \times 3 \mathrm{a}=$
b) $0 \times 63 \mathrm{a} 0-0 \mathrm{x} 45=$

a) $637 a$

b) 63×0 45 $635 B$
5. (12 pts) (B\&O Ch. 2.1, Problems 2.1, 2.3)
a) Convert 153 from decimal to binary

$$
1
$$

b) Convert AE from hexadecimal to binary

$$
10101110
$$

c) Convert 186 from decimal to hexadecimal

$$
10111010=B A
$$

d) Convert 10101110 from binary to hexadecimal

$$
A E
$$

e) Convert 01011011 from binary to decimal
6. (2 pts) (B\&O Ch. 2.1, Problem 2.5)

Consider this program:
\#include <stdio.h>
int main() \{
int $i=0 \times 40302010$;
unsigned char *cp;
$\mathrm{cp}=$ (unsigned char *) \&i;
printf("\%x\n", *cp);
\}
a) What is its output on a little endian machine?
b) What is its output on a big endian machine?

$$
0 \times 40
$$

7. (4 pts) (B\&O Ch. 2.1, Problem 2.12)

Assuming x86-64, write a single C expression that takes a value x and returns x with its least significant two bytes set to 0 . Use only the variable x and bit-wise operators. (i.e. Do not use '=')

8. (10 pts) (B\&O Chapter 2.1, Problem 2.8, 2.14)

Fill in the result of the following expressions assuming the following declaration.
unsigned char $a=0 \times B 5$;
unsigned char $\mathrm{b}=0 \times 36$;
unsigned char $c=0 \times 00$;
Give all answers in hexadecimal notation. Note that logical operations return $0 x 1$ or $0 x 0$.
a) $(a \& b) 0 \times 34$
b) $(a \wedge b) 0 \times 83$
c) (a 11 b) Ox
d) $\sim \mathrm{c}$

e) ! C

$$
0 \times 1
$$

9. (16 pts) (B\&O Chapter 2.2, Problem 2.17, 2.19, 2.22)
a) Represent the number - 5 in a 4-bit two's complement format
b) Represent the number 5 in a 4-bit two's complement format

$$
0101
$$

c) Consider the 5-bit two's complement number 10110 , what is its decimal value?

$$
10
$$

d) Consider the 5-bit unsigned number 10110, what is its decimal value?

22
e) Give the hex representation of the largest positive 32-bit two's complement number.
ampeffff
f) Give the hex representation of the most negative 32-bit two's complement number.

$$
0 \times 80000000
$$

g) Write the hexadecimal value of the 8 -bit signed integer -13

$$
0 \times 53
$$

h) Write the hexadecimal value of the 32-bit signed integer - 13
OXFFFFFFFB
10. (4 pts) (B\&O Chapter 2.2, Problem 2.21)

For expressions that mix signed and unsigned numbers, C will cast the signed value to an unsigned one before evaluation. In C, list whether the following expressions are true or false.
a) $(O U<-1)$
True
b) (unsigned) $-3>-35$

11. (4 pts) (B\&O Chapter 2.2, Problem 2.23)

For these 32-bit data objects:

$$
\begin{aligned}
& \text { int } x=0 \times 88888888 ; \\
& \text { unsigned int ux }=0 \times 88888888 \text {; }
\end{aligned}
$$

a) What is the hexadecimal value of $(x \ll 20) \gg 20$?

$$
\text { OXFFFFF } 888
$$

b) What is the hexadecimal value of (ux << 20) >> 20?

0×00000888

12. (4 pts) (Chapter 2.2, Problem 2.26)

Type errors can cause problems in programs. One common bug relates to the mixing of unsigned data types like size_t with signed integer types. With this in mind, what is the output of the following program:

```
#include <string.h>
/* size_t strlen(const char* str); */
int strshorter(char *s, char *t) {
    return (strlen(s) - strlen(t)) < 0;
}
main() {
    if (strshorter("foo","bar"))
        printf("foo < bar\n");
    if (strshorter("bar","food"))
        printf("bar < food\n");
    if (strshorter("food","bar"))
        printf("food < bar\n");
}
```

No output
13. (6 pts) (B\&O Chapter 2.3, Problem 2.29)
a) What is the decimal value of the sum of the following 6-bit two's complement numbers? 100110+100101

b) What is the decimal value of the sum of the following 6-bit two's complement numbers? 111101+011101

c) What is the decimal value of the sum of the following 6-bit two's complement numbers? 011001+011101

14. (4 pts) (Chapter 2.3, Problem 2.40)

Suppose we are given the task of generating code to multiply integer variable x by various different constant factors K . To be efficient we want to use only the operations ,+- , and \ll. For the following values of K, write C expressions to perform the multiplication using at most three operations per expression.
a) $\mathrm{K}=63$
b) $\mathrm{K}=48$

$$
(x \ll 5)+(x \ll 4)
$$

15. (4 pts) (Chapter 2.4, Problem 2.45)
a) Write the following fraction as a binary number using a binary point $\frac{27}{32}$.

$$
0.11001
$$

b) Write the fractional value of the following binary number 11.1011

$$
3 \frac{11}{16}=\frac{59}{16}
$$

16. (4 pts) (Chapter 2.4, Problem 2.54)

Assume variable i of type int. For the following C expressions, state whether it will always be true or give a value such that it is not true.
a) $i==$ (int) (float) i;

$$
\begin{aligned}
& \text { (float) i; many }>2^{23} \\
& \text { false for enters }
\end{aligned}
$$

b) $i==$ (int) (double) i;
17. (12 pts) (Chapter 2.4, Problem 2.47)

Consider an IEEE-based floating point format below with one sign bit, four exponent bits, and two fraction bits. The exponent has a Bias of 7. Recall, an exponent of all Os denotes a denormalized number while an exponent of all 1 s denotes infinite/ NaN values.

a) Give the bit-representation of the smallest, non-zero, positive number in this format.

$$
00000001
$$

b) What is the value of this number given as a fraction?

$$
2^{-6} \times \frac{1}{8}=\frac{1}{512}
$$

c) Give the bit-representation of the largest, non-infinite, positive number in this format. 0110111
d) What is the value of this number?

$$
2^{7} * \Gamma_{8}=\frac{15}{8} x^{2}=16-15=240
$$

e) In this format, calculate the value the following bit representation: 00000101

f) In this format, calculate the value the following bit representation: $0 \quad 1010111$

$$
2^{3} \times 1 \frac{7}{8}=2^{3} \times \frac{15}{8}=15
$$

