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BLUE: Active Queue Management 
 

Abstract   

     In order to avoid high packet loss rates many Active queue management algorithms 

have been proposed, which drop the packets before the queues overflow at the gateways, 

so that the end nodes can respond to the congestion before queues overflow. BLUE is one 

such active queue management algorithm, which uses packet loss and link idle events to 

manage congestion. In this report I’ ll discuss the working of BLUE and using simulation 

results, I’ ll present that BLUE performs significantly better than RED [2], another active 

queue management technique, which uses moving average of queue length to manage 

congestion. 

       

1. Introduction  

  In the past, rather the decentralized and fast-changing evolution of Internet 

architecture has worked reasonably well . But, nowadays, the network traff ic is increasing 

exponentially due to the integration of enormous networks with many different service 

providers, users and protocols.  Under this situation, if the Internet is not designed 

carefully it will be more vulnerable to frequent congestion and collapse. Congestion 

occurs when the total demand exceeds the bandwidth that the available resources can 

provide.  

 

           The earliest congestion control mechanism that was proposed in the mid 80’s is 

TCP end-to-end congestion control. This works as follows: Source adjusts its 

transmission rate according to the level of congestion it perceives through the packet loss 

events. It has 3 drawbacks: 1. By the time source perceives the packet loss, considerable 

amount of time might have elapsed from the time when the packet has been dropped at a 

gateway due to buffer over flows, during this time source might have dumped some more 

packets to the network which may get dropped based on the level of congestion.             

2. Resources are wasted as the dropped packets consume resources on their way from 

source to destination. 3. Upon perceiving a packet loss event, TCP sources may back off 

at the same time leading to under utili zation of the link. 
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 In light of these observations, researchers began to consider congestion control at 

gateways.  The mechanisms that were considered for congestion control at gateways are: 

1. Queue management algorithms:  These manage the length of the queues by dropping 

packets whenever necessary and appropriate. 

2. Scheduling algorithms: These determine the next packet to be sent and allocate the 

bandwidth among different flows. 

 

   Traditional Queue management algorithms drop the packet only when the queues 

are full. Some of those techniques are: 

1. Tail Drop:  This technique drops the incoming packet if the queue is full. It suffers     

from the following two drawbacks.  

a. Lock out: In some situations tail drop allows a single connection or a few        

flows to monopolize queue space, preventing other connections from getting room in 

the queue.   

b. Full Queues: This allows queues to maintain a full or almost full status for long 

periods of time, as it signals congestion through a packet drop only when the queue 

has become full. The full or almost full status will result in high end-to-end delays. 

As queues are always full the packets that arrive in burst from different flows will get 

dropped, as a result of this all of those flows may back off at the same time leading to 

under utilization of the links. 

2.  Random Drop on full:  This technique drops a randomly selected packet if the 

incoming packet sees the queue as full. As the randomly selected packet may be from a 

different flow when compared to the arriving packet, it does not suffer from lock out 

problem. But suffers from full queues problem.  

3. Drop front on full: This technique drops the head of the queue if the incoming packet 

sees the queue as full.  This discipline also does not suffer from Lock out problem, but 

suffers from full queues problem.  

 

Full queues problem can be solved if the packets are dropped well before the 

queues become full, so that end nodes can respond to congestion before buffers overflow. 
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This technique is known as Active queue management. Goals of active queue 

management are: reducing number of packet losses; low end-to-end delays; and avoiding 

Lock out problem. As of now, many of the Active queue management algorithms have 

been proposed. In this project I will be focusing mainly on BLUE and RED algorithms. 

 

 RED (Random Early Detection) Algorithm was first proposed by S.Floyd and V. 

Jacobson [2].  This discipline maintains a moving average of the queue length to manage 

congestion. If this moving average of the queue length lies between a minimum threshold 

value and a maximum threshold value, then the packet is either marked or dropped with a 

probability. If the moving average of the queue length is greater than or equal to the 

maximum threshold then the packet is dropped. Even though, it tries to avoid global 

synchronization and has the ability to accommodate transient bursts, in order to be 

efficient RED must have sufficient buffer spaces and must be correctly parameterized. In 

contrast to RED, BLUE algorithm uses packet loss and link utilization to manage 

congestion. This algorithm is proposed by Wu-chang Feng, Kang Shin, Dilip Kandlur, 

Debanjan Saha,  

 

 The remainder of this report is organized as follows. Section 2 presents the BLUE 

algorithm. Section 3 provides Simulation model, results, and evaluates the performance 

of BLUE by analyzing the simulation results.  Section 4 presents conclusions and  

Section 5 presents future work.  

 

2. BLUE Active Queue Management Algorithm 

 BLUE performs queue management based on packet loss and link utilization. It 

maintains a marking probability pm to either mark or drop the packets. If the queue is 

continually dropping the packets , pm is incremented by a factor /1.  If the queue is empty 

or link is idle, pm is decremented by a factor /2. The value of /1 must be set significantly 

larger than /2. This is because link is underutilized when the congestion management is 

either too aggressive or too conservative, but packet loss occurs only when the congestion 

mechanism is too conservative. BLUE uses one more parameter freeze_time, which 

determines the time interval between two successive updates of freeze_time. It allows the 
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changes in the marking probabilit y to take effect before the value is updated again. BLUE 

algorithm is given below. 

 

The BLUE algorithm: 

Upon Packet loss (or Qlen > L) event: 
            if  ( ( now – last_update) > freeze_time ) 
       pm := pm  +  /1 
   last_update :=  now 
Upon link idle event: 
           if ( ( now – last_update) > freeze_time) 
    pm := pm  -  /2 
   last_update :=  now 
 

Marking probabilit y, pm, is also updated when the queue length exceeds a certain value in 

order to allow room to be left for transient bursts and to control the queueing delay when 

the size of  the buffer being used is large.   

 

3. Performance evaluation of BLUE through simulation model 

3.1 Simulation Design 

           Network simulator ns2 [4] is used to run the simulations in order to evaluate the 

performance of BLUE.  A new queue object (blue) is added to ns2.   The network used in 

simulations is given in Fig.1.  This network consists of  a  bottleneck link between nodes 

A and B, which has a capacity of 35Mbs and delay of 10ms.  The nodes that are on the 

left side of the node A (N0, N1, N2, N3) are the nodes to which the TCP agents will be 

attached.  Each of these nodes is connected to the node A through a duplex-link of 

capacity 25Mbs with a delay of 10ms. The nodes that are on the right side of node B (N4, 

N5, N6, N7) are the nodes to which TCP sink agents will be attached. Pareto on/off 

sources with mean on-times of 200ms and mean off -times of 200ms, which are attached 

to the left side nodes send packets of size 1000 Bytes to the sinks on corresponding nodes 

on the right side.  

Actual Queue lengths and marking probabilit y are used in order see whether BLUE and 

RED are achieving the goals (avoiding global synchronization and biases against bursty 

sources) or not. Packet loss rates and Link utili zation are used as performance metrics in 
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order to compare the performance of BLUE with that of RED.  For RED queue minth and 

maxth are set at 20% and 80% of the queue size with maxp of 1.  RED queue 

configurations and BLUE queue configurations that are used during the simulations are 

given in Table1 and Table2 respectively. 

 

3.2 Analyzing Simulation Results 

3.2.1. Actual Queue Lengths and Marking Probability plots without ECN timeouts 

         Simulations are run on the simple network described in the previous section for 60 

seconds, Initially starting with 200 Pareto on/off sources. The number of sources are 

increased by 200 every 20 seconds.  B4 configuration of BLUE and R2 configuration of 

RED are used and queue between nodes A and B is monitored in order to plot the actual 

queue lengths and marking probabilities.   

 

Figure 2 shows that RED suffers from continual packet losses during the entire 

simulation and also at lower loads periods of packet losses or followed by periods of 

under utilization of the link due to the deterministic packet marking behavior.  Where as 

from Figure 3, we can say that actual queue length plot of BLUE is stable. Only at heavy 

load BLUE suffers from continual packet losses. Even though BLUE drops every packet 

in that situation, as the TCP sources do not invoke retransmission timeouts when ECN 

signal is received with a congestion window of 1, TCP sources are aggressive enough to 

maintain full queues. 

  

Figure 4 shows that the marking behavior of RED fluctuates a lot. Where as 

Figure 5, shows that marking behavior of BLUE is in accordance with the level of load.  

  

We know that RED tries to avoid global synchronization through randomized 

marking as well as maintaining spacing evenly between these markings.  But, Incase of 

large number of connections, TCP aggregate load changes rapidly leading to considerable 

fluctuations of marking probability over short periods of time (as shown in Figure 4). So, 

in that scenario RED fails to avoid global synchronization and thus leading to under 

utilization of link also.  In contrast to RED, as BLUE marking is done randomly and 
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evenly over time (as shown in Figure 5), BLUE performs better in avoiding global 

synchronization.   By limiting the queue occupancy RED allows transient bursts. From 

the Figure 3, we can say that there is always room for bursts as the actual queue length is 

less than the queue length. 

 

From the Figure 3, Even though it may seem like queueing delay can be reduced 

if we can make the queue length to attain stability at a lower length, it is not possible, as 

the TCP sources (which are implemented without ECN timeouts), are so aggressive that 

actual queue lengths will be much higher.  

  

3.2.2. Actual Queue Lengths and Marking Probability plots with ECN timeouts 

 Actual queue length and marking probability plots are drawn by running the 

simulations as described in the previous section with TCP sources that implement ECN 

timeouts. From the Figures 6 and 7, we can say that RED sustains continual packet losses 

as well as the periods of packet losses are followed by periods of under utilization of link. 

By observing the Figure 9, we can say that BLUE marking probability is changed in 

accordance with the level of congestion. By careful observation of Figure 8, we can say 

that link can be utilized more as well as the queuing delays can be reduced, if we can 

make graph to form a very low band with lower range more than 0 and higher range far 

less than buffer size. During the simulation I had used a fixed freeze_time value of 

100ms. But as the number of sources increase, the RTT of all the flows increases.  We 

can achieve the above kind of plot if we can assign effective RTT of all the connections, 

that are multiplexed in to the link, to freeze_time dynamically and G\QDPLFDOO\�FKDQJH� /��
DQG� /��VR�WKDW�WKH�TXHXH�TXLFNO\�DGDSWV�WR�WKH�RIIHUHG�ORDG�  

 

3.2.3. Packet Loss Rates and Link Utilization 

 Simulations are run for all the 4 configurations of RED and BLUE whose 

parameters are given in Table1 and Table2 respectively, changing the buffer size from 

100KB to 1000KB. Percent packet loss rates and percent link utilizations are plotted 

against buffer size.   
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Figure 10 and 11 are percent packet loss rates for 1500 sources and 4000 sources 

respectively. Figure 10 shows that all the 4 configurations of BLUE have almost 0 

percent packet loss for 1500 sources. From both the figures 10 and 11 we can say that 

BLUE has less packet loss rates when compared to RED even under low buffer sizes.  As 

the buffer size decreases RED suffers more packet losses.  

 

From the Figures 12 and 13, we can observe that BLUE performs better in 

utilizing the link when compared to RED. 

 

4. Conclusions  

BLUE performs better when compared to RED even in cases of low buffer sizes. 

Even though BLUE algorithm is very simple to implement, it must also be correctly 

parameterized and the parameters have to be changed dynamically so as to make the 

queue to adapt to the dynamically changing loads. BLUE is not useful in case of non-

responsive flows. 

 

5. Future Work 

Evaluating the performance of BLUE, by changing the way the marking 

probability is getting updated, such as modifying it multiplicatively, or both 

multiplicatively and additively.  
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Appendix A: Network Topology and Configurations 

Simulation Topology 
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RED Configurations 

 

 Table 1           

Configuration   wq 

 R1 0.0002 

 R2 0.002 

 R3 0.02 

 R4 0.2 

 

 

BLUE Configurations 

 

          Table 2 

Configuration Freeze_time /1 /1 

    B1      10ms 0.0025 0.00025 

    B2    100ms 0.0025 0.00025 

    B3       10ms  0.02 0.002 

    B4     100ms  0.02 0.002 

 

 

 

 

 

 

 

 

 

 

 

 

 



12  
 
 

Appendix B: Simulation Results 

 

Figure 2:  Actual Queue length (in KB) versus Time (in seconds) For RED 

                 , TCP sources without ECN timeouts 
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Figure 3:  Actual Queue length (in KB) versus Time (in seconds) For BLUE 

                     ,TCP sources without ECN timeouts 
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Figure 4:  Marking Probability versus Time (in seconds) For RED 

                 , TCP sources without ECN timeouts 
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Figure 5:  Marking Probability versus Time (in seconds) For BLUE 

                 , TCP sources without ECN timeouts 
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Figure 6:  Actual Queue length (in KB) versus Time (in seconds) For RED 

                     , TCP sources with ECN timeouts 
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Figure 7:  Actual Queue length (in KB) versus Time (in seconds) For BLUE 

                     , TCP sources with ECN timeouts 
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Figure 8:  Marking Probability versus Time (in seconds) For RED 

                 , TCP sources with ECN timeouts 
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Figure 9:  Marking Probability versus Time (in seconds) For BLUE 

                 , TCP sources with ECN timeouts 
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Figure 10:  Percent Packet loss versus Buffer Size (in KB) for 1500 sources 
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Figure 11:  Percent Packet loss versus Buffer Size (in KB) for 4000 sources 
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Figure 12:  Percent Link Utilization versus Buffer Size (in KB) for 1500 sources 
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Figure 13:  Percent Link Utilization versus Buffer Size (in KB) for 4000 sources 
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Appendix C: C++ code   

 

“ blue.h “  

 
#ifndef NS_BLUE_H 
#define NS_BLUE_H 
 
#include <string.h> 
#include "queue.h" 
#include "config.h" 
#include "trace.h" 
 
 
class Blue : public Queue { 
  public: 
 Blue();  
 ~Blue(); 
 
  protected: 
 int command(int argc, const char*const* argv);  
 void enque(Packet*); 
 Packet* deque(); 
 PacketQueue *q_; /*  FIFO queue */ 
  
  
 void reset();    

void inc_marking_prob();  /*  incrementing the marking 
probability */ 
 void dec_marking_prob();  /*  decrementing the marking 
probability */ 
  
 double marking_prob_;     /* marking probability */ 
  
 double inc_factor_;       /* factor by which marking probability 
will be incremented */ 
 double dec_factor_;   /* factor by which marking probability 
will be decremented */ 
 double last_update_time_; /* time at which marking probability is 
updated last time */ 
 double bandwidth_;        /* bandwidth of the link */ 
 int setECNbit_;           /* ECN enabled */ 
 int idle_;           /* whether the link is idle */ 
 double idletime_;         /* time at which the link is idle last 
time */ 
 double freezetime_;       /* time period between successive 
updates of marking probability */ 
 
 double ptc_;   /* The ptc is the max number of (avg 
sized)pkts per second which can be placed on the link */ 
 int mean_pktsize_; 
 int drop_front_;       /* bool for dropping packet from front 
when queue overflows */ 
 int qib_;  /* queue measured in bytes? */ 
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double blue_l_; /* For allowing transient bursts and 
controlling queing delay */ 

 
 Tcl_Channel tchan_; /* place to write trace records */ 
 TracedInt curq_; /* current qlen seen by arrivals */ 
 TracedDouble marking_prob_trace_;  /*  for trace purposes */ 
 void trace(TracedVar*); /* routine to write trace records */ 
}; 
 
#endif 

 

“ blue.cc “  

#include <math.h> 
#include <stdlib.h> 
#include <sys/types.h> 
#include "random.h" 
#include "flags.h" 
#include "delay.h" 
#include "blue.h" 
 
/* defining linkage between C++ and Tcl */ 
static class BlueClass : public TclClass { 
 
 public: 
 BlueClass() : TclClass("Queue/Blue") {} 
 TclObject* create(int argc, const char*const* argv) 
      { return (new Blue); } 
} class_blue; 
 
 
Blue::Blue() {  
 q_ = new PacketQueue();  
 pq_ = q_; 
 /* binding the variables */ 
 bind("marking_prob_", &marking_prob_);  
 bind("inc_factor_", &inc_factor_);  
 bind("dec_factor_", &dec_factor_);  
 bind_bool("setECNbit_", &setECNbit_);  
 bind_time("freezetime_", &freezetime_); 
 bind("pktsize_", &mean_pktsize_); 
 bind_bool("queue_in_bytes_", &qib_);  
 bind_bool("drop_front_", &drop_front_); 
 bind("blue_l_", &blue_l_); 
     
 bind("curq_", &curq_); 
 bind("marking_prob_trace_", &marking_prob_trace_);  
 
} 
 
Blue::~Blue() { 
  delete q_; 
} 
 
int Blue::command(int argc, const char*const* argv) { 
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 Tcl& tcl = Tcl::instance();  
      if (argc == 3) {  
  // attach a file for variable tracing  
  if (strcmp(argv[1], "attach") == 0) {  
   int mode;  
   const char* id = a rgv[2];  
   tchan_ = Tcl_GetChannel(tcl.interp(), (char*)id, 
&mode);  
   if (tchan_ == 0) {  
    tcl.resultf("BLUE: trace: can't attach %s for 
writing", id);  
    return (TCL_ERROR);  
   }  
   return (TCL_OK);  
  }  
 
  // link stats  
  if (strcmp(argv[1], "link") = = 0) {  
   LinkDelay* link_  = 
(LinkDelay*)TclObject::lookup(argv[2]);  
   if (link_ == 0) {  
    tcl.resultf("Blue : No link delay Object %s \ n",  
         argv[2]);  
    return(TCL_ERROR);  
   }  
   bandwidth_ = link_ - >bandwidth();  
   return(TCL_OK);  
  }  
       if (!strcmp(argv[1], "packetqueue - attach")) {  
   delete q_;  
   if (!(q_ = (PacketQueue*) 
TclObject::lookup(argv[2])))  
    return (TCL_ERROR);  
   else {  
    pq_ = q_;  
    return (TCL_OK);  
   }  
  }  
 }  
  
 return Queue::command(argc, argv);  
}  
 
void Blue::reset ()  
{  
 Queue::reset();  
 /*  
  * Compute the "packet time constant" if we know the  
  * link bandwidth.  The ptc is the max number of (avg sized)  
  * pkts per second which can be placed on the link.  
  * The link bw is given in bits/sec, so scale mean psize  
  *  accordingly.  
  */  
 ptc_ = (bandwidth_ / (8 * mean_pktsize_));  
 idle_ = 1;  
 idletime_ = Scheduler::instance().clock();  
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 marking_prob_ = 0; 
 marking_prob_trace_ = marking_prob_; 
 freezetime_ = 0; 
} 
 
void Blue::inc_marking_prob() 
{ 
 double now = Scheduler::instance().clock(); 
 int qlen = qib_ ? q_->byteLength() : q_->length(); 
 curq_ = qlen;  
 
 if ((now - freezetime_ > last_update_time_) || (curq_ > blue_l_)) 
{ 
  last_update_time_ = now; 
  marking_prob_ += inc_factor_; 
  if (marking_prob_ > 1.0)  
   marking_prob_ = 1.00; 
  marking_prob_trace_ = marking_prob_; 
 } 
} 
 
void Blue::dec_marking_prob() 
{ 
 double now = Scheduler::instance().clock(); 
 if (now - freezetime_ > last_update_time_) { 
  marking_prob_ -= dec_factor_; 
  if (marking_prob_ < 0) 
   marking_prob_ = 0.0; 
  marking_prob_trace_ = marking_prob_; 
 } 
} 
 
void Blue::enque(Packet* p) 
{ 
 double now = Scheduler::instance().clock(); 
  
 bool dropped = false; 
 bool ECNbit_set = false; 
 hdr_flags* hf = hdr_flags::access(p); 
 double u = Random::uniform(); 
      /* Find whether to drop or not */ 
 if (u <= marking_prob_) { 
   if (setECNbit_ && hf->ect()) { /* if ECN enabled */ 
    hf->ce() = 1; /*set ECN bit */ 
    ECNbit_set = true; 
   } 
   else { 
    drop(p); /* drop packet */ 
    dropped = true; 
   } 
   inc_marking_prob(); 
 } 
      if (!dropped) 
 { 
  int qlim = qib_ ? (qlim_ * mean_pktsize_) : qlim_; 
  q_->enque(p); 
  if (q_->length() >= qlim) { 
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   if (!ECNbit_set)  inc_marking_prob();  
   q_- >remove(p);  
   drop(p);  
  }  
 }  
 int qlen = qib_ ? q_ - >byteLength() : q_ - >len gth();  
 curq_ = qlen;  // for tracing purposes  
}  
 
 
Packet* Blue::deque()  
{  
 Packet* p = q_ - >deque();  
 
 if (p != 0) {  
  idle_ = 0;  
 }  
 else { /* if link is idle */  
  dec_marking_prob();  
  idle_ = 1;  
  idletime_ = Scheduler::instance().clock();  
 }  
 int qlen = qib_ ? q_ - >byteLength() : q_ - >length();  
 curq_ = qlen;  // for tracing purposes  
 
 return (p);  
}  
 
void Blue::trace(TracedVar* v)  
{  
 char wrk[500], *p;  
 
 if (((p = strstr(v - >name(), "curq")) == NULL) &&  
     ((p = strstr(v - >name(), "marking_prob_trace")) = = NULL) ) {  
  fprintf(stderr, "BLUE:unknown trace var %s \ n",  
   v- >name());  
  return;  
 }  
 
 if (tchan_) {  
  int n;  
  double t = Scheduler::instance().clock();  
  // XXX: be compatible with nsv1 RED trace entries  
  if (strstr(v - >name(), "curq") != NULL) {  
   sprintf(wrk, "A %g %d", t, int(*((TracedInt*) v)));  
  } else {  
   sprintf(wrk, "P %g %g", t, double(*((TracedDouble*) 
v)));  
  }  
  n = strlen(wrk);  
  wrk[n] = ' \ n';  
  wrk[n+1] = 0;  
  (void)Tcl_Write(tchan_, wrk, n+1);  
 }  
 return;  
}  
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Appendix D:  Simulation Scripts 
 
 
set ns [new Simulator] 
 
set f [open out.tr w] 
$ns trace-all $f 
$ns namtrace-all [open out.nam w] 
 
#set the no of TCP flows here 
set nodenum 4 
 
set start_time 0.0 
set finish_time 60.0 
 
# create the nodes 
for {set i 0} {$i < $nodenum} {incr i} { 
     
    set s($i) [$ns node] 
    set r($i) [$ns node] 
} 
set n1 [$ns node] 
set n2 [$ns node]   
 
# create the links between the senders and n1, receivers and n2 
for {set i 0} {$i < $nodenum} {incr i} { 
 
    $ns duplex-link $s($i) $n1 1Mb 1ms DropTail 
    $ns duplex-link $r($i) $n2 1Mb 1ms DropTail 
 
} 
 
#Bottle neck link between between n1 and n2 
$ns simplex-link $n1 $n2 10Mbps 100ms Blue 
$ns simplex-link $n2 $n1 10Mbps 100ms DropTail 
 
#Configure BLUE queue parameters here 
set blueq [[$ns link $n1 $n2] queue] 
$blueq set inc_factor_ 0.002 
$blueq set inc_factor_ 0.02 
$blueq set freezetime_ 100ms 
$blueq set setECNbit_ true 
 
set tchan_ [open blueq.tr w] 
$blueq trace curq_ 
$blueq trace marking_prob_trace_ 
$blueq attach $tchan_ 
 
#set the queue-limit between n1 and n2 
$ns queue-limit $n1 $n2 100 
# create TCP agents 
for {set i 0} {$i < $nodenum} {incr i} { 
 
    set tcp($i) [new Agent/TCP/Sack1] 
    $tcp($i) set fid_ [expr ($i + 1)] 
    $tcp($i) set ecn_ 1 
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    set sink($i) [new Agent/TCPSink/Sack1/DelAck] 
    $sink($i) set ecn_ 1 
    $ns attach-agent $s($i) $tcp($i) 
    $ns attach-agent $r($i) $sink($i) 
    $ns connect $tcp($i) $sink($i) 
} 
 
set srcnum 0 
for {set j 0} {$j < $finish_time} {set j [expr ($j + 20.0)]} { 
    for {set num 0} {$num < $nodenum} {incr num} { 
 for {set k $srcnum} {$k < [expr ($srcnum + 50)]} {incr k} {  
 set p($k) [new Application/Traffic/Pareto] 
      $p($k) set packetSize_ 1000 
      $p($k) set burst_time_ 200ms 
      $p($k) set idle_time_ 200ms 
      $p($k) set shape_ 1.5 
      $p($k) set rate_ 10000K 
      $p($k) attach-agent $tcp($num) 
      
 $ns at $j "$p($k) start" 
      } 
    set srcnum [expr ($srcnum + 50)] 
    } 
} 
$ns at $finish_time "finish" 
proc finish {} { 
    global ns sink nodenum srcnum tchan_ 
     set awkCode { 
 { 
     if ($1 == "A" && NF>2) { 
  print $2, $3 >> "aq.tr"; 
  set end $2 
     } 
     else if ($1 == "P" && NF>2) 
       print $2, $3 >> "prb.tr";  
 } 
    } 
 
    $ns flush-trace 
    if { [info exists tchan_] } { 
 close $tchan_ 
    } 
 
    exec awk $awkCode blueq.tr 
 
    puts "running nam..." 
    exec nam out.nam & 
     
    exit 0 
} 
 
 
$ns run 
 


