
1

TheBLUE Active Queue Management
Algorithms

Wu-chang Feng,Member, ACM, Kang G. Shin,Fellow, IEEE and ACM, Dilip D. Kandlur,
Member, IEEE, Debanjan Saha,Member, IEEE

Abstract—In order to stem the increasing packet loss rates caused
by an exponential increase in network traffic, the IETF has been
considering the deployment of active queue management techniques
such asRED [14]. While active queue management can potentially
reduce packet loss rates in the Internet, we show that current tech-
niques are ineffective in preventing high loss rates. The inherent
problem with these queue management algorithms is that they use
queue lengths as the indicator of the severity of congestion. In light
of this observation, a fundamentally different active queue manage-
ment algorithm, called BLUE, is proposed, implemented and eval-
uated. BLUE uses packet loss and link idle events to manage con-
gestion. Using both simulation and controlled experiments,BLUE

is shown to perform significantly better than RED both in terms of
packet loss rates and buffer size requirements in the network. As
an extension toBLUE, a novel technique based on Bloom filters [2]
is described for enforcing fairness among a large number of flows.
In particular, we propose and evaluate Stochastic FairBLUE (SFB),
a queue management algorithm which can identify and rate-limit
non-responsive flows using a very small amount of state informa-
tion.

I. I NTRODUCTION

It is important to avoid high packet loss rates in the
Internet. When a packet is dropped before it reaches its
destination, all of the resources it has consumed in transit
are wasted. In extreme cases, this situation can lead to
congestion collapse [19]. Improving the congestion con-
trol and queue management algorithms in the Internet has
been one of the most active areas of research in the past
few years. While a number of proposed enhancements
have made their way into actual implementations, connec-
tions still experience high packet loss rates. Loss rates are
especially high during times of heavy congestion, when a
large number of connections compete for scarce network

Wu-chang Feng is now with the Department of Computer Science
and Engineering, Oregon Graduate Institute at OHSU, Beaverton, OR
(email: wuchang@cse.ogi.edu); Kang G. Shin is with Real-Time Com-
puting Laboratory, Department of Electrical Engineering and Com-
puter Science, The University of Michigan, Ann Arbor, MI 48109-
2122 (email: kgshin@umich.edu); Dilip Kandlur is with IBM T. J.
Watson Research Center, Yorktown Heights, NY 10598 (email: kand-
lur@us.ibm.com); Debanjan Saha is with Tellium, Inc., 185 Monmouth
Park Highway, Route 36, P.O. Box 158, West Long Branch, NJ 07764
(email: dsaha@tellium.com). Wu-chang Feng and Kang G. Shin were
supported in part by an IBM Graduate Fellowship and the ONR under
Grant No. N00014-99-1-0465, respectively.

bandwidth. Recent measurements have shown that the
growing demand for network bandwidth has driven loss
rates up across various links in the Internet [28]. In order
to stem the increasing packet loss rates caused by an ex-
ponential increase in network traffic, theIETF is consid-
ering the deployment of explicit congestion notification
(ECN) [12, 30, 31] along with active queue management
techniques such as RED (Random Early Detection) [3,
14]. While ECN is necessary for eliminating packet loss
in the Internet [9], we show that RED, even when used in
conjunction withECN, is ineffective in preventing packet
loss.

The basic idea behind RED queue management is to
detect incipient congestionearly and to convey conges-
tion notification to the end-hosts, allowing them to re-
duce their transmission rates before queues in the network
overflow and packets are dropped. To do this, RED main-
tains an exponentially-weighted moving average of the
queue length which it uses to detect congestion. When
the average queue length exceeds a minimum threshold
(minth), packets are randomly dropped or marked with
an explicit congestion notification (ECN) bit. When the
average queue length exceeds a maximum threshold, all
packets are dropped or marked.

While RED is certainly an improvement over tradi-
tional drop-tail queues, it has several shortcomings. One
of the fundamental problems with RED and other active
queue management techniques is that they rely on queue
length as an estimator of congestion.1. While the pres-
ence of a persistent queue indicates congestion, its length
gives very little information as to the severity of conges-
tion, that is, the number of competing connections sharing
the link. In a busy period, a single source transmitting at
a rate greater than the bottleneck link capacity can cause
a queue to build up just as easily as a large number of
sources can. From well-known results in queuing theory,
it is only when packet interarrivals have a Poisson distri-

1We note that at the time of initial publication [10],BLUE was the
only active queue management which did not use queue length. Subse-
quent algorithms [1, 17, 20] have also shown the benefits of decoupling
queue length from congestion management

2

bution that queue lengths directly relate to the number of
active sources and thus the true level of congestion. Un-
fortunately, packet interarrival times across network links
are decidedly non-Poisson. Packet interarrivals from indi-
vidual sources are driven byTCPdynamics and source in-
terarrivals themselves are heavy-tailed in nature [21, 29].
This makes placing queue length at the heart of an ac-
tive queue management scheme dubious. Since the RED

algorithm relies on queue lengths, it has an inherent prob-
lem in determining the severity of congestion. As a result,
RED requires a wide range of parameters to operate cor-
rectly under different congestion scenarios. While RED

can achieve an ideal operating point, it can only do so
when it has a sufficient amount of buffer spaceand is cor-
rectly parameterized [6, 34].

In light of the above observation, we propose a fun-
damentally different active queue management algorithm,
called BLUE, which uses packet loss and link utilization
history to manage congestion. BLUE maintains a sin-
gle probability, which it uses to mark (or drop) packets
when they are queued. If the queue is continually drop-
ping packets due to buffer overflow, BLUE increments the
marking probability, thus increasing the rate at which it
sends back congestion notification. Conversely, if the
queue becomes empty or if the link is idle, BLUE de-
creases its marking probability. Using both simulation
and experimentation, we demonstrate the superiority of
BLUE to RED in reducing packet losses even when op-
erating with a smaller buffer. Using mechanisms based
on BLUE, a novel mechanism for effectively and scalably
enforcing fairness among a large number of flows is also
proposed and evaluated.

The rest of the paper is organized as follows. Section II
gives a description of RED and shows why it is ineffective
at managing congestion. Section III describes BLUE and
provides a detailed analysis and evaluation of its perfor-
mance based on simulation as well as controlled experi-
ments. Section IV describes and evaluates Stochastic Fair
BLUE (SFB), an algorithm based on BLUE which scalably
enforces fairness amongst a large number of connections.
Section V comparesSFB to other approaches which have
been proposed to enforce fairness amongst connections.
Finally, Section VI concludes with a discussion of future
work.

II. BACKGROUND

One of the biggest problems withTCP’s congestion
control algorithm over drop-tail queues is that sources re-
duce their transmission rates only after detecting packet
loss due to queue overflow. Since a considerable amount
of time may elapse between the packet drop at the router
and its detection at the source, a large number of packets

may be dropped as the senders continue transmission at a
rate that the network cannot support. RED alleviates this
problem by detecting incipient congestionearly and de-
livering congestion notification to the end-hosts, allowing
them to reduce their transmission rates before queue over-
flow occurs. In order to be effective, a RED queue must be
configured with a sufficient amount of buffer space to ac-
commodate an applied load greater than the link capacity
from the instant in time that congestion is detected us-
ing the queue length trigger, to the instant in time that
the applied load decreases at the bottleneck link in re-
sponse to congestion notification. RED must also ensure
that congestion notification is given at a rate which suf-
ficiently suppresses the transmitting sources without un-
derutilizing the link. Unfortunately, when a large number
of TCP sources are active, the aggregate traffic generated
is extremely bursty [8, 9]. Bursty traffic often defeats the
active queue management techniques used by RED since
queue lengths grow and shrink rapidly, well before RED

can react. Figure 1(a) shows a simplified pictorial exam-
ple of how RED functions under this congestion scenario.

The congestion scenario presented in Figure 1(a) oc-
curs when a large number ofTCP sources are active and
when a small amount of buffer space is used at the bot-
tleneck link. As the figure shows, att = 1, a sufficient
change in aggregateTCP load (due toTCPopening its con-
gestion window) causes the transmission rates of theTCP

sources to exceed the capacity of the bottleneck link. At
t = 2, the mismatch between load and capacity causes a
queue to build up at the bottleneck. Att = 3, the average
queue length exceedsminth and the congestion-control
mechanisms are triggered. At this point, congestion noti-
fication is sent back to the end hosts at a rate dependent
on the queue length and marking probabilitymaxp. At
t = 4, the TCP receivers either detect packet loss or ob-
serve packets with theirECN bits set. In response, dupli-
cate acknowlegdements and/orTCP-basedECN signals are
sent back to the sources. Att = 5, the duplicate acknowl-
egements and/orECN signals make their way back to the
sources to signal congestion. Att = 6, the sources finally
detect congestion and adjust their transmission rates. Fi-
nally, att = 7, a decrease in offered load at the bottleneck
link is observed. Note that it has taken fromt = 1 until
t = 7 before the offered load becomes less than the link’s
capacity. Depending upon the aggressiveness of the ag-
gregateTCP sources [8, 9] and the amount of buffer space
available in the bottleneck link, a large amount of packet
loss and/or deterministicECN marking may occur. Such
behavior leads to eventual underutilization of the bottle-
neck link.

One way to solve this problem is to use a large amount
of buffer space at the RED gateways. For example, it has

3

Sources SinksA

Sources SinksA

Sources SinksA

Sending rate > L Mbs Queue increases some more
Sinks generate DupAcks or ECN

Sources SinksA

Sending rate > L Mbs Queue increases some more

DupAcks/ECN travel back

Sources SinksA

7

Queue increases some more
Queue overflows, max_th triggeredSources detect loss/ECN

Sending rate < L Mbs

Sources SinksA

Sources

Sending rate increases above L Mbs

Sinks
L Mbs

A B

Sending rate > L Mbs Queue increases

Sending rate > L Mbs
EWMA increases to trigger RED
Queue increases some more

Sending rate < L Mbs
Sustained packet loss
 and ECN observed

Queue clears but period of
 underutilization imminent due to
 sustained packet loss and ECN

2

1

3

4

5

6

Fig. 1. RED example

L Mbs
A B SinksSources

Sending rate = L Mbs

Queue drops and/or ECN-marks exactly
 the correct amount of packets to keep
 sending rate of sources at L Mbs

Sinks generate DupAcks or ECN

Fig. 2. Ideal scenario

been suggested that in order for RED to work well, an
intermediate router requires buffer space that amounts to
twice the bandwidth-delay product [34]. This approach,
in fact, has been taken by an increasingly large number
of router vendors. Unfortunately, in networks with large
bandwidth-delay products, the use of large amounts of
buffer adds considerable end-to-end delay and delay jit-
ter. This severely impairs the ability to run interactive ap-
plications. In addition, the abundance of deployed routers
which have limited memory resources makes this solution
undesirable.

Figure 1(b) shows how an ideal queue management al-
gorithm works. In this figure, the congested gateway de-
livers congestion notification at a rate which keeps the ag-
gregate transmission rates of theTCP sources at or just

below the clearing rate. While RED can achieve this ideal
operating point, it can do so only when it has a sufficiently
large amount of buffer space and is correctly parameter-
ized.

III. B LUE

In order to remedy the shortcomings of RED, we pro-
pose, implement, and evaluate a fundamentally differ-
ent queue management algorithm called BLUE. Using
both simulation and experimentation, we show that BLUE

overcomes many of RED’s shortcomings. RED has been
designed with the objective to (1) minimize packet loss
and queueing delay, (2) avoid global synchronization of
sources, (3) maintain high link utilization, and (4) remove
biases against bursty sources. This section shows how
BLUE either improves or matches RED’s performance in
all of these aspects. The results also show that BLUE con-
verges to the ideal operating point shown in Figure 1(b)
in almost all scenarios, even when used with very small
buffers.

A. The algorithm

The key idea behind BLUE is to perform queue man-
agement based directly on packet loss and link utilization

4

Upon packet loss (orQlen > L) event:
if ((now - last update) > freezetime)

pm := pm + δ1

last update := now
Upon link idle event:

if ((now - last update) > freezetime)
pm := pm - δ2

last update := now

Fig. 3. The BLUE algorithm

rather than on the instantaneous or average queue lengths.
This is in sharp contrast to all known active queue man-
agement schemes which use some form of queue occu-
pancy in their congestion management. BLUE maintains
a single probability,pm, which it uses to mark (or drop)
packets when they are enqueued. If the queue is contin-
ually dropping packets due to buffer overflow, BLUE in-
crementspm, thus increasing the rate at which it sends
back congestion notification. Conversely, if the queue
becomes empty or if the link is idle, BLUE decreases
its marking probability. This effectively allows BLUE to
“learn” the correct rate it needs to send back congestion
notification. Figure 3 shows the BLUE algorithm. Note
that the figure also shows a variation to the algorithm in
which the marking probability is updated when the queue
length exceeds a certain value. This modification allows
room to be left in the queue for transient bursts and allows
the queue to control queueing delay when the size of the
queue being used is large. Besides the marking probabil-
ity, BLUE uses two other parameters which control how
quickly the marking probability changes over time. The
first is freezetime. This parameter determines the mini-
mum time interval between two successive updates ofpm.
This allows the changes in the marking probability to take
effect before the value is updated again. While the experi-
ments in this paper fixfreezetimeas a constant, this value
should be randomized in order to avoid global synchro-
nization [13]. The other parameters used, (δ1 andδ2), de-
termine the amount by whichpm is incremented when the
queue overflows or is decremented when the link is idle.
For the experiments in this paper,δ1 is set significantly
larger thanδ2. This is because link underutilization can
occur when congestion management is either too conser-
vative or too aggressive, but packet loss occurs only when
congestion management is too conservative. By weight-
ing heavily against packet loss, BLUE can quickly react to
a substantial increase in traffic load. Note that there are a

A B C

n5

n6

n7

n8

n9

n1

n0

n2

n3

n4

45Mbs 45Mbs

10ms10ms

20ms

20ms

5ms

5ms

1ms

20ms

1ms

5ms

5ms

20ms

100Mbs100Mbs

Fig. 4. Network topology

myriad of ways in whichpm can be managed. While the
experiments in this paper study a small range of parameter
settings, experiments with additional parameter settings
and algorithm variations have also been performed with
the only difference being how quickly the queue manage-
ment algorithm adapts to the offered load. It is relatively
simple process to configure BLUE to meet the goals of
controlling congestion. The first parameter,freezetime,
should be set based on the effective round-trip times of
connections multiplexed across the link in order to allow
any changes in the marking probability to reflect back on
to the end sources before additional changes are made.
For long-delay paths such as satellite links,freezetime
should be increased to match the longer round-trip times.
The second set of parametersδ1 and δ2 are set to give
the link the ability to effectively adapt to macroscopic
changes in load across the link at the connection level.
For links where extremely large changes in load occur
only on the order of minutes,δ1 andδ2 should be set in
conjunction withfreezetime to allowpm to range from 0
to 1 on the order of minutes. This is in contrast to current
queue length approaches where the marking and dropping
probabilities range from 0 to 1 on the order of millisec-
onds even under constant load. Over typical links, using
freezetimevalues between10ms and500ms and setting
δ1 andδ2 so that they allowpm to range from 0 to 1 on
the order of 5 to 30 seconds will allow the BLUE control
algorithm to operate effectively. Note that while BLUE

algorithm itself is extremely simple, it provides a signifi-
cant performance improvement even when compared to a
RED queue which has been reasonably configured.

B. Packet loss rates usingRED andBLUE

In order to evaluate the performance of BLUE, a num-
ber of simulation experiments were run usingns [23]
over a small network shown in Figure 4. Using this net-
work, Pareto on/off sources with mean on-times of 2 sec-

5

Configuration wq

R1 0.0002
R2 0.002
R3 0.02
R4 0.2

TABLE I

RED CONFIGURATIONS

Configuration freeze time δ1 δ2

B1 10ms 0.0025 0.00025
B2 100ms 0.0025 0.00025
B3 10ms 0.02 0.002
B4 100ms 0.02 0.002

TABLE II

BLUE CONFIGURATIONS

onds and mean off-times of 3 seconds were run from
one of the leftmost nodes (n0, n1, n2, n3, n4) to one of
the rightmost nodes (n5, n6, n7, n8, n9). In addition, all
sources were enabled withECN support, were randomly
started within the first 1 second of simulation, and used
1KB packets. Packet loss statistics were then measured
after 100 seconds of simulation for 100 seconds. Loss
statistics were also measured for RED using the same net-
work and under identical conditions. For the RED queue,
minth andmaxth were set to 20% and 80% of the queue
size, respectively. RED’s congestion notification mecha-
nism was made as aggressive as possible by settingmaxp

to 1. For these experiments, this is the ideal setting of
maxp since it minimizes both the queueing delay and
packet loss rates for RED [9]. Given these settings, a
range of RED configurations are studied which vary the
value ofwq, the weight in the average queue length cal-
culation for RED. It is interesting to note that aswq gets
smaller, the impact of queue length on RED’s conges-
tion management algorithm gets smaller. For extremely
small values ofwq, RED’s algorithm becomes decoupled
from the queue length and thus acts more like BLUE. Ta-
ble I shows the configurations used for RED. For the
BLUE experiments,δ1 andδ2 are set so thatδ1 is an or-
der of magnitude larger thanδ2. Using these values, the
freeze time is then varied between10ms and100ms.
Additional simulations using a wider range of values were
also performed and showed similar results.

Figure 5 shows the loss rates observed over differ-
ent queue sizes using both BLUE and RED with 1000
and 4000 connections present. In these experiments, the
queue at the bottleneck link betweenA and B is sized
from 100KB to 1000KB. This corresponds to queueing
delays which range from17.8ms and178ms as shown in

the figure. In all experiments, the link remains over99.9%
utilized. As Figure 5(a) shows, with 1000 connections,
BLUE maintains zero loss rates over all queue sizes even
those which are below the bandwidth-delay product of the
network [34]. This is in contrast to RED which suffers
double-digit loss rates as the amount of buffer space de-
creases. An interesting point in the RED loss graph shown
in Figure 5(a) is that it shows a significant dip in loss rates
at a buffering delay of around80ms. This occurs because
of a special operating point of RED when the average
queue length stays abovemaxth all the time. At sev-
eral points during this particular experiment, the buffer-
ing delay and offered load match up perfectly to cause the
average queue length to stay at or abovemaxth. In this
operating region, the RED queue marks every packet, but
the offered load is aggressive enough to keep the queue
full. This essentially allows RED to behave at times like
BLUE with a marking probability of 1 and a queueing
delay equivalent tomaxth. This unique state of opera-
tion is immediately disrupted by any changes in the load
or round-trip times, however. When the buffering delay
is increased, the corresponding round-trip times increase
and cause the aggregateTCP behavior to be less aggres-
sive. Deterministic marking on this less aggressive load
causes fluctuations in queue length which can increase
packet loss rates since RED undermarks packets at times.
When the buffering delay is decreased, the correspond-
ing round-trip times decrease and cause the aggregateTCP

behavior to be more aggressive. As a result, packet loss
is often accompanied with deterministic marking. When
combined, this leads again to fluctuations in queue length.
At a load which is perfectly selected, the average queue
length of RED can remain atmaxth and the queue can
avoid packet loss and prevent queue fluctuations by mark-
ing every packet. As Figure 5(b) shows, when the num-
ber of connections is increased to 4000, BLUE still sig-
nificantly outperforms RED. Even with an order of mag-
nitude more buffer space, RED still cannot match BLUE’s
loss rates using17.8ms of buffering at the bottleneck link.
It is interesting to note that BLUE’s marking probability
remains at 1 throughout the duration of all of these exper-
iments. Thus, even though every packet is being marked,
the offered load can still cause a significant amount of
packet loss. The reason why this is the case is that the
TCP sources being used do not invoke a retransmission
timeout upon receiving anECN signal with a congestion
window of 1. Section III-D shows how this can signifi-
cantly influence the performance of both RED and BLUE.

The most important consequence of using BLUE is
that congestion control can be performed with a mini-
mal amount of buffer space. This reduces the end-to-end
delay over the network, which in turn, improves the ef-
fectiveness of the congestion control algorithm. In addi-

6

0.0 50.0 100.0 150.0 200.0
Buffer Size (in ms of delay)

0.0

5.0

10.0

15.0

20.0

P
er

ce
nt

 P
ac

ke
t L

os
s

B1
B2
B3
B4
R1
R2
R3
R4

0.0 50.0 100.0 150.0 200.0
Buffer Size (in ms of delay)

0.0

10.0

20.0

30.0

40.0

P
er

ce
nt

 P
ac

ke
t L

os
s

B1
B2
B3
B4
R1
R2
R3
R4

(a) 1000 sources (b) 4000 sources

Fig. 5. Packet loss rates of RED and BLUE

tion, smaller buffering requirements allow more memory
to be allocated to high priority packets [5, 16], and frees
up memory for other router functions such as storing large
routing tables. Finally, BLUE allows legacy routers to per-
form well even with limited memory resources.

C. UnderstandingBLUE

To fully understand the difference between the RED

and BLUE algorithms, Figure 6 compares their queue
length plots in an additional experiment using theB4 con-
figuration of BLUE and theR2 configuration of RED. In
this experiment, a workload of infinite sources is changed
by increasing the number of connections by 200 every 20
seconds. As Figure 6(a) shows, RED sustains continual
packet loss throughout the experiment. In addition, at
lower loads, periods of packet loss are often followed by
periods of underutilization as deterministic packet mark-
ing and dropping eventually causes too many sources to
reduce their transmission rates. In contrast, as Figure 6(b)
shows, since BLUE manages its marking rate more intel-
ligently, the queue length plot is more stable. Congestion
notification is given at a rate which neither causes periods
of sustained packet loss nor periods of continual underuti-
lization. Only when the offered load rises to 800 connec-
tions, does BLUE sustain a significant amount of packet
loss.

Figure 7 plots the average queue length (Qave) and the
marking probability (pb

1−count×pb
) of RED throughout the

experiment. The average queue length of RED contributes
directly to its marking probability sincepb is a linear func-
tion of Qave (pb = maxp × Qave−minth

maxth−minth
). As shown in

Figure 7(a), the average queue length of RED fluctuates
considerably as it follows the fluctuations of the instanta-
neous queue length. Because of this, the marking prob-

ability of RED, as shown in Figure 7(b), fluctuates con-
siderably as well. In contrast, Figure 8 shows the mark-
ing probability of BLUE. As the figure shows, the mark-
ing probability converges to a value that results in a rate
of congestion notification which prevents packet loss and
keeps link utilization high throughout the experiment. In
fact, the only situation where BLUE cannot prevent sus-
tained packet loss is when every packet is being marked,
but the offered load still overwhelms the bottleneck link.
As described earlier, this occurs att = 60s when the
number of sources is increased to 800. The reason why
packet loss still occurs when every packet isECN-marked
is that for these sets of experiments, theTCP implementa-
tion used does not invoke an RTO when anECN signal is
received with a congestion window of 1. This adversely
affects the performance of both RED and BLUE in this
experiment. Note that the comparison of marking proba-
bilities between RED and BLUE gives some insight as to
how to make RED perform better. By placing a low pass
filter on the calculated marking probability of RED, it may
be possible for RED’s marking mechanism to behave in a
manner similar to BLUE’s.

While low packet loss rates, low queueing delays, and
high link utilization are extremely important, the queue
length and marking probability plots allow us to explore
the effectiveness of RED and BLUE in preventing global
synchronization and in removing biases against bursty
sources. RED attempts to avoid global synchronization
by randomizing its marking decision and by spacing out
its marking. Unfortunately, when aggregateTCP load
changes dramatically as it does when a large amount of
connections are present, it becomes impossible for RED

to achieve this goal. As Figure 7(b) shows, the mark-
ing probability of RED changes considerably over very
short periods of time. Thus, RED fails to mark pack-

7

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Time (s)

0

40

80

120

160

200

A
ct

ua
l Q

ue
ue

 L
en

gt
h

(K
B

)

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Time (s)

0

40

80

120

160

200

A
ct

ua
l Q

ue
ue

 L
en

gt
h

(K
B

)

(a) RED (b) BLUE

Fig. 6. Queue length plots of RED and BLUE

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Time (s)

0

40

80

120

160

200

A
ve

ra
ge

 Q
ue

ue
 L

en
gt

h
(K

B
)

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ar

ki
ng

 P
ro

ba
bi

lit
y

(a)Qave (b) pb

1−count×pb

Fig. 7. Marking behavior of RED

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ar

ki
ng

 P
ro

ba
bi

lit
y

Fig. 8. Marking behavior of BLUE (pm)

ets evenly over time and hence cannot remove synchro-
nization among sources. As Figure 8 shows, the marking
probability of BLUE remains steady. As a result, BLUE

marks packets randomly and evenly over time. Conse-
quently, it does a better job in avoiding global synchro-
nization.

Another goal of RED is to eliminate biases against
bursty sources in the network. This is done by limiting the
queue occupancy so that there is always room left in the
queue to buffer transient bursts. In addition, the marking
function of RED takes into account the last packet mark-
ing time in its calculations in order to reduce the probabil-
ity that consecutive packets belonging to the same burst
are marked. Using a single marking probability, BLUE

achieves the same goal equally well. As the queue length
plot of BLUE shows (Figure 6), the queue occupancy re-
mains below the actual capacity, thus allowing room for a

8

burst of packets. In addition, since the marking probabil-
ity remains smooth over large time scales, the probability
that two consecutive packets from a smoothly transmit-
ting source are marked is the same as with two consecu-
tive packets from a bursty source.

D. The effect ofECN timeouts

All of the previous experiments useTCP sources which
supportECN, but do not perform a retransmission timeout
upon receipt of anECN signal with a congestion window
of 1. This has a significant, negative impact on the packet
loss rates observed for both RED and BLUE especially at
high loads. Figure 9 shows the queue length plot of RED

and BLUE using the same experiments as in Section III-
B, but with TCP sources enabled withECN timeouts. Fig-
ure 9(a) shows that by deterministically marking packets
at maxth, RED oscillates between periods of packet loss
and periods of underutilization as described in Section II.
Note that this is in contrast to Figure 6(a) where with-
out ECN timeouts,TCP is aggressive enough to keep the
queue occupied when the load is sufficiently high. An
interesting point to make is that RED can effectively pre-
vent packet loss by setting itsmaxth value sufficiently far
below the size of the queue. In this experiment, a small
amount of loss occurs since deterministicECN marking
does not happen in time to prevent packet loss. While the
use ofECN timeouts allows RED to avoid packet loss, the
deterministic marking eventually causes underutilization
at the bottleneck link. Figure 9(b) shows the queue length
plot of BLUE over the same experiment. In contrast to
RED, BLUE avoids deterministic marking and maintains
a marking probability that allows it to achieve high link
utilization while avoiding sustained packet loss over all
workloads.

Figure 10 shows the corresponding marking behavior
of both RED and BLUE in the experiment. As the fig-
ure shows, BLUE maintains a steady marking rate which
changes as the workload is changed. On the other hand,
RED’s calculated marking probability fluctuates from 0
to 1 throughout the experiment. When the queue is fully
occupied, RED overmarks and drops packets causing a
subsequent period of underutilization as described in Sec-
tion II. Conversely, when the queue is empty, RED under-
marks packets causing a subsequent period of high packet
loss as the offered load increases well beyond the link’s
capacity.

Figure 11 shows howECN timeouts impact the perfor-
mance of RED and BLUE. The figure shows the loss rates
and link utilization using the 1000 and 4000 connection
experiments in Section III-B. As the figure shows, BLUE

maintains low packet loss rates and high link utilization
across all experiments. The figure also shows that the

Intellistation Intellistation

WinBookXL

10Mbs

233 MHz/32 MB 266 MHz/64 MB

Thinkpad 770

IBM PC 365

200 MHz/64 MB

ZProMPro

IBM PC 360

150 MHz/64 MB

400 MHz/128 MB 200 MHz/64 MB

100Mbs100Mbs

Fig. 12. Experimental testbed

use ofECN timeouts allows RED to reduce the amount of
packet loss in comparison to Figure 5. However, because
RED often deterministically marks packets, it suffers from
poor link utilization unless correctly parameterized. The
figure shows that only an extremely small value ofwq

(ConfigurationR1) allows RED to approach the perfor-
mance of BLUE. As described earlier, a smallwq value
effectively decouples congestion management from the
queue length calculation making RED queue management
behave more like BLUE.

E. Implementation

In order to evaluate BLUE in a more realistic setting, it
has been implemented in FreeBSD 2.2.7 using ALTQ [4].
In this implementation,ECN uses two bits of the type-
of-service (ToS) field in the IP header [31]. When BLUE

decides that a packet must be dropped or marked, it exam-
ines one of the two bits to determine if the flow isECN-
capable. If it is notECN-capable, the packet is simply
dropped. If the flow isECN-capable, the other bit is set
and used as a signal to theTCP receiver that congestion
has occurred. TheTCP receiver, upon receiving this sig-
nal, modifies theTCP header of the return acknowledg-
ment using a currently unused bit in theTCP flags field.
Upon receipt of aTCP segment with this bit set, theTCP

sender invokes congestion-control mechanisms as if it had
detected a packet loss.

Using this implementation, several experiments were
run on the testbed shown in Figure 12. Each network node
and link is labeled with the CPU model and link band-
width, respectively. Note that all links are shared Ethernet
segments. Hence, the acknowledgments on the reverse
path collide and interfere with data packets on the for-
ward path. As the figure shows, FreeBSD-based routers
using either RED or BLUE queue management on their
outgoing interfaces are used to connect the Ethernet and
Fast Ethernet segments. In order to generate load on the
system, a variable number ofnetperf [26] sessions are
run from theIBM PC 360and theWinbook XLto theIBM
PC 365and theThinkpad 770. The router queue on the

9

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Time (s)

0

40

80

120

160

200

A
ct

ua
l Q

ue
ue

 L
en

gt
h

(K
B

)

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Time (s)

0

40

80

120

160

200

A
ct

ua
l Q

ue
ue

 L
en

gt
h

(K
B

)

(a) RED (b) BLUE

Fig. 9. Queue length plots of RED and BLUE with ECN timeouts

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ar

ki
ng

 P
ro

ba
bi

lit
y

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
ar

ki
ng

 P
ro

ba
bi

lit
y

(a) pb

1−count×pb
of RED (b) pm of BLUE

Fig. 10. Marking behavior withECN timeouts

congested Ethernet interface of theIntellistation Zprois
sized at50KB which corresponds to a queueing delay of
about40ms. For the experiments with RED, a configura-
tion with aminth of 10KB, amaxth of 40KB, amaxp

of 1, and awq of 0.002 was used. For the experiments
with BLUE, aδ1 of 0.01, aδ2 of 0.001 and afreeze time
of 50ms was used. To ensure that the queue management
modifications did not create a bottleneck in the router, the
testbed was reconfigured exclusively with Fast Ethernet
segments and a number of experiments between network
endpoints were run using the BLUE modifications on the
intermediate routers. In all of the experiments, the sus-
tained throughput was always above 80 Mbps.

Figures 13(a) and (b) show the throughput and packet
loss rates at the bottleneck link across a range of work-
loads. The throughput measures the rate at which packets
are forwarded through the congested interface while the

packet loss rate measures the ratio of the number of pack-
ets dropped at the queue and the total number of packets
received at the queue. In each experiment, throughput and
packet loss rates were measured over five 10-second inter-
vals and then averaged. Note that theTCP sources used in
the experiment do not implementECN timeouts. As Fig-
ure 13(a) shows, both the BLUE queue and the optimally
configured RED queue maintain relatively high levels of
throughput across all loads. However, since RED periodi-
cally allows the link to become underutilized, its through-
put remains slightly below that of BLUE. As Figure 13(b)
shows, RED sustains increasingly high packet loss as the
number of connections is increased. Since aggregateTCP

traffic becomes more aggressive as the number of con-
nections increases, it becomes difficult for RED to main-
tain low loss rates. Fluctuations in queue lengths occur
so abruptly that the RED algorithm oscillates between pe-

10

0.0 50.0 100.0 150.0 200.0
Buffer Size (in ms of delay)

0.0

1.0

2.0

3.0

4.0

5.0

P
er

ce
nt

 P
ac

ke
t L

os
s

B1
B2
B3
B4
R1
R2
R3
R4

0.0 50.0 100.0 150.0 200.0
Buffer Size (in ms of delay)

70.0

75.0

80.0

85.0

90.0

95.0

100.0

P
er

ce
nt

 L
in

k
U

til
iz

at
io

n

B1
B2
B3
B4
R1
R2
R3
R4

(a) Loss rates (1000 sources) (b) Link utilization (1000 sources)

0.0 50.0 100.0 150.0 200.0
Buffer Size (in ms of delay)

0.0

1.0

2.0

3.0

4.0

5.0

P
er

ce
nt

 P
ac

ke
t L

os
s

B1
B2
B3
B4
R1
R2
R3
R4

0.0 50.0 100.0 150.0 200.0
Buffer Size (in ms of delay)

70.0

75.0

80.0

85.0

90.0

95.0

100.0

P
er

ce
nt

 L
in

k
U

til
iz

at
io

n

B1
B2
B3
B4
R1
R2
R3
R4

(c) Loss rates (4000 sources) (d) Link utilization (4000 sources)

Fig. 11. Performance of RED and BLUE with ECN timeouts

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0
Number of Connections

9.00

9.10

9.20

9.30

9.40

Th
ro

ug
hp

ut
 (M

bs
)

Blue
RED

0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0
Number of Connections

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

P
er

ce
nt

 P
ac

ke
t L

os
s

Blue
RED

(a) Throughput (b) Percent packet loss

Fig. 13. Queue management performance

riods of sustained marking and packet loss to periods of
minimal marking and link underutilization. In contrast,

BLUE maintains relatively small packet loss rates across
all loads. At higher loads, when packet loss is observed,

11

BLUE maintains a marking probability which is approxi-
mately 1, causing it to mark every packet it forwards.

IV. STOCHASTIC FAIR BLUE

Up until recently, the Internet has mainly relied on the
cooperative nature ofTCP congestion control in order to
limit packet loss and fairly share network resources. In-
creasingly, however, new applications are being deployed
which do not useTCP congestion control and are not re-
sponsive to the congestion signals given by the network.
Such applications are potentially dangerous because they
drive up the packet loss rates in the network and can even-
tually cause congestion collapse [19, 28]. In order to ad-
dress the problem of non-responsive flows, a lot of work
has been done to provide routers with mechanisms for
protecting against them [7, 22, 27]. The idea behind these
approaches is to detect non-responsive flows and to limit
their rates so that they do not impact the performance of
responsive flows. This section describes and evaluates
Stochastic FairBLUE (SFB), a novel technique based on
Bloom filters [2] for protectingTCP flows against non-
responsive flows. Based on the BLUE algorithm. SFB is
highly scalable and enforces fairness using an extremely
small amount of state and a small amount of buffer space.

A. The algorithm

Figure 14 shows the basicSFBalgorithm.SFB is aFIFO

queueing algorithm that identifies and rate-limits non-
responsive flows based on accounting mechanisms sim-
ilar to those used with BLUE. SFB maintainsN × L ac-
counting bins. The bins are organized inL levels withN
bins in each level. In addition,SFB maintains (L) inde-
pendent hash functions, each associated with one level of
the accounting bins. Each hash function maps a flow, via
its connection ID(Source address, Destination address,
Source port, Destination port, Protocol), into one of the
N accounting bins in that level. The accounting bins are
used to keep track of queue occupancy statistics of pack-
ets belonging to a particular bin. This is in contrast to
Stochastic Fair Queueing [24] (SFQ) where the hash func-
tion maps flows into separate queues. Each bin inSFB

keeps a marking/dropping probabilitypm as in BLUE,
which is updated based on bin occupancy. As a packet
arrives at the queue, it is hashed into one of theN bins in
each of theL levels. If the number of packets mapped to
a bin goes above a certain threshold (i.e., the size of the
bin), pm for the bin is increased. If the number of packets
drops to zero,pm is decreased.

The observation which drivesSFB is that a non-
responsive flow quickly drivespm to 1 in all of theL bins
it is hashed into. Responsive flows may share one or two

init()
B[l][n]: AllocateL×N array of bins
(L levels,N bins per level)

enque()
Calculate hashesh0, h1, . . . , hL−1;
Update bins at each level
for i = 0 to L− 1

if (B[i][hi].qlen > bin size)
B[i][hi].pm+ = ∆;
Drop packet;

else if (B[i][hi].qlen == 0)
B[i][hi].pm− = ∆;

pmin = min(B[0][h0].pm,
. . .,
B[L][hL].pm);

if (pmin == 1)
ratelimit()

else
Mark/drop with probabilitypmin;

Fig. 14. SFB algorithm

�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

h0 h h h1 L-2 L-1

0

Non-responsive
Flow

TCP Flow

P=0.3

P=0.2

P=1.0

P=1.0

P=1.0

P=1.0

P=0.2

minP =0.2

P =1.0min

B-1

Fig. 15. Example ofSFB

bins with non-responsive flows, however, unless the num-
ber of non-responsive flows is extremely large compared
to the number of bins, a responsive flow is likely to be
hashed into at least one bin that is not polluted with non-
responsive flows and thus has a normalpm value. The
decision to mark a packet is based onpmin, the mini-
mum pm value of all bins to which the flow is mapped
into. If pmin is 1, the packet is identified as belonging
to a non-responsive flow and is then rate-limited. Note
that this approach is akin to applying a Bloom filter on
the incoming flows. In this case, the dictionary of mes-
sages or words is learned on the fly and consists of the

12

IP headers of the non-responsive flows which are multi-
plexed across the link [2]. When a non-responsive flow is
identified using these techniques, a number of options are
available to limit the transmission rate of the flow. In this
paper, flows identified as being non-responsive are sim-
ply limited to a fixed amount of bandwidth. This policy is
enforced by limiting the rate of packet enqueues for flows
with pmin values of 1. Figure 15 shows an example of
how SFB works. As the figure shows, a non-responsive
flow drives up the marking probabilities of all of the bins
it is mapped into. While theTCP flow shown in the figure
may map into the same bin as the non-responsive flow at
a particular level, it maps into normal bins at other levels.
Because of this, the minimum marking probability of the
TCPflow is below 1.0 and thus, it is not identified as being
non-responsive. On the other hand, since the minimum
marking probability of the non-responsive flow is 1.0, it
is identified as being non-responsive and rate-limited.

Note that just as BLUE’s marking probability can be
used inSFB to provide protection against non-responsive
flows, it is also possible to apply Adaptive RED’s maxp

parameter [9] to do the same. In this case, a per-bin
maxp value is kept and updated according to the behav-
ior of flows which map into the bin. As with RED, how-
ever, there are two problems which make this approach
ineffective. The first is the fact that a large amount of
buffer space is required in order to get RED to perform
well. The second is that the performance of a RED-based
scheme is limited since even a moderate amount of con-
gestion requires amaxp setting of 1. Thus, RED, used in
this manner, has an extremely difficult time distinguish-
ing between a non-responsive flow and moderate levels
of congestion. In order to compare approaches, Stochas-
tic Fair RED (SFRED) was also implemented by applying
the same techniques used forSFB to RED.

B. Evaluation

Usingns , theSFBalgorithm was simulated in the same
network as in Figure 4 with the transmission delay of
all of the links set to10ms. The SFB queue is config-
ured with200KB of buffer space and maintains two hash
functions each mapping to 23 bins. The size of each bin is
set to 13, approximately 50% more than123 of the avail-

able buffer space. Note that by allocating more than1
23

of the buffer space to each bin,SFB effectively “over-
books” the buffer in an attempt to improve statistical mul-
tiplexing. Notice that even with overbooking, the size of
each bin is quite small. Since BLUE performs extremely
well under constrained memory resources,SFB can still
effectively maximize network efficiency. The queue is
also configured to rate-limit non-responsive flows to 0.16
Mbps.

In the experiments, 400TCP sources and one non-
responsive, constant rate source are run for 100 seconds
from randomly selected nodes in (n0, n1, n2, n3, n4) to
randomly selected nodes in (n5, n6, n7, n8, n9). In one
experiment, the non-responsive flow transmits at a rate of
2 Mbps while in the other, it transmits at a rate of45Mbs.
Table III shows the packet loss observed in both experi-
ments forSFB. As the table shows, for both experiments,
SFB performs extremely well. The non-responsive flow
sees almost all of the packet loss as it is rate-limited to a
fixed amount of the link bandwidth. In addition, the table
shows that in both cases, a very small amount of packets
from TCP flows are lost. Table III also shows the perfor-
mance of RED. In contrast toSFB, RED allows the non-
responsive flow to maintain a throughput relatively close
to its original sending rate. As a result, the remainingTCP

sources see a considerable amount of packet loss which
causes their performance to deteriorate.SFRED, on the
other hand, does slightly better at limiting the rate of the
non-responsive flow, however, it cannot fully protect the
TCP sources from packet loss since it has a difficult time
discerning non-responsive flows from moderate levels of
congestion. Finally, the experiments were repeated using
SFQ with an equivalent number of bins (i.e., 46 distinct
queues) and a buffer more than twice the size (414KB),
making each queue equally sized at9KB. For each bin in
the SFQ, the RED algorithm was applied withminth and
maxth values set at2KB and8KB, respectively. As the
table shows,SFQ with RED does an adequate job of pro-
tectingTCPflows from the non-responsive flow. However,
in this case, partitioning the buffers into such small sizes
causes a significant amount of packet loss to occur due
to RED’s inability to operate properly with small buffers.
Additional experiments show that as the amount of buffer
space is decreased even further, the problem is exacer-
bated and the amount of packet loss increases consider-
ably.

To qualitatively examine the impact that the non-
responsive flow has onTCP performance, Figure 16(a)
plots the throughput of all 400TCP flows usingSFB when
the non-responsive flow sends at a45Mbs rate. As the
figure shows,SFB allows eachTCP flow to maintain close
to a fair share of the bottleneck link’s bandwidth while the
non-responsive flow is rate-limited to well below its trans-
mission rate. In contrast, Figure 16(b) shows the same
experiment using normal RED queue management. The
figure shows that the throughput of allTCP flows suffers
considerably as the non-responsive flow is allowed to grab
a large fraction of the bottleneck link bandwidth. Fig-
ure 16(c) shows that whileSFRED does succeed in rate-
limiting the non-responsive flow, it also manages to drop
a significant amount of packets fromTCP flows. This is
due to the fact that the lack of buffer space and the in-

13

2Mbps non-responsive flow 45Mbps non-responsive flow
Packet Loss (Mbps) SFB RED SFRED SFQ+RED SFB RED SFRED SFQ+RED

Total 1.86 1.79 3.10 3.60 44.85 13.39 42.80 46.47
Non-responsive flow 1.85 0.03 0.63 1.03 44.84 10.32 40.24 43.94
All TCP flows 0.01 1.76 2.57 2.47 0.01 3.07 2.56 2.53

TABLE III

SFB LOSS RATES INMBPS (ONE NON-RESPONSIVE FLOW)

0 100 200 300 400
Flow Number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Th
ro

ug
hp

ut
 (M

bs
)

Non−responsive Flow Throughput = 0.16 Mbs

Fair Share

0 100 200 300 400
Flow Number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Th
ro

ug
hp

ut
 (M

bs
)

Non−responsive Flow Throughput = 34.68 Mbs

Fair Share

(a) SFB (b) RED

0 100 200 300 400
Flow Number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Th
ro

ug
hp

ut
 (M

bs
)

Non−responsive Flow Throughput = 4.76 Mbs

Fair Share

0 100 200 300 400
Flow Number

0.00

0.20

0.40

0.60

0.80

1.00

1.20

Th
ro

ug
hp

ut
 (M

bs
)

Non−responsive Flow Throughput = 0.10 Mbs

Fair Share

(c) SFRED (d) SFQ+RED
Fig. 16. Bandwidth ofTCP flows (45Mbs non-responsive flow)

effectiveness ofmaxp combine to causeSFRED to per-
form poorly as described in Section IV-A. Finally, Fig-
ure 16(d) shows that whileSFQwith RED can effectively
rate-limit the non-responsive flows, the partitioning of
buffer space causes the fairness between flows to dete-
riorate as well. The large amount of packet loss induces
a large number of retransmission timeouts across a sub-
set of flows which causes significant amounts of unfair-
ness [25]. Thus, through the course of the experiment, a

few TCP flows are able to grab a disproportionate amount
of the bandwidth while many of the flows receive signif-
icantly less than a fair share of the bandwidth across the
link. In addition to this,SFQ with RED allows 1

46 of the
400 flows to be mapped into the same queue as the non-
responsive flow. Flows that are unlucky enough to map
into this bin receive an extremely small amount of the link
bandwidth. SFB, in contrast, is able to protect all of the
TCP flows in this experiment.

14

C. Limitations ofSFB

While it is clear that the basicSFB algorithm can pro-
tect TCP-friendly flows from non-responsive flows with-
out maintaining per-flow state, it is important to under-
stand how it works and its limitations.SFB effectively
usesL levels withN bins in each level to createNL vir-
tual buckets. This allowsSFB to effectively identify a sin-
gle non-responsive flow in anNL flow aggregate using
O(L ∗ N) amount of state. For example, in the previous
section, using two levels with 23 bins per level effectively
creates 529 buckets. Since there are only 400 flows in the
experiment,SFB is able to accurately identify and rate-
limit a single non-responsive flow without impacting the
performance of any of the individualTCP flows. As the
number of non-responsive flows increases, the number of
bins which become “polluted” or havepm values of 1 in-
creases. Consequently, the probability that a responsive
flow gets hashed into bins which are all polluted, and thus
becomes misclassified, increases. Clearly, misclassifica-
tion limits the ability ofSFB to protect well-behavedTCP

flows.

Using simple probabilistic analysis, Equation (1) gives
a closed-form expression of the probability that a well-
behaved TCP flow gets misclassified as being non-
responsive as a function of number of levels (L), the
number of bins per level (B), and the number of non-
responsive/malicious flows (M), respectively.

p = [1− (1− 1
B

)M]L (1)

In this expression, whenL is 1, SFB behaves much like
SFQ. The key difference is thatSFBusing one level is still
a FIFO queueing discipline with a shared buffer whileSFQ

has separate per-bin queues and partitions the available
buffer space amongst them.

Using the result from Equation (1), it is possible to op-
timize the performance ofSFB givena priori information
about its operating environment. Suppose the number of
simultaneously active non-responsive flows can be esti-
mated (M) and the amount of memory available for use
in the SFB algorithm is fixed (C). Then, by minimizing
the probability function in Equation (1) with the addi-
tional boundary condition thatL × N = C, SFB can be
tuned for optimal performance. To demonstrate this, the
probability for misclassification across a variety of set-
tings is evaluated. Figure 17 shows the probability of
misclassifying a flow when the total number of bins is
fixed at 900. In this figures, the number of levels used in
SFB along with the number of non-responsive flows are
varied. As the figures show, when the number of non-
responsive flows is small compared to the number of bins,
the use of multiple levels keeps the probability of misclas-

0 100 200 300 400 500 600 700 800 900
Number of Non−Responsive Flows

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

of
 M

is
cl

as
si

fic
at

io
n

L=1
L=2
L=3

Fig. 17. Probability of misclassification using 900 bins

0 100 200 300 400
Flow Number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Th
ro

ug
hp

ut
 (M

bs
)

Non−responsive Flows Throughput = 0.21 Mbs

Fair Share

Fig. 18. Bandwidth ofTCPflows usingSFBwith 8 non-responsive flows

sification extremely low. However, as the number of non-
responsive flows increases past half the number of bins
present, the single levelSFB queue affords the smallest
probability of misclassification. This is due to the fact that
when the bins are distributed across multiple levels, each
non-responsive flow pollutes a larger number of bins. For
example, using a single levelSFB queue with 90 bins,
a single non-responsive flow pollutes only one bin. Us-
ing a two-levelSFB queue with each level containing 45
bins, the number of effective bins is 45×45 (2025). How-
ever, a single non-responsive flow pollutes two bins (one
per level). Thus, the advantage gained by the two-level
SFB queue is lost when additional non-responsive flows
are added, as a larger fraction of bins become polluted
compared to the single-level situation.

In order to evaluate the performance degradation of
SFBas the number of non-responsive flows increases, Fig-
ure 18 shows the bandwidth plot of the 400TCP flows
when 8 non-responsive flows are present. In these exper-

15

iments, each non-responsive flow transmits at a rate of
5Mbs. As Equation (1) predicts, in anSFB configuration
that contains two levels of 23 bins,8.96% (36) of theTCP

flows are misclassified when 8 non-responsive flows are
present. When the number of non-responsive flows ap-
proachesN , the performance ofSFB deteriorates quickly
as an increasing number of bins at each level becomes
polluted. In the case of 8 non-responsive flows, approx-
imately 6 bins or one-fourth of the bins in each level are
polluted. As the figure shows, the number of misclassi-
fied flows matches the model quite closely. Note that even
though a larger number of flows are misclassified as the
number of non-responsive flows increases, the probability
of misclassification in a two-levelSFBstill remains below
that ofSFQor a single-levelSFB. Using the same number
of bins (46), the equation predicts thatSFQ and a single-
level SFB misclassify16.12% of theTCP flows (64) when
8 non-responsive are present.

D. SFB with moving hash functions

In this section, two basic problems with theSFB algo-
rithm are addressed. The first, as described above, is to
mitigate the effects of misclassification. The second is to
be able to detect when non-responsive flows become re-
sponsive and to reclassify them when they do.

The idea behindSFB with moving hash functions is to
periodically or randomly reset the bins and change the
hash functions. A non-responsive flow will continually
be identified and rate-limited regardless of the hash func-
tion used. However, by changing the hash function, re-
sponsiveTCP flows that happen to map into polluted bins
will potentially be remapped into at least one unpolluted
bin. Note that this technique effectively creates virtual
bins across time just as the multiple levels of bins in the
original algorithm creates virtual bins across space. In
many ways the effect of using moving hash functions is
analogous to channel hopping in CDMA [18, 33] systems.
It essentially reduces the likelihood of a responsive con-
nection being continually penalized due to erroneous as-
signment into polluted bins.

To show the effectiveness of this approach, the idea
of moving hash functions was applied to the experiment
in Figure 18(b). In this experiment, 8 non-responsive
flows along with 400 responsive flows share the bottle-
neck link. To protect against continual misclassification,
the hash function is changed every two seconds. Fig-
ure 19(a) shows the bandwidth plot of the experiment. As
the figure shows,SFB performs fairly well. While flows
are sometimes misclassified causing a degradation in per-
formance, none of theTCP-friendly flows are shut out due
to misclassification. This is in contrast to Figure 18 where
a significant number ofTCPflows receive very little band-

width.

While the moving hash functions improve fairness
across flows in the experiment, it is interesting to note
that every time the hash function is changed and the bins
are reset, non-responsive flows are temporarily placed on
“parole”. That is, non-responsive flows are given the ben-
efit of the doubt and are no longer rate-limited. Only after
these flows cause sustained packet loss, are they identi-
fied and rate-limited again. Unfortunately, this can po-
tentially allow such flows to grab much more than their
fair share of bandwidth over time. For example, as Fig-
ure 19(a) shows, non-responsive flows are allowed to con-
sume3.85Mbs of the bottleneck link. One way to solve
this problem is to use two sets of bins. As one set of
bins is being used for queue management, a second set of
bins using the next set of hash functions can be warmed
up. In this case, any time a flow is classified as non-
responsive, it is hashed using the second set of hash func-
tions and the marking probabilities of the corresponding
bins in the warmup set are updated. When the hash func-
tions are switched, the bins which have been warmed up
are then used. Consequently, non-responsive flows are
rate-limited right from the beginning. Figure 19(b) shows
the performance of this approach. As the figure shows,
the double buffered moving hash effectively controls the
bandwidth of the non-responsive flows and affords the
TCP flows a very high level of protection. Note that one
of the advantages of the moving hash function is that it
can quickly react to non-responsive flows which become
TCP-friendly. In this case, changing the hash bins places
the newly reformed flow out on parole for good behavior.
Only after the flow resumes transmitting at a high rate,
is it again rate-limited. Additional experiments show that
this algorithm allows for quick adaptation to flow behav-
ior [11].

V. COMPARISONS TOOTHER APPROACHES

A. RED with Penalty Box

The RED with penalty box approach takes advantage
of the fact that high bandwidth flows see proportionally
larger amounts of packet loss. By keeping a finite log of
recent packet loss events, this algorithm identifies flows
which are non-responsive based on the log [7]. Flows
which are identified as being non-responsive are then rate-
limited using a mechanism such as class-based queue-
ing [15]. While this approach may be viable under certain
circumstances, it is unclear how the algorithm performs
in the face of a large number of non-responsive flows.
Unless the packet loss log is large, a single set of high
bandwidth flows can potentially dominate the loss log and
allow other, non-responsive flows to go through without

16

0 100 200 300 400
Flow Number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Th
ro

ug
hp

ut
 (M

bs
)

Non−responsive Flow Throughput = 3.85 Mbs

Fair Share

0 100 200 300 400
Flow Number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Th
ro

ug
hp

ut
 (M

bs
)

Non−responsive Flow Throughput = 0.19 Mbs

Fair Share

(a) Moving hash (b) Double buffered moving hash

Fig. 19. Bandwidth ofTCP flows using modifiedSFB algorithms

rate-limitation. In addition, flows which are classified as
non-responsive remain in the “penalty box” even if they
subsequently become responsive to congestion. A peri-
odic and explicit check is thus required to move flows out
of the penalty box. Finally, the algorithm relies on aTCP-
friendliness check in order to determine whether or not
a flow is non-responsive. Withouta priori knowledge of
the round-trip time of every flow being multiplexed across
the link, it is difficult to accurately determine whether or
not a connection isTCP-friendly.

B. StabilizedRED

Stabilized RED is a another approach to detecting non-
responsive flows [27]. In this case, the algorithm keeps
a finite log of recent flows it has seen. The idea behind
this is that non-responsive flows will always appear in the
log multiple times and can be singled out for punishment.
Unfortunately, for a large number of flows, using the last
M flows can fail to catch non-responsive flows. For in-
stance, consider a single non-responsive flow sending at
a constant rate of 0.5 Mbps in an aggregate consisting of
1000 flows over a bottleneck link of 100 Mbps where a
fair share of bandwidth is 0.1 Mbps. In order to ensure
that the non-responsive flow even shows up in the lastM
flows seen,M needs to be at least 200 or 20% of the total
number of flows. In general, if there are a total ofN flows
and a non-responsive flow is sending atX times the fair
share,M needs to be at leastN

X in order to catch the flow.
The SFB algorithm, on the other hand, has the property
that the state scales with the number of non-responsive
flows. To ensure detection of the non-responsive flow in
the above situation, a static10×3 SFBqueue which keeps
state on 30 bins or 3% of the total number of flows is suf-
ficient. With the addition of mutating hash functions, an

even smallerSFB queue can be used.

C. FRED

Another proposal for using RED mechanisms to pro-
vide fairness is Flow-RED (FRED) [22]. The idea behind
FRED is to keep state based on instantaneous queue oc-
cupancy of a given flow. If a flow continually occupies
a large amount of the queue’s buffer space, it is detected
and limited to a smaller amount of the buffer space. While
this scheme provides rough fairness in many situations,
since the algorithm only keeps state for flows which have
packets queued at the bottleneck link, it requires a large
buffer space to work well. Without sufficient buffer space,
it becomes difficult for FRED to detect non-responsive
flows, as they may not have enough packets continually
queued to trigger the detection mechanism. In addition,
non-responsive flows are immediately re-classified as be-
ing responsive as soon as they clear their packets from the
congested queue. For small queue sizes, it is quite easy to
construct a transmission pattern which exploits this prop-
erty of FRED in order to circumvent its protection mech-
anisms. Note thatSFB does not directly rely on queue
occupancy statistics, but rather long-term packet loss and
link utilization behaviors. Because of this,SFB is bet-
ter suited for protectingTCPflows against non-responsive
flows using a minimal amount of buffer space. Finally, as
with the packet loss log approach, FRED also has a prob-
lem when dealing with a large number of non-responsive
flows. In this situation, the ability to distinguish these
flows from normalTCP flows deteriorates considerably
since the queue occupancy statistics used in the algorithm
become polluted. By not using packet loss as a means
for identifying non-responsive flows, FRED cannot make
the distinction betweenN TCP flows multiplexed across

17

a link versusN non-responsive flows multiplexed across
a link.

D. RED with per-flow Queueing

A RED-based, per-active flow approach has been pro-
posed for providing fairness between flows [32]. The
idea behind this approach is to do per-flow accounting
and queueing only for flows which are active. The ap-
proach argues that, since keeping a large number of states
is feasible, per-flow queueing and accounting is possible
even in the core of the network. The drawbacks of this
approach is that it provides no savings in the amount of
state required. IfN flows are active,O(N) states must
be kept to isolate the flows from each other. In addition,
this approach does not address the large amount of legacy
hardware which exists in the network. For such hardware,
it may be infeasible to provide per-flow queueing and ac-
counting. BecauseSFB provides considerable savings in
the amount of state and buffers required, it is a viable al-
ternative for providing fairness efficiently.

E. Stochastic Fair Queueing

Stochastic Fair Queueing (SFQ) is similar to anSFB

queue with only one level of bins. The biggest differ-
ence is that instead of having separate queues,SFB uses
the hash function for accounting purposes. Thus,SFB has
two fundamental advantages overSFQ. The first is that it
can make better use of its buffers.SFB gets some statis-
tical multiplexing of buffer space as it is possible for the
algorithm to overbook buffer space to individual bins in
order to keep the buffer space fully-utilized. As described
in Section IV-B, partitioning the available buffer space
adversely impacts the packet loss rates and the fairness
amongstTCP flows. The other key advantage is thatSFB

is a FIFO queueing discipline. As a result, it is possible
to change the hash function on the fly without having to
worry about packet re-ordering caused by mapping flows
into a different set of bins. Without additional tagging and
book-keeping, applying the moving hash functions toSFQ

can cause significant packet re-ordering.

VI. CONCLUSION AND FUTURE WORK

We have demonstrated the inherent weakness of current
active queue management algorithms which use queue
occupancy in their algorithms. In order to address this
problem, we have designed and evaluated a fundamen-
tally different queue management algorithm called BLUE.
BLUE uses the packet loss and link utilization history of
the congested queue, instead of queue lengths to manage
congestion. In addition to BLUE, we have proposed and
evaluatedSFB, a novel algorithm for scalably and accu-

rately enforcing fairness amongst flows in a large aggre-
gate. UsingSFB, non-responsive flows can be identified
and rate-limited using a very small amount of state.

REFERENCES

[1] S. Athuraliya, S. Low, V. Li, and Q. Yin. REM Active Queue
Management.IEEE Network Magazine, 15(3), May 2001.

[2] B. Bloom. Space/time Trade-offs in Hash Coding with Allowable
Errors.Communications of the ACM, 13(7), July 1970.

[3] R. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Es-
trin, S. Floyd, V. Jacobson, G. Minshall, C. Partridge, L. Peterson,
K. Ramakrishnan, S. Shenker, J. Wroclawski, and L. Zhang. Rec-
ommendations on Queue Management and Congestion Avoidance
in the Internet.RFC 2309, April 1998.

[4] K. Cho. A Framework for Alternate Queueing: Towards Traffic
Management by PC-UNIX Based Routers.USENIX 1998 Annual
Technical Conference, June 1998.

[5] I. Cidon, R. Guerin, and A. Khamisy. Protective Buffer Manage-
ment Policies.IEEE/ACM Transactions on Networking, 2(3), June
1994.

[6] S. Doran. RED Experience and Differentiated Queueing. In
NANOG Meeting, June 1998.

[7] K. Fall and S. Floyd. Router Mechanisms to Support End-to-End
Congestion Control. ftp://ftp.ee.lbl.gov/papers/collapse.ps, Febru-
ary 1997.

[8] W. Feng, D. Kandlur, D. Saha, and K. G. Shin. Techniques for
Eliminating Packet Loss in Congested TCP/IP Networks. InUM
CSE-TR-349-97, October 1997.

[9] W. Feng, D. Kandlur, D. Saha, and K. G. Shin. A Self-Configuring
RED Gateway. InProc. IEEE INFOCOM, pages 1320–1328,
March 1999.

[10] W. Feng, D. Kandlur, D. Saha, and K. G. Shin. Blue: A New Class
of Active Queue Management Algorithms. InUM CSE-TR-387-
99, April 1999.

[11] W. Feng, D. Kandlur, D. Saha, and K. G. Shin. Stochastic Fair
Blue: A Queue Management Algorithm for Enforcing Fairness.
In Proc. IEEE INFOCOM, pages 1520–1529, April 2001.

[12] S. Floyd. TCP and Explicit Congestion Notification.Computer
Communication Review, 24(5):10–23, October 1994.

[13] S. Floyd and V. Jacobson. On Traffic Phase Effects in Packet-
Switched Gateways.Internetworking: Research and Experience,
3(3):115–156, September 1992.

[14] S. Floyd and V. Jacobson. Random Early Detection Gateways for
Congestion Avoidance.ACM/IEEE Transactions on Networking,
1(4):397–413, August 1993.

[15] S. Floyd and V. Jacobson. Link-sharing and Resource Manage-
ment Models for Packet Networks.IEEE/ACM Transactions on
Networking, 3(4), August 1995.

[16] R. Guerin, S. Kamat, V. Peris, and R. Rajan. Scalable QoS Provi-
sion Through Buffer Management. InProceedings of ACM SIG-
COMM, September 1998.

[17] C. Hollot, V. Misra, D. Towsley, and W. Gong. On designing im-
proved controllers for aqm routers supporting tcp flows. InPro-
ceedings of IEEE INFOCOM, Apr. 2001.

[18] IEEE 802.11 Working Group. IEEE 802.11 Standard, June 1997.
[19] V. Jacobson. Congestion Avoidance and Control. InProceedings

of ACM SIGCOMM, pages 314–329, August 1988.
[20] S. Kunniyur and R. Srikant. Analysis and Design of an Adaptive

Virtual Queue (AVQ) Algorithm for Active Queue Management.
In Proceedings of ACM SIGCOMM, Aug. 2001.

[21] W. Leland, M. Taqqu, W. Willinger, and D. Wilson. On the Self-
Similar Nature of Ethernet Traffic (Extended Version).IEEE/ACM
Transactions on Networking, 2(1), February 1994.

[22] D. Lin and R. Morris. Dynamics of Random Early Detection. In
Proc. of ACM SIGCOMM, September 1997.

18

[23] S. McCanne and S. Floyd. http://www-nrg.ee.lbl.gov/ns/. ns-
LBNL Network Simulator, 1996.

[24] P. McKenney. Stochastic Fairness Queueing. InProc. IEEE IN-
FOCOM, March 1990.

[25] R. Morris. TCP Behavior with Many Flows. InProc. IEEE Inter-
national Conference on Network Protocols, October 1997.

[26] Netperf. The Public Netperf Homepage: http://www.netperf.org/.
The Public Netperf Homepage, 1998.

[27] T. Ott, T. Lakshman, and L. Gong. SRED: Stabilized RED. In
Proceedings of IEEE INFOCOM, Mar. 1999.

[28] V. Paxson. End-to-End Internet Packet Dynamics. InProc. of
ACM SIGCOMM, September 1997.

[29] V. Paxson and S. Floyd. Wide-Area Traffic: The Failure of Poisson
Modeling. InProc. of ACM SIGCOMM, pages 257–268, August
1994.

[30] K. K. Ramakrishan and R. Jain. A Binary Feedback Scheme for
Congestion Avoidance in Computer Networks.ACM Transaction
on Computer Systems, 8(2):158–181, May 1990.Review: Com-
puting Reviews, December 1990.

[31] K. Ramakrishnan and S. Floyd. A Proposal to Add Explicit Con-
gestion Notification (ECN) to IP.RFC 2481, January 1999.

[32] B. Suter, T. V. Lakshman, D. Stiliadis, and A. Choudhury. Design
Considerations for Supporting TCP with Per-flow Queueing.Proc.
IEEE INFOCOM, March 1998.

[33] V. K. Garg and K. Smolik and J. E. Wilkes. Applications Of
CDMA In Wireless/Personal Communications. Prentice Hall Pro-
fessional Technical Reference, October 1996.

[34] C. Villamizar and C. Song. High Performance TCP in ANSNET.
Computer Communication Review, 24(5):45–60, October 1994.

Wu-chang Feng is currently an Assistant Pro-
fessor at the Oregon Graduate Institute (OGI)
at the Oregon Health and Science University
(OHSU) where he is currently a member of
the Systems Software Laboratory. Prior to
joining OGI/OHSU, Wu-chang served as a
Senior Architect at Proxinet/Pumatech, Inc.
Wu-chang received his B.S. degree in Com-
puter Engineering from Penn State University
and his M.S.E. and Ph.D. degrees in Computer

Science Engineering from the University of Michigan.

Kang G. Shin is the Kevin and Nancy
O’Connor Chair Professor of Computer Sci-
ence, and the Founding Director of the Real-
Time Computing Laboratory, Department of
Electrical Engineering and Computer Sci-
ence, The University of Michigan, Ann Ar-
bor, Michigan. His current research focuses
on QoS-sensitive networking and computing
as well as on embedded real-time OS, middle-
ware and applications, all with emphasis on

timeliness and dependability.
He has supervised the completion of 42 PhD theses, and au-

thored/coauthored over 600 technical papers and numerous book chap-
ters in the areas of distributed real-time computing and control, com-
puter networking, fault-tolerant computing, and intelligent manufactur-
ing. He has co-authored (jointly with C. M. Krishna) a textbook “Real-
Time Systems,” McGraw Hill, 1997. He received the Outstanding IEEE
Transactions on Automatic Control Paper Award in 1987, Research Ex-
cellence Award in 1989, Outstanding Achievement Award in 1999, Ser-
vice Excellence Award in 2000, and Distinguished Faculty Achievement

Award in 2001 from The University of Michigan. He also coauthored
papers with his students which received the Best Student Paper Awards
from the 1996 IEEE Real-Time Technology and Application Sympo-
sium, and the 2000 UNSENIX Technical Conference.

Dilip D. Kandlur heads the Networking Soft-
ware and Services department at the IBM T.
J. Watson Research Center. Since joining the
IBM T. J. Watson Research Center, his re-
search work has covered various aspects of
providing quality of service in hosts and net-
works and their application to multimedia sys-
tems, network and server performance, web
caching, etc. In particular, he has worked
on protocols and architectures for providing

quality of service in IP and ATM networks, their impact on transport
protocols, and their realization in protocol stacks for large servers and
switch/routers. He has been awarded an Outstanding Technical Achieve-
ment Award for his work in creating the QoS architecture for IBM server
platforms.

Dr. Kandlur received the M.S.E. and Ph.D. degrees in Computer
Science and Engineering from the University of Michigan, Ann Arbor.
He is a member of the IEEE Computer Society and currently vice-chair
of the IEEE Technical Committee on Computer Communications. Dr.
Kandlur holds 10 U.S. patents and has been recognized as an IBM Mas-
ter Inventor.

Deganjan Sahamanages the advanced devel-
opment group at Tellium, Inc. Previous to his
tenure at Tellium, he spent several years at
IBM Research and Lucent Bell Labs where
he designed and developed protocols for IP
routers and Internet servers. He is actively
involved with various standards bodies, most
notably IETF and OIF. He also serves as edi-
tors of international journals and magazines,
technical committee members of workshops

and conferences. Dr. Saha is a notable author of numerous technical
articles on various topics of networking and is a frequent speaker at aca-
demic and industrial events. He holds a B.Tech degree from IIT, India,
and MS and Ph.D. degrees from the University of Maryland at College
Park, all in Computer Science.

