Computer Systems Programming

	Practice Midterm
Name:	

1. (4 pts) (K&R Ch 1-4)

```
What is the output of the following C code?
    main()
{
        int i = 6;
        int j = -35;
        printf("%d %d\n",i++, ++j);
        i = i << 3;
        j = j >> 4;
        printf("%d %d\n",i,j);
    }
```

2. (2 pts) (B&O Ch. 1,7)

- a) What style of linking produces binaries that are self-contained and contain no references to code in the file system?
- b) Which step in the compilation process will take C programs and produce expanded C programs for the compiler?

3. (4 pts) (B&O Ch. 7, Problem 7.1)

Consider the following program:

```
int init=5;
int x;
main() {
         int y=0;
         y = x+init;
         return y;
}
```

- a. What section of the binary would contain variable x?
- b. What section of the binary would contain the code for main?

4. (4 pts) (B&O Ch. 2.1, Problem 2.4)

```
a) 0x637a + 0x3a =
```

b)
$$0x63a0 - 0x45 =$$

5. (12 pts) (B&O Ch. 2.1, Problems 2.1, 2.3)

- a) Convert 153 from decimal to binary
- b) Convert AE from hexadecimal to binary
- c) Convert 186 from decimal to hexadecimal
- d) Convert 10101110 from binary to hexadecimal
- e) Convert 01011011 from binary to decimal
- f) Convert DA from hexadecimal to decimal

6. (2 pts) (B&O Ch. 2.1, Problem 2.5)

Consider this program:

```
#include <stdio.h>
int main() {
    int i=0x40302010;
    unsigned char *cp;
    cp = (unsigned char *) &i;
    printf("%x\n", *cp);
}
```

- a) What is its output on a little endian machine?
- b) What is its output on a big endian machine?

7. (4 pts) (B&O Ch. 2.1, Problem 2.12)

Assuming x86-64, write a single C expression that takes a value \times and returns \times with its least significant two bytes set to 0. Use only the variable \times and bit-wise operators. (i.e. Do not use '=')

8. (10 pts) (B&O Chapter 2.1, Problem 2.8, 2
--

Fill in the result of the following expressions assuming the following declaration.

```
unsigned char a=0xB5;
unsigned char b=0x36;
unsigned char c=0x00;
```

Give all answers in hexadecimal notation. Note that logical operations return 0x1 or 0x0.

- a) (a & b)
- b) (a ^ b)
- c) (a | | b)
- d) ~c
- e) !c

9. (16 pts) (B&O Chapter 2.2, Problem 2.17, 2.19, 2.22)

- a) Represent the number -5 in a 4-bit two's complement format
- b) Represent the number 5 in a 4-bit two's complement format
- c) Consider the 5-bit two's complement number 10110, what is its decimal value?
- d) Consider the 5-bit unsigned number 10110, what is its decimal value?
- e) Give the hex representation of the largest positive 32-bit two's complement number.
- f) Give the hex representation of the most negative 32-bit two's complement number.
- g) Write the hexadecimal value of the 8-bit signed integer -13
- h) Write the hexadecimal value of the 32-bit signed integer -13

10. (4 pts) (B&O Chapter 2.2, Problem 2.21)

For expressions that mix signed and unsigned numbers, C will cast the signed value to an unsigned one before evaluation. In C, list whether the following expressions are true or false.

```
a) ( 0U < -1 )</li>
b) (unsigned) -3 > -35
11. (4 pts) (B&O Chapter 2.2, Problem 2.23)
For these 32-bit data objects:

i nt x = 0x88888888;
unsi gned i nt ux = 0x88888888;
a) What is the hexadecimal value of (x << 20) >> 20?
```

b) What is the hexadecimal value of (ux << 20) >> 20?

12. (4 pts) (Chapter 2.2, Problem 2.26)

Type errors can cause problems in programs. One common bug relates to the mixing of unsigned data types like size_t with signed integer types. With this in mind, what is the output of the following program:

```
#include <string.h>
/* size_t strlen(const char* str); */
int strshorter(char *s, char *t) {
        return (strlen(s) - strlen(t)) < 0;
}
main() {
        if (strshorter("foo","bar"))
            printf("foo < bar\n");
        if (strshorter("bar","food"))
            printf("bar < food\n");
        if (strshorter("food","bar"))
            printf("food < bar\n");
}</pre>
```

13. (6 pts) (B&O Chapter 2.3, Problem 2.29)

- a) What is the <u>decimal</u> value of the sum of the following 6-bit two's complement numbers? 100110+100101
- b) What is the <u>decimal</u> value of the sum of the following 6-bit two's complement numbers? 111101+011101
- c) What is the <u>decimal</u> value of the sum of the following 6-bit two's complement numbers? 011001+011101

14. (4 pts) (Chapter 2.3, Problem 2.40)

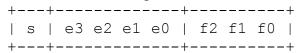
Suppose we are given the task of generating code to multiply integer variable \times by various different constant factors K. To be efficient we want to use only the operations +, -, and <<. For the following values of K, write C expressions to perform the multiplication using at most three operations per expression.

a) K=63

b) K=48

15. (4 pts) (Chapter 2.4, Problem 2.45)

- a) Write the following fraction as a binary number using a binary point $\frac{27}{32}$.
- b) Write the fractional value of the following binary number 11.1011


16. (4 pts) (Chapter 2.4, Problem 2.54)

Assume variable i of type int. For the following C expressions, state whether it will always be true or give a value such that it is not true.

- a) i == (int) (float) i;
- b) i == (int) (double) i;

17. (12 pts) (Chapter 2.4, Problem 2.47)

Consider an IEEE-based floating point format below with one sign bit, four exponent bits, and two fraction bits. The exponent has a Bias of 7. Recall, an exponent of all 0s denotes a denormalized number while an exponent of all 1s denotes infinite/NaN values.

- a) Give the bit-representation of the smallest, non-zero, positive number in this format.
- b) What is the value of this number given as a fraction?
- c) Give the bit-representation of the largest, non-infinite, positive number in this format.
- d) What is the value of this number?
- e) In this format, calculate the value the following bit representation: 0 0000 101

f) In this format, calculate the value the following bit representation: 0 1010 111